
Arc
hi

ve
 o

f S
ID

 

* Corresponding author. E-mail:nematian@mehr.sharif.edu  

Journal of Industrial Engineering International        Islamic Azad University, South Tehran Branch 

July 2008, Vol. 4, No. 7, 1-9 

 

Fuzzy reliability optimization models for redundant systems   

J. Nematian* 

Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran  

K. Eshghi 

Professor, Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran  

A. Eshragh-Jahromi 

Professor, Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran 

          Abstract 

In this paper, a special class of redundancy optimization problem with fuzzy random variables is presented. 

In this model, fuzzy random lifetimes are considered as basic parameters and the Er-expected of system life-

time is used as a major type of system performance. Then a redundancy optimization problem is formulated as 

a binary integer programming model. Furthermore, illustrative numerical examples are also given to clarify 

the methods discussed in this paper. 
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1. Introduction  

In a classical redundancy optimization model [1, 2, 

3, 8, 10, 13, 17], the system and element  lifetimes 

are assumed to be random variables and the system 

performance such as system reliability is evaluated by 

using the probability theory. Unfortunately, this as-

sumption is not appropriate in a wide range of situa-

tions. In many practical cases, the probability distri-

bution function of the system and element lifetimes 

may be unknown or partially known. In fact, from a 

practical viewpoint, the fuzziness and randomness of 

the element life times are often mixed up with each 

other. A combination of fuzzy sets and probabilities 

forms the notion of fuzzy random variable [7, 15, 16]. 

The observation of fuzzy random variables is fuzzy 

real numbers. The concept of fuzzy random variable 

was introduced by Kwakernaak [9] and Puri and 

Ralescu [14]. The occurrence of fuzzy random vari-

able makes the combination of randomness and 

fuzziness more persuasive, since the probability the-

ory and the fuzzy sets theory can be used to model 

uncertainty and imprecision respectively. In the 

model discussed in this paper, fuzziness and random-

ness of the element lifetimes are required to be con-

sidered simultaneously.  Since both fuzzy random 

theory and random fuzzy theory offer powerful tools 

for describing and analyzing the uncertainty of com-

bining randomness and fuzziness, we apply them in a 

redundancy optimization problem involving both 

fuzziness and randomness.    

In this paper, we consider a  redundancy optimiza-

tion model in which the lifetimes of components can-

not be known precisely. Recently, a new variable, 

random fuzzy variable, was presented by Liu [11]. 

We assume that the lifetime of a component is a 

fuzzy random variable. In Section 2 some basic con-

cepts on fuzzy theory and fuzzy random theory are 

presented. In Section 3 our model is defined as a re-

dundant system involving fuzzy random life times 

and the redundant elements are assumed to be in one 

of the two cases: parallel or standby. Then the pro-

posed problem is converted to a new model by using 

the concepts of fuzzy random variables and Er-

expected value operator [6]. Finally, an algorithm for 

solving the proposed problem is presented. 

2.  Basic  Definitions 

 In this section, some basic definitions are intro-

www.SID.ir



Arc
hi

ve
 o

f S
ID

 

 

 

    Fuzzy reliability optimization models for redundant systems       2  

 

 

 

 

duced. For more details see [4, 5, 9, 12, 15]. 

 

Definition 1. Let 1ã  be a fuzzy set on ( )+∞∞−= ,R . 

This fuzzy set is called a level 1 fuzzy point if its 

membership function is given as follows: 

 



 =

=
otherwise

axif
x

0

1
)(

1ãµ  

 

}|ã{)1( 1 RaFp ∈∀= denotes the family of all 

level 1 fuzzy points. 

 

Definition 2.   Let A
~

be a fuzzy set on R . A
~

 is called 

a fuzzy number if it satisfies by the following condi-

tions: 

 

(i)    A
~

 is normal, i.e. }1)(
~

|{ =∈ xARx is non-

empty. 

(ii)       A
~

is fuzzy convex, i.e. 

 (y)}A
~

(x),A
~

min{))1((A
~

≥−+ yx αα for any 

Ryx ∈, , ]1,0(∈α . 

(iii)      A
~

is upper semi-continuous. 

