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          Abstract 

This paper presents an exact model for the resource investment problem with generalized prece-

dence relations in which the minimum or maximum time lags between a pair of activities may vary 

depending on the chosen modes. All resources considered are renewable. The objective is to deter-

mine a mode and a start time for each activity so that all constraints are obeyed and the resource in-

vestment cost is minimized. Project scheduling of this type occurs in many fields for instance, con-

struction industries. The proposed model has been inspired by the packing problems. In spite of the 

fact that it needs a feasible solution to start for conventional models, the new model has no need for 

a feasible solution to startup with. Computational results with a set of 60 test problems have been 

reported and the efficiency of the proposed model has been analyzed.   
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1. Introduction 

In practice we generally can procure or rent as 

many resource units as we need, but we tend to hire a 

fixed number of resources of type k, kR  at the start of 

the project and fired them at the end of the project. 

Thus the maximum number of resource of any type 

must be determined.   

Let 0≥kC  denote the procurement cost per unit 

of resource Rk ∈ . Following the classification 

schemes for project scheduling proposed by [2,3] the 

time-constrained Resource Investment Problem or 

RIP in general case when we have minimum and 

maximum time lags (temporal constraints) between 

project activities is denoted by kCdtempPS |,|  or 

briefly RIP-GPR   in which d  represents an upper 

bound on the shortest project duration (deadline) and 

GPR represents General Precedence Relations [13, P. 

22, 278]. 

The objective function of this problem tries to 

minimize total cost of hiring kR , while in classic 

well-known Resource-Constrained Project Schedul-

ing Problem or briefly RCPSP, project duration 

(makespan) is minimized. RCPSP in situation consid-

ering minimum and maximum time lags denoted by 

max|| CtempPS or RCPSP-GPR [13, P. 22]. 

Moreover in RIP, the pattern of resource usage 

over time is much more important than the pick de-

mand of the schedule. In such situations considering 

alternative ways (modes) of executing of individual 

activities help to have flexibility to achieve the best 

pattern of resource usage and minimum level of kR . 

These modes differ in processing time, time lags to 

other activities, and resource requirements. They re-
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flect time/resource trade-offs and resource–resource 

trade-offs [13, P. 160].  

When multi-mode is taken into account of the 

problem RIP, it is called Multi-mode Resource In-

vestment Problem or briefly MRIP and in general 

case denoted by kCdtempMPS |,|  or MRIP-GPR. 

While the classic type of multi-mode problem is 

called the Multi-Mode Resource-Constrained Project 

Scheduling Problem or briefly MRCPSP and in gen-

eral case is denoted by max|| CtempMPS  or  

MRCPSP-GPR  [13, P. 160].   

The focus of this work is to consider a general case 

in which the associated minimum or maximum time 

lag may depend on the execution modes of both ac-

tivities i and j. 

2. Problem formulation  

Let:  

iimv  Binary decision variable; 1 if activity i  

is performed in mode mi, 0 otherwise. 

kC   Procurement cost per unit of resource k   

),...1( Kk = . 

ii FS /         Starting/finishing time of activity i . 

iimd     Duration of activity i  in mode im . 

t      Discrete time unit. 

maxmin
/ ijij SSSS Minimal/maximal time lag between                     

start to start times of activities i and j . 

maxmin
/ ijij SFSF Minimal/maximal time lag between                

start to finish times of activities i and j .  

maxmin
/ ijij FSFS Minimal/maximal time lag between                               

finish to start times of activities i and j .  

maxmin
/ ijij FFFF Minimal/maximal time lag between                            

finish to finish times of activities 

i and j .  

ii lses /     Earliest / latest starting time of activity i .  

kR  Maximum number of resource type   

k available per period. 

kimi
r          Resource requirement of type k  for activ-

ity i  in mode im . 

K             Number of resource types required                   

for the project. 

iM             Number of modes for activity i . 

d        An upper bound on the shortest project            

duration. 

 

SSE , 
SFE , 

FSE and 
FFE are defined as the resulting 

set of temporal relations.  

Assuming an AoN network N(x) in standardized 

form with minimal start to start precedence relations 

using the transformation rules [2], the problem can be 

modeled conceptually as follows [13, 16 ] : 

Min ∑
∈Rk

kimk i
rC max or k

RK

k RC∑
∈

              (1)                      

 

Subject to: 

 

∑
∈

=

ii

i

Mm

imv 1         )( Vi ∈                      (2)                               

 

∑ ∑
= =

≥−
i

i

j

j

jiji

M

m

M

m

jmimjmimij vvssss
1 1

min
.  