(iv)  The support set of A
~

is compact, i.e. 

}0)(
~

|{ >∈ xARx is closed and bounded. 

 

Definition 3.   LR fuzzy number A
~

 is defined by the 

following membership function:   

 










≥
−

≤
−

=

+

−

0
0

0
0

)(

)(

)(
~

Axif
A

Ax
R

Axif
A

xA
L

xA
                        (1) 

 

where 0
A denotes the center (or mode) and +−

AA , rep-

resent the left and right spread respectively;  

]1,0[]1,0[:, →RL  with 1)0()0( == RL  and 

0)1()1( == RL  are strictly decreasing, continuous 

functions. A possible representation of a LR fuzzy 

number  is LRAAAA ),,(
~ 0 +−= . 

Let 
LRAAAA ),,(

~ 0 +−= be a LR fuzzy number. It is 

called a triangular fuzzy number and denoted by  

),,(
~ 0 +−= AAAA   if xxRxL −== 1)()( . Let 

,;|),,{( 00000
RaaaaaaaaaFN ∈+<<−∀= +−+−  

}, ++− ∈ Raa be the family of all triangular fuzzy 

numbers. The family of all left triangular fuzzy num-

bers can be denoted by: 

},;|)0,,{( 0000 +−−− ∈∈<−= RaRaaaaaaFL
  (2)  

 

}.,;|),0,{( 0000
RaRaaaaaaFR ∈∈+<= +++    (3) 

 

Similarly, },;|),0,{( 0000
RaRaaaaaaFR ∈∈+<= +++  

denotes the family of all right triangular fuzzy num-

bers. Note that 000 )0,0,(),,(
~

AAAAAA === +−  

if 0== +−
AA . It is clear that )1(PF , LF and RF  are  

all special cases of NF . Therefore we have: 

  
0000 |),,{()1( aaaaaaaFFFFF PRLN ≤≤−== −+−

UUU

   }.,,; 0 ++−+ ∈∈+ RaaRaa                                         (4) 

 

Definition 4.  Let ),,(
~ 0 +−= aaaA , ),,(

~ 0 +−= bbbB  

be two fuzzy numbers then RA ∈λλ ,
~

 and BA
~~

+ are 

also fuzzy numbers as follows:                                                         

 





<−−

>
=

−+

+−

0),,(

0),,(~
0

λλλλ

λλλλ
λ

ifaaa

ifaaa
A              (5) 

 

),,(
~~ 00 ++−− +++=+ bababaBA .              (6) 

 

Furthermore, 0),,(
~ 0 ≥= +−

aaaA  if 00 ≥− −
aa , 

0),,(
~ 0 >= +−

aaaA  if 00 >− −
aa , 0

~
≤A if 

00 ≤+ +
aa  and finally 0

~
<A  if 00 <+ +aa . We will 

use standard fuzzy arithmetic, from the extension 

principle, to perform sums, products, etc. of fuzzy 

numbers [9, 28]. 

 

Definition 5. Let ),,( PAΩ  be a complete probabil-

ity space. A Fuzzy Random Variable (FRV) is a 

Borel measurable function )d,F()A,(:X →Ω . If  X 

is a fuzzy random variable, then an α -cut 

)](),([}))((|{)( ωωαωω ααα
+−=>∈= XXxXRxX is 

a random interval for every ]1,0(∈α  and ),( BR  is a  

Borel measurable iff: 

 

ABXBX ∈≠∩Ω∈=− })(;{)(1 φωω αα .                    (7)  

 

Lemma 1. Let )(ωX is a fuzzy random variable then 

U ]1,0(
)()(

∈
=

α α ωαω XX . 

 

Proof. If A is a fuzzy number then U ]1,0(∈
=

α ααAA . 

Since )(}|{]}1,0(|))(({))(( xAAxSupxASupxA =∈=∈= αα
α

α ααααU   
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for any Rx ∈  then U ]1,0(∈
=

α ααAA . Since FX ∈)(ω  

then the proof is completed. 