       ,ji <     min,
ss

Eji ∈〉〈                                    (3)                    

 

)0,(),,( dtRKRvtSr kk ≤≤∈≤           (4)      

 

00 =S , 0≥iS  (5)                                                               

}1,0{∈
iimx   ),( ii MmVi ∈∈                                      

The objective function (1) minimizes the resource 

investment cost. Eq. (2) ensures that only one mode is 

selected. Eq. (3) is the GPR in standardized form with 

mode dependent time lags.  Eq. (4) expresses that at 

no time instant of t, during the project horizon be-

tween 0 and d  the resource availability may be vio-

lated.  Moreover, we define:  

 

)max,max(
,

ij

Vi
ji

ipd δ∑
∈

Ε∈〉〈
=                             (6) 

 

which represents an upper bound on the shortest 

project duration. Let: 
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)0,(:),,(
),(

≥∈= ∑
∈

tRkrvtsr
tsAi

ikk              (7) 

be the amount of resource k  used at time t, in which: 

 

)0}({:),,(),,,( ≥+<≤∈=ΑΑ tPStSVivtsxts iii
     (8) 

 

 is the set of (real) activities in progress at time t, also 

called The active set  at time t.   

This non-linear program, however, cannot be solved 

directly because it  is not easy to translate the set 

),,( xtsA  that is used in Eq. 4 into a mathematical 

programming formulation. Hence other programming 

formulations have to be used in order to be able to 

specify the resource constraints in the correct and 

solvable form. 

The following mathematical programming formula-

tion for MRIP-GPR, have been developed by De 

Reyck and Herroelen [6] based on previous work of 

Talbot [5: Page 512]. In this formulation all maximal 

time lags are transformed into equivalent minimal 

time lags with a negative value in the opposite direc-

tion. For instance, a max
ijFS  time lag is transformed 

into a min
jiSF  time lag [2].  The decision variables are 

introduced as follows:     

 





=
,0

,1
timi

x  

 

 

Min ∑
∈Rk

kimk i
rC max or k

RK

k RC∑
∈

              

                                                                                                  

Subject to: 

∑ ∑
= =

=
i

i

i

i

i

M

m

ls

est

timx
1

1      ni ,...,2,1=                      (9) 

 

∑ ∑ ∑ ∑
= = = =

≤+
i

i

i

i

j

j

j

j

ji

M

m

ls

est

M

m

ls

est

tjmtimij txxSSt
1 1

min
)(  

SSEji ∈),(                                                    (10) 

 

∑ ∑ ∑ ∑
= = = =

+≤+
i

i

i

i

j

j

j

j

jji

M

m

ls

est

M

m

ls

est

tjmjmtimij xdtxSFt
1 1

min
)()(

   SFEji ∈),(                                                    (11) 

 

∑ ∑ ∑∑
= = ==

≤++
i

i

j

j

j

j

j

i

i
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M

m

M

m
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est

tjm

ls
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timijim txxFSdt
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)(

    FSEji ∈),(                                                    (12) 

 

∑∑ ∑∑
= = = =

+≤++
i

i

i
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j

j

j

j
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M

m
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est

M

m
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est

tjmjmtimijim xdtxFFdt
1 1

min
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   FFEji ∈),(                                                    (13) 

 

∑ ∑∑
=

−

−==

≤
n

i

k

lst

esdts

sim

M

m

kim Rxr
i

iim

i

i

i

i

1

},1min{

},max{1

 

dtKk ,...,2,1;,...,2,1 ==                             (14) 

iiiitim lsestMmnix
i

,...,,,...,1,...,1}1,0{ ===∈

and 0≥kR  Kk ,...,1=  

kR  and timi
x  are the decision variables to be de-

termined. Constraints set (9) ensure that each activity 

is assigned exactly one mode and exactly one starting 

time. Constraints (10) to (13) denote the GPRs. The 

resource constraints are given in Eqs. (14) and ex-

press that at no time instant of t during the project 

horizon between 0  and d  the resource availability 

for each type may be violated.    

The variable timi
x  can only be defined over the in-

terval between the earliest and latest starting time of 

the activity in question. These limits are not deter-

mined with the use of the traditional forward and 

backward pass calculation. The calculation of an ear-

liest start schedule, ies  where there are no resource 

constraints, can be related to the test for existence of 

a time-feasible schedule. A time-feasible schedule ST, 

for GPR exists iff GPR has no cycle of positive 

length. A schedule which satisfies the resource con-

straints is called resource-feasible and denoted by 

RS .  A schedule which is both time-feasible and re-

source feasible is called feasible, and RT SS ∩  is the 

set of feasible schedules. To establish the model of 

Talbot et al., we need to have a feasible schedule and 

d  must be known. The problem of finding a feasible 

schedule of the max|| CtempMPS (MRCPSP-GPR) 

and kCdtempMPS |,| (MRIP-GPR) are  NP-

complete [3, 7, 12: Page 165]. 

 

 

 

if activity i  is performed in mode im  
 and started at time t  
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3. Relevant literature review 

Exact solution procedures for RIP  without maxi-

mum time lags (precedence constraints) have been 

presented by Möhring (1984) and Demeulemeester 

(1995) [5,8,13: P. 278].. Drexl and Kimms have de-

vised upper and lower bounds based on lagrange re-

laxation and column generation techniques [8]. The 

case of general temporal constraints (time windows) 

has been discussed by Nübel and Zimmermann and 

Engelhardt (1998),  Nübel (1999), Neumann and 

Zimmermann (2000) [3,13]. Selle has developed 

lower bounds based on continuous, surrogate, and 

lagrange relaxation techniques [13, P. 278].     

Since the early eighties, the multi-mode project 

scheduling problem has been treated by several au-

thors [13, P. 160]. Exact algorithms have been re-

viewed by Hartmann and Drexl [10]. The most effi-

cient method for solving this problem known thus far 

is the branch-and-bound algorithm of Sprecher and 

Drexl [14]. The best heuristic procedure at present, is 

a genetic algorithm published by Hartmann [10]. For 

the case of general temporal constraints, three differ-

ent algorithms have been proposed by De Reyck and 

Herroelen [6], Dorondorf [7] and Heilmann [11].  

In order to be able to specify the resource con-

straints in the correct and solvable form, the best 

10 − programming model based on an extension of the 

formulation by Pritsker et al., has been presented by 

Talbot [5]. The model of Talbot have been developed 

by Reyck and Herroelen [6] for the case of general 

temporal constraints.   

4. Mathematical formulation of RIP-GPR 

The formulations developed have some difficulties 

in translating the sets of activities which are in pro-

gress into linear resource constraints[1,9, 5]. The 

formulation which is presented here has been inspired 

by the packing problems models.  

There is a certain correspondence between boxes to 

be packed and activities to be scheduled. In a rather 

simple approach for RIP and RCPSP two types of 

renewable resources is considered. As shown in fig-

ure 1, each box would correspond to an activity, with 

a processing time equal to the length and a resource 

request of type k (k=1,2) equal to width and height 

respectively. An empty box 0B  of width 0W  equal to 

time horizon d , length 0L  equal to 1R , the resource 

capacity available of type 1 and height  0H  equal to 

2R , the resource capacity available of type 2 is given. 

 

There is a series of boxes iB  (or Activities iA ) 

( ni ,...,1= ), of width ii dw = , length 1ii rl =  and 

height  2ii rh =  
to be packed in which index im  has 

been omitted from both 
iimd  and kimi

r for the case of 

single mode. Furthermore, the constraint that activity 

preemption is not allowed corresponds to the natural 

requirement that boxes must be packed as a whole. 

The bottom left of the box is placed at )0,0,0(  with 

its six sides parallel to X-, Y-, and Z-axis, respectively.  

The x-coordinate of the bottom left behind corner 

of activity i  is given by the activity starting time and 

is the most important decision variable to be deter-

mined. Thus, GPRs can be formulated in standard 

form as follows:  

 
maxmin

ijijiji SSxxSSx +≤≤+   

SSEji ∈),(                                                         (15) 

 

The finishing time of end activities should not be 

exceeded from d , i.e.:   

0≥−− ii dxd          activitiesendi ∈       (16)  

The constraints for packing boxes are as follows 

[4]:  

Each edge of a box should be parallel to an edge of 

the main box. There should be no overlapping for any 

two boxes, i.e., the overlapping area is zero.  

The second constraint above for project scheduling 

must be changed as follows: 

There should be no overlapping for any two boxes, 

toward X- and Y-coordinates as well as X- and Z-

coordinates.   i.e., it doesn’t matter to have overlap-

ping between Y- and Z-coordinates.  

The bottom left coordinates of activity iA  are 

),,( iii zyx  The top right coordinates of activity iA  

are  ).,,(
21

iiiiii rzrypx +++  We use xjit  and xijt  

to denote whether the activity i to be located at the 

right hand side of the activity j or vise versa respec-

di 

Activity i ri1 

ri2 

              Figure 1. Representation of an activity. 
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tively, without any overlapping  between them. We 

use the same notations as yijt  and yjit  for Y-

coordinate, zijt  and zjit  for Z-coordinate.  