 

Definition 6. The expected value of a fuzzy random 

variable X denoted by E(X) is defined as follows:  

 

∫ ∫
Ω ∈ Ω

== U
]1,0(

)()()()()(
α

α ωωαωω dpXdpXXE

 

        U
]1,0(

)()(),()(
∈ Ω

Ω

+−












= ∫ ∫

α
αα ωωωωα dpXdpX .  (8) 

 

Therefore, the expectation of a fuzzy random vari-

able is defined as a unique FU ∈  whose −α cut is 

[ ])(),()( +−== αααα XEXEXEU  and )())(( αα XEXE = .  

Let )(ωFRVX ∈ then we define the scalar expected 

value of X  denoted by Er(X)  and called it Er-

expected value of X  as follows: 

 

αωω
ω

α ddpXXEr )()()(

1

0

∫ ∫
Ω∈

= ,                             (9) 

where ))()((
2

1
)( ωωω ααα

+− += XXX  and for any 

Ω∈ω , )](),([)( ωωω ααα
+−= XXX . 

 

Corollary1. Let )(ωX is a fuzzy random variable then: 

  

∫
+− +=

1

0
)]()([

2

1
)( ααα dXEXEXEr ,                    (10)                                                                                 

 

where )( −
αXE  and )( +

αXE  are expected values of 

)(ωα
−

X and )(ωα
+

X  respectively. 

 

Corollary 2.  Let X , Y )(FRV Ω∈ and R∈λ  then: 

i)     λλ =)(E ,                                              (11)   

ii)   )()()( YEXEYXE λλ +=+ ,             (12) 

iii) )()()( YErXErYXEr λλ +=+ .     (13) 

 

Definition 7. Let )(, Ω∈ FRVYX . Then the rela-

tions " =~ ", " ≤
~

" and " ≥
~ " are defined respectively as 

follows: 

i)    YX =~  iff )()( YErXEr = ,                     (14)   

ii)   YX ≤
~

  iff )()( YErXEr ≤ ,                  (15)   

iii)  YX ≥
~

  iff  )()( YErXEr ≥ .                (16) 

3. Redundant system with fuzzy random lifetimes 

(RSFRL) 

Consider a redundant system consisting of n com-

ponents. For each component i , ni ,...,2,1= , there is 

only one type of elements available,. In this model, 

variable  ix , ni ,...,2,1= , is used to indicate the num-

bers of the i
th
  type  of redundant elements. The re-

dundant elements are arranged in one of two ways: 

parallel-series or standby. The standby and parallel-

series systems are shown in Fig.1 and Fig.2, respec-

tively. Let ijξ
~

, )
~

,(
~

ξxTi   and )
~

,(
~

ξxT  indicate the 

lifetimes of the j th redundant element in component  

i , the lifetimes in component  i  and  the system life-

time respectively for ni ,...,2,1=  , 
ixj ,...,2,1=  and   

).
~

,...,
~

,
~

,...,
~

,...,
~

,
~

,
~

,...,
~

,
~

(
~

212222111211 21 nnxnnxx ξξξξξξξξξξ =
 

For a standby redundant system we have 

∑
=

=
ix

j

iji xT

1

~
)

~
,( ξξ , while for a parallel-series redundant 

system we have ijxji i
xT ξξ

~
max)

~
,(

~
1 ≤≤= . 

Suppose that our redundant system has the follow-

ing requirement:  

1. Lifetime of the element ijξ
~

, ni ,...,2,1= , 

ixj ,..,2,1= , is a  random fuzzy random 

variable. 

2.  There is no element repair or system repair  or 

preventive maintenance. 

3.  The switching device of the standby system is 

assumed to be perfect. 

4.  The system and all redundant elements are in 

one of two states: operating (denoted by 1) or 

no operating (denoted by 0). 

 

The general fuzzy random programming form of 

the redundancy system problem is as follows: 

 

xMa    )
~

,(
~

ξxT   

Subject to:  
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   cxc
n

i

ii ≤∑
=1

                                                          (17) 

 

1),..,( 1 ≥= nxxx , integer vector, 

 

where c  is the maximum amount of available re-

sources, ic  is the cost  of i
th
 type of the redundant 

element, ni ,...,2,1=  , xMa  denotes the maximum 

operator for Fuzzy Random Variable (FRV) and 

)
~

,(
~

ξxT  indicates the system lifetime which is a 

fuzzy random.  

3.1 Integer programming model for redundant system 

 problem 

In this section, a zero-one integer programming 

model is presented for Redundant System with Fuzzy 

Random Lifetimes (RSFRL).  

Let kjni
i
j ...,,1,...,,1, ==δ , be a binary decision 

variable defined as: 

 





=
Otherwise

icomponentinusediselementredundantjthifi
j

0

1
δ

 

where k is determined by expert or decision maker (k 

is the upper bound of ix , ni ,...,2,1= , where 

}{max
1

i

n

i
xk

=
≥ ) and n is predetermined based on proper-

ties of systems. It is clear that ∑
=

=
k

j

i

jix
1

δ ; ni ,...,2,1= . 

 
Figure 1. A standby redundant system.. 

 

 

 

Figure 2. A parallel-series redundant system. 

3.1.1. Standby redundant system problem  

For a standby system, we have: 

 

∑ ∑
= =

==
ix

j

k

j

ij
i
jiji xT

1 1

~~
),(

~
ξδξξ .                                (18) 

 

Then the integer programming model is formulated 

as follows: 

},...,1|
~

{)
~

,(
~

1

∑
=

==
k

j

ij
i
j niMinxTMax ξδξ  

Subject to: 

cc
n

i

i
j

k

j

i ≤∑∑
= =1 1

δ                                                 (19) 

1
1

≥∑
=

k

j

i
jδ         ni ,...,2,1=                   

}1,0{∈i
jδ , kjni ,...,1,,...,1 == . 

 

By using the concept of Er-expected value of fuzzy 

random variables and corollary 2, the above model 

can be converted to the following zero-one integer 

programming models:   

},...,1|)
~

({))
~

,(
~

(
1

∑
=

==
k

j

ij
i
j niErMinxTErMax ξδξ  

Subject to: 

cc
n

i

i
j

k

j

i ≤∑∑
= =1 1

δ                                                   (20) 

1
1

≥∑
=

k

j

i
jδ       ni ,...,2,1=  

}1,0{∈i
jδ , kjni ,...,1,,...,1 == . 

or 

},...,1|{),(
1

∑
=

==
k

j

ij
i
j niMinxTMax ξδξ  

Subject to: 

cc
n

i

i
j

k

j

i ≤∑∑
= =1 1

δ                                                    (21) 
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1
1

≥∑
=

k

j

i
jδ          ni ,...,2,1=  

}1,0{∈i
jδ , kjni ,...,1,,...,1 == . 

 

In the above model ),( ξxT   and ijξ  are the crisp 

values of )
~

,(
~

ξxT  and ijξ
~

 respectively based on the 

definition of Er-expected value of a fuzzy random 

variable. Now let: 

 

 },...,1|{
1

∑
=

==
k

j

ij
i
j niMiny ξδ .                          (22) 

 

Then Model (23) can be written as follows:  

 
yMax  

Subject to: 

∑
=

≥
k

j

ij
i
j y

1

ξδ           ni ,...,2,1=  

cc
n

i

i
j

k

j

i ≤∑∑
= =1 1

δ                                                      (23) 

    1
1

≥∑
=

k

j

i
jδ                ni ,...,2,1=  

0≥y , }1,0{∈i
jδ , kjni ,...,1,,...,1 == . 

 

The above model is a zero-one integer program-

ming model and it can be solved by one of the com-

mercial ILP solvers. If we suppose that 
*i

jδ is the op-

timal solution of Model 25 then an Er-optimal solu-

tion of the original problem can be obtained by 

∑
=

=
k

j

i
jix

1

** δ  and  ))
~

,(
~

( ** ξxTEry = . 

3.1.2 Parallel-series redundant system problem  

For a parallel-series system, we have: 

 

ij
i
jkjijxji i

xT ξδξξ
~

max
~

max)
~

,(
~

11 ≤≤≤≤ == .  (24) 

 

Then the corresponding integer programming 

model is formulated as follows:  

{ }niMinxTMax ij
i
jkj ,...,1|
~

max)
~

,(
~

1 == ≤≤ ξδξ  

Subject to: 

cc
n

i

i
j

k

j

i ≤∑∑
= =1 1

δ                                                      (25) 

1
1

≥∑
=

k

j

i
jδ         ni ,...,2,1=  

}1,0{∈i
jδ , kjni ,...,1,,...,1 == . 