Using the binary decision variables above, these 

constraints can be stated as follows: 

 

0* ≥+−− xijiij tMdxx          

1,...,1 −= ni , nj ,...,2=                                (17)                                                                                                                                    

 

0* ≥+−− xjijji tMdxx                                                           

1,...,1 −= ni , nj ,...,2=                                (18) 

 
0*1 ≥+−− yijiij tMryy      

1,...,1 −= ni , nj ,...,2=                                (19)                                                  

 

0*1 ≥+−− yjijji tMryy                                                                                                                                         

1,...,1 −= ni , nj ,...,2=                                  (20) 

 

3=+++ yjiyijxjixij tttt                                                               

1,...,1 −= ni , nj ,...,2=                                  (21) 

 

where M is a big constant. Equations above ensure 

that there should be no overlapping for any two 

boxes, between x- and y-coordinates. For x- and z-

coordinates which are applicable in double types of 

renewable resources, the same equations as (24), (25) 

and (26) are defined as follows: 

0*2 ≥+−− zijiij tMrzz     

1,...,1 −= ni , nj ,...,2=                                  (22) 

0*2 ≥+−− zjijji tMrzz                                                                                                                       

1,...,1 −= ni , nj ,...,2=                                  (23) 

3=+++ zjizijxjixij tttt                                                            

1,...,1 −= ni , nj ,...,2=                                  (24) 

When a precedence relation of type 0
min

≥ijFS    

between two activities exists, clearly activity i  pre-

cedes activity j  ijtx is forced to get zero, so that it is 

not necessary to write Equations (17) to (24).  

In this formulation, resource constraints can be 

formulated as follows: 

011 ≥−− ii ryR      ni ,...,1=                     (25) 

022 ≥−− ii rzR    ni ,...,1=                      (26) 

 

When there are a set of activities without any rela-

tion among them, if scheduled in parallel, they would 

violate resource constraints.  In order to resolve a re-

source conflict between two activities, the location of 

one of them must be changed as illustrated in Figure 

3. We use the minimization of the resource invest-

ment cost as Equation (1). 

5. Formulation of MRIP-GPR  

In the case of MRIP-GPR individual activities can 

be executed in alternative ways (modes). Activity i , 

),...,1( ni =  when performed in mode im , 

),...,1( ii Mm =  has a duration 
iimd  and requires kimi

r , 

a constant amount of resource k over duration. To 

describe the mathematical formulation, Let: 

 

∑
=

=
i

i

ii

M

m
miimi vdd

1

.       ni ,...,1=                   (27)  

 

∑
=

=
i

i

ii

M

m
mikimik vrr

1

. ni ,...,1= Kk ,...,1=   (28) 

 

MRIP-GPR can be formulated by replacing Equa-

tions (27), (28) and (2) into the RIP-GPR  model.  

6. Formulation of MRIP-GPR with Mode-

Dependent time lags 

In this section, a general case of MRIP-GPR in 

which the associated minimal or maximal time lags 

may depend on the execution modes of both activities 

i and j  is considered. This case is called MRIP-GPR 

with Mode-Dependent time lags. Figure 2 shows the 

representation of this case in an AoN network in 

which GPRs are transformed into standard form of 

minimal start to start precedence relations, using the 

transformation rules [2]. Each activity can be exe-

cuted in two alternative modes, say, modes 1 and 2 

[13: Page 163].  

As shown in Figure 2, each mode of an activity is 

indicated by an element in the duration vector and a 

row in the matrix of resource requirements of type k 

(k=1,2). Clearly number of assignment will be in-

crease exponentially. Assume a network )(vN  in 

standardized form, the weight of an arc 
SSEji ∈〉〈 ,  
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(arc set) in multi-mode project network N represents 

a matrix ,)( ,
minmin

jjiiji MmMmjmimij SSSS ∈∈=  where 

the elements Ζ∈
min

ji jmimSS  denote the (scalar) arc 

weights that refer to the execution of activity i  in 

mode 
ji Mm ∈  and execution of activity j  in mode 

jj Mm ∈ .  For assignment v ,  

 

( )
ji

jj

ji

ii

jmim

Mm

jmim

Mm

ij vvSSvSS .
minmin ∑∑

∈∈

=                                                                           

SSEji ∈),(                                                         (29) 

 

is the resulting weight of arc 〉〈 ji,  in network )(vN . 