 

By using the concept of Er-expected value of fuzzy 

random variables and corollary 2, Model 19 can be 

converted to the following zero-one integer pro-

gramming problems:   

 

{ }niErMinxTErMax ij
i
jkj ,...,1|)

~
(max))

~
,(

~
( 1 == ≤≤ ξδξ                                             

Subject to: 

cc
n

i

i
j

k

j

i ≤∑∑
= =1 1

δ                                                      (26) 

1
1

≥∑
=

k

j

i
jδ               ni ,...,2,1=  

}1,0{∈i
jδ , kjni ,...,1,,...,1 ==  

 

or 

 

{ }niMinxTMax ij
i
jkj ,...,1|max),( 1 == ≤≤ ξδξ  

Subject to: 

cc
n

i

i
j

k

j

i ≤∑∑
= =1 1

δ                                                      (27) 

1
1

≥∑
=

k

j

i
jδ      ni ,...,2,1=  

}1,0{∈i
jδ , kjni ,...,1,,...,1 ==  

Let niy ij
i
jkji ,...,1,max1 == ≤≤ ξδ and 

ini yy ≤≤= 1min .  

 

Model (28) can be written as follows: 

yMax  

Subject to: 
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yyi ≥             ni ,...,2,1=                                    (28) 

ij
i
jiy ξδ≥     kjni ,...,1,,...,1 ==  

)1( i
jij

i
ji My αξδ −+≤      kjni ,...,1,,...,1 ==  

1
1

=∑
=

k

j

i
jα           ni ,...,2,1=   

cc
n

i

i
j

k

j

i ≤∑∑
= =1 1

δ  

1
1

≥∑
=

k

j

i
jδ           ni ,...,2,1=  

}1,0{, ∈i
j

i
j δα     kjni ,...,1,,...,1 ==  

0≥y  

0≥iy        ni ,...,2,1=  

 

The above model is a zero-one integer program-

ming model and it can be solved by one of the com-

mercial ILP solvers.   

In the following steps, we summarize the necessary 

steps to solve the redundant system with fuzzy ran-

dom lifetimes in standby or parallel situation:  

 

Data entry:  

Step 0: Define a membership function for each fuzzy 

random variable in Model (17) and determine 

the Er-expected values of the fuzzy random 

variables.     

 

Model structure:  

Step 1: Apply the concept of upper bound of numbers 

of the i th types of elements:  

- Convert Model (17) to Model (19) 

[Standby System], 

- Convert Model (17) to Model (25) [Paral-

lel System]. 

Step 2: Calculate Er-expected values of fuzzy random 

variables 

- Convert Model (19) to Model (20) or 

Model (4) [Standby System], 

            - Convert Model (19) to Model (26) or 

Model (26) [Parallel System]. 

Step 3: Use the zero-one integer programming model 

            - Convert Model (20) to Model (23) 

[Standby System], 

- Convert Model (26) to Model (28) [Paral-

lel   System]. 

 

Solution procedure: 

Step 4: Solve Model (23) or Model (28) as a zero-one 

integer programming model by one of the 

ILP solvers. Let 
i

jδ  be its Er-expected solu-

tions. Then an Er-optimal solution of the 

original problem is obtained by:  

∑
=

=
k

j

i
jix

1

δ .                                              (29) 

3.2. Numerical  examples 

In this section, two numerical examples of redun-

dant system problems are given to clarify the model 

discussed in this section.  

 

Example 1. Consider a standby redundancy system 

shown in Figure 2. The lifetimes of the 5 types of 

elements are fuzzy random variables. Suppose that 

)(ωijr , 4,...,1,5...,,1 == ji  are random variables 

distributed by a normal distribution function  

),( 2
ijijN σµ where ijµ and 2

ijσ  are  its mean and  vari-

ance respectively and ),,(
~

ijijijij r γβξ = , 

4...,,1,5...,,1 == ji , is a  fuzzy random lifetime for 

the j th redundant elements in components i . Suppose 

that r  ~ ),( 2σµN  is a normal random variable with 

expectation µ  and variance 2σ  on Ω  and 

),),(()( γβωω rX = . We have the following relations: 

 

)1()()( −+=− αβωωα rX ,                                  (30) 

)1()()( αγωωα −+=+
rX ,                                 (31) 

)]1()(),1()([)( αγωαβωωα −+−+= rrX ,         (32) 

)]1(),1([))(( αγµαβµωα −+−+=XE ,             (33) 

αγβγβαµ dXEr )]()(2[
2

1
)(

1

0
−−−+= ∫  

              )(
4

1
γβµ −−= .                                            (34) 
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Table 1. Fuzzy random Lifetimes of elements 

ijξ
~ . 

 4,...,1,
~
1

=j
j

ξ  4,...,1,
~

2
=j

j
ξ  4,...,1,

~
3

=j
j

ξ  4,...,1,
~

4
=j

j
ξ  4,...,1,

5
=j

j
ξ  

µ  15 12 9 13 19 

β  5, 3.3, 2.5, 2 4, 3, 1, 4 3, 0, 2, 5 1, 0, 4, 2 8, 0, 3, 9 

γ  3, 4.3, 6.5, 2 6, 3, 5, 0 1, 2, 6, 0 5, 2, 2, 7 4, 5, 7, 4 

 

 

In this example, we assume that fuzzy random life-

times of elements are given in Table 1. 

Then the above standby redundancy optimization 

problem can be converted to a zero-one integer pro-

gramming as follows by using the concept of Er-

expected value of fuzzy random variables: 

 

Max y 

 

Subject to: 

 

y≥+++ 1
4

1
3

1
2

1
1 151625.155.14 δδδδ                    (35) 

 

y≥+++ 2
4

2
3

2
2

2
1 1113125.12 δδδδ  

 

y≥+++ 3
4

3
3

3
2

3
1 75.7105.95.8 δδδδ  

 

y≥+++ 4
4

4
3

4
2

4
1 25.145.125.1314 δδδδ  

 

y≥+++ 5
4

5
3

5
2

5
1 75.172025.2018 δδδδ                                         

 

∑∑∑
===

++
4

1

3
4

1

2
4

1

1 10910289
j

j

j

j

j

j δδδ         

120011395
4

1

5
4

1

4 ≤++ ∑∑
== j

j

j

j δδ  

 

1
4

1

≥∑
=j

i
jδ          5,...,2,1=i  

 

}1,0{∈i
jδ , 4,...,1,5,...,1 == ji  

 

The above model solved by Lingo which is one of 

the commercial ILP solvers. Then the Er-optimal so-

lution of the model is obtained as follows: 

 

)0,1,1,1(),,,( *1
4

1
3

1
2

1
1 =δδδδ ,                           

 

)0,1,1,0(),,,( *2
4

2
3

2
2

2
1 =δδδδ ,                       

 

 

)0,0,1,1(),,,( *3
4

3
3

3
2

3
1 =δδδδ ,                         

 

)1,0,0,0(),,5,( *4
4

4
3

4
2

4
1 =δδδδ ,                     

 

)0,1,1,1(),,,( *5
4

5
3

5
2

5
1 =δδδδ ,                        

 

25.14* =y  ,                                                        

 

),,,,()( *
5

*
4

*
3

*
2

*
1

**
xxxxxxSROSxEr ==  

                      )3,1,2,2,3(= ,                          

 

25.14))
~

(( ** == TErT .                                     

 

In order to compare the result of our model with 

the classical redundancy optimization model in which 

only the element lifetimes are assumed to be random 

variables, this example was also solved by consider-

ing the following assumptions: 
 

j1

~
ξ ~ N(15, 

2σ ),                                                (36) 

j2

~
ξ ~ N(12, 

2σ ),                                               (37) 

j3

~
ξ ~ N(9, 

2σ ),                                                 (38) 

 j4

~
ξ ~ N(13, 

2σ ),                                              (39) 

j5

~
ξ ~ N(19, 

2σ ) for 4...,,1=j .                       (40) 

 

The optimal solution in this case when only the 

randomness of the element lifetimes is important is as 

follows: 