An assignment v  is called time-feasible  if 

)(vN dose not contain any cycle of positive length. A 

schedule TS  is said to be  time-feasible with respect 

to assignment v  if TS   satisfies the temporal con-

straints: 

 

)(
min

vSSSS ijij ≥−      Eji ∈),(             (30)  

 

Equation (30) is nonlinear, in order to keep linear-

ity with these additions and formulate this general 

problem in linear mixed integer programming, let: 

 







=

0

1

, ji jmmiq  

 

Then Equation (15) can be replaced by the follow-

ing constraints after transforming to the standard 

form: 

 

0,
min

, ≥−− ∑ ∑
Μ∈ Μ∈

jiji

ii jj

jmimjmim

m m

ij qSSxx   

For GPRs transformed to min
, ji jmimSS           (31) 

 

0,2 ≤−−
jiji jmimjmim vvq           

For GPRs with a matrix of time lags              (32) 

 

in which min
, ji jmimSS  is the transformed matrix of 

minimal time lags. The dependency of time lags to 

the execution modes of both activities i and j  is en-

sured by Equation (32). 

 

 

7. Computational results 

In order to show that the model serves to solve in-

stances of practical size, ProGen/max [14] is used to 

generate 60 MRIP-GPR instances in 12 categories 

according to the combinations of N  )30,20,10( =N , 

iM )3,2( =iM  and K )5,2( =K using control parame-

ters as given in Table 1. The order strength OS is a 

[0, 1]-normalized measure defined as the number of 

precedence relations, which is minimum for parallel 

and maximum for series digraphs [14]. The resource 

factor RF  reflects the average portion of resources 

requested by each activity [15]. Setting RF  at 1 

leads to the most complex resource-constrained pro-

ject scheduling problem instances. The resource 

strength RS  measures the scarcity of the resource 

availability to the respective requirements [15]. For 

each category (out of 12), 5 instances have been gen-

erated.  

The instances have been optimally solved by the 

Lingo 8.0 software (http://lindo/lingo8.exe) using 

branch-and-bound (B&B) method.  

Each problem is allowed a maximum of 1000 sec-

onds of CPU time using the Lingo setting 

(→/Option/General Solver/time Limitation = 1000 

Sec.).  

All the computational experiments have been car-

ried out on an intel® Celeron® mobile 1.3 GHz Per-

sonal Computer with 512 Mb RAM. Since optimal 

solutions are the same in the two models, Tables 2 

and 3 summarize our findings as average CPU times. 

8. Conclusion 

In this paper we deal with an extension of the re-

source investment problem where there are multi 

modes for each activity and general precedence rela-

tions with mode dependent time lags. Computational 

results show that the proposed model is not very sen-

sitive to number of modes  and in the situations in-

volving 3≤K  is more effective than its competing 

Talbot et al. model. In addition, it has no need for a 

feasible solution to startup with. 

 

 

 

 

 

 

 

 

 

if activity i and j are performed in 

mode mi and mj respectively 

otherwise 
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


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


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

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22
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21
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11
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ssss
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












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22
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12

min
21

min
11

ijij

ijij
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( )max

ji jmimSS ≡ ( )min

ijimjmSS−  

Figure 2. Representation of two activities with the matrixes of modes dependent time lags.  

Symbol Important Control Parameter Value 

 N  Number of non-dummy activities            10, 20, 30 

iM  Number of modes per activity                  2, 3 

iimd  Duration of each mode        [1, 10] 

  Number of initial and terminal activities               [2, 3] 

  Maximum number of predecessors and successors                 3 

 OS Order strength                                   0.5 

 K       Number of renewable resource types                           2, 5 

kimi
r  Renewable resource demand                         [1, 10] 

nRF Re
  Resource factor for renewable resources                  1 

nRS Re
  Resource strength for renewable resources                0.5 

 

   Table 1. The parameter settings of the benchmark problem set. 

 Number of                       Talbot et al. Model                               Proposed Model 

       

   10             0.125                 1.301    0.006   0.009 

   20            26.801              34.473    7.652            8.891 

   30           89.924               123.845   19.305          21.650   

 

activities                    2=iM            3=iM   2=iM        3=iM    

     Table 2. The average CPU time for solving five instances in each category with K=2. 
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    10              0.170       3.120           2.302            2.780 

      20            46.370        78.975                     137.290         142.530 

      30            239.21      >1000          >1000             >1000 

 

     Table 3. The average CPU time for solving five instances in each category with K=5. 

activities                     2=iM             3=iM                    2=iM         3=iM       

Number of                       Talbot et al. Model                              Proposed Model 
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