)0,0,1,0(),,,(
*1

4
1
3

1
2

1
1 =cδδδδ ,                           

)1,0,1,0(),,,(
*2

4
2
3

2
2

2
1 =cδδδδ ,                       

)1,0,1,0(),,,(
*3

4
3
3

3
2

3
1 =cδδδδ ,                       
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)0,0,1,0(),,5,(
*4

4
4
3

4
2

4
1 =cδδδδ ,                  

 

)0,0,1,0(),,,(
*5

4
5
3

5
2

5
1 =cδδδδ ,                    

 

 00.13
* =cy  ,                                                    

 

 )1,1,2,2,1(),,,,( *
5

*
4

*
3

*
2

*
1

* == xxxxxxc ,      

 

13
* =cT .                                                         

 

As this result shows, the system lifetime in our 

model has been increased by almost 9% ( *
T vs. *

cT ) 

and the number of elements used in the system has 

also been increased by 36% (
*

x vs. 
*

cx ). Therefore, 

the combination of randomness and fuzziness in our 

model generated more reliable and efficient system.   

 

Example 2.  Consider a parallel-series redundancy 

system shown in Figure 1. Furthermore, suppose that 

all necessary assumptions are the same as Example 1. 

In this example, we also assume that fuzzy random 

lifetimes of elements are given in Table 2.  

Then the above parallel-series redundancy optimi-

zation problem can be converted to zero-one integer 

programming as follows by using the concept of Er-

expected value of fuzzy random variables: 

 

Max  y 

 

Subject to: 
 

yy ≥1                                                           (41) 

 

yy ≥2  

 

yy ≥2  

 

1
1
15.14 y≤δ  

 

1
1
225.15 y≤δ  

 

1
1
316 y≤δ  

 

2
2

15.12 y≤δ  

 

2
2
212 y≤δ  

3
3
310 y≤δ  

 

1
1
1

1
1 )1(5.14 yM ≥−+ αδ  

 

1
1
2

1
2 )1(25.15 yM ≥−+ αδ  

 

1
1
3

1
3 )1(16 yM ≥−+ αδ  

 

11
3

1
2

1
1 =++ ααα  

 

2
2
1

2
1 )1(5.12 yM ≥−+ αδ  

 

2
2
2

2
2 )1(12 yM ≥−+ αδ  

 

2
2
3

2
3 )1(13 yM ≥−+ αδ  

 

12
3

2
2

2
1 =++ ααα  

 

3
3
1

3
1 )1(5.8 yM ≥−+ αδ  

 

3
3
2

3
2 )1(5.9 yM ≥−+ αδ  

         

3
3
3

3
3 )1(10 yM ≥−+ αδ  

 

13
3

3
2

3
1 =++ ααα  

    

1
3

1

≥∑
=j

i
jδ          3,2,1=i  

 

70010910289
3

1

3
3

1

2
3

1

1 ≤+++ ∑∑∑
=== j

j

j

j

j

j δδδ   

 

}1,0{, ∈i
j

i
j δα , 3,2,1,3,2,1 == ji . 

 

 

 

 

 

 

 

Table 2. Fuzzy random Lifetimes of elements 
ijξ

~
 . 

 3,2,1,
~

1
=j

j
ξ  3,2,1,

~
2

=j
j

ξ  3,2,1,
~

3
=j

j
ξ  

µ  15 12 9 

β  5, 3.3, 2.5, 2 4, 3, 1, 4 3, 0, 2, 5 

γ  3, 4.3, 6.5, 2 6, 3, 5, 0 1, 2, 6, 0 
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Model (41) solved by by Lingo which is one of the 

commercial ILP solvers. Then the Er-optimal solution 

of the model is obtained as follows: 
 

)1,1,0(),,(
*1

3
1
2

1
1 =δδδ , 

 

)0,1,0(),,( *2
3

2
2

2
1 =δδδ , 

 

)1,1,1(),,( *3
3

3
2

3
1 =δδδ , 

 

 12* =y , 

 

)3,1,2(),,,()( *
3

*
2

*
1

** === xxxxPROSxEr , 

 

12))
~

((
** == TErT .  
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