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          Abstract 

We present several heuristic algorithms based on tabu search for solving the multi-stage sequence-

dependent group scheduling (SDGS) problem by considering minimization of makespan as the criterion. As 

the problem is recognized to be strongly NP-hard, several meta (tabu) search-based solution algorithms are 

developed to efficiently solve industry-size problem instances. Also, two different initial solution generators 

are developed to aid in the application of the tabu search-based algorithms. A lower bounding technique based 

on relaxing the mathematical model for the original SDGS problem is applied to estimate the quality of the 

heuristic algorithms. To find the best heuristic algorithm, random test problems, ranging in size from small, 

medium, to large are created and solved by the heuristic algorithms. A detailed statistical experiment, based 

on nested split-plot design, is performed to find the best heuristic algorithm and the best initial solution gen-

erator. The results of the experiment show that the tabu search-based algorithms can provide high quality so-

lutions for the problems with an average percentage error of only 1.00%. 
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1. Introduction  

Manufacturing companies are forced to improve 

their efficiency and flexibility in order to survive. 

Cellular Manufacturing (CM) is a concept used since 

the 70’s to increase the productivity and flexibility of 

production in manufacturing companies. In CM, the 

parts are assigned to different groups based on their 

similarities in shape, material, or processing opera-

tions. The machines are also assigned to different 

cells in order to decompose the production line. Each 

group is then assigned to a particular cell, which in-

cludes different machines that have the capability to 

perform the necessary operations for each part that 

belong to the group. This decomposition of machines 

and parts (called jobs in this paper) has several ad-

vantages such as significant reduction in set-up time, 

work-in-progress inventories, and simplified flow of 

parts and tools.  

Sequencing and scheduling are forms of decision 

making that improve the efficiency of production by 

finding the best sequence of processing the assigned 

jobs to a set of machines. In CM, finding the best se-

quences of jobs as well as groups is called Group 

Scheduling (GS). In GS, the best sequence of proc-

essing the assigned groups to the cell as well as the 

jobs in each group to optimize some measure of ef-

fectiveness is investigated. One of the relevant objec-

tives in the investigation of GS problems, minimiza-

tion of makespan, is considered in this paper.  

GS problems based on their required group set-up 

time are classified into two major groups: sequence 

dependent, and sequence independent scheduling. If 

the set-up time of a group for each machine depends 

on the immediately preceding group that is processed 

on that machine, the problem is classified as “se-

quence dependent group scheduling (SDGS);” other-

wise, it is called “sequence independent group sched-

uling”. 

There are many real world applications of sequence 

dependent scheduling problems. Schaller et al. [18] 

discussed an industry case of sequence dependent 

www.SID.ir



Arc
hi

ve
 o

f S
ID

 

 

 

 

49      N. Salmasi and R. Logendran            

 

 

group scheduling problem in printed circuit boards 

(PCBs) in which the major set-up is required to 

switch from a group of PCBs to another. Painting 

automobiles with different colors in small batch sizes 

is another example of sequence dependent set-up 

scheduling problems.  

A comprehensive literature review of group sched-

uling problems was performed by Allahverdi et al. [1] 

and Cheng et al. [2]. Vakharia et al. [20] and Schaller 

et al. [17, 18] present branch-and-bound based ap-

proaches as well as several heuristic algorithms to 

solve the SDGS problem with multiple machines by 

considering minimization of makespan criterion. The 

highlight of their research is published in Schaller et 

al. [18]. Franca et al. [3] developed an algorithm 

based on genetic algorithm and a memetic algorithm 

with local search to solve the SDGS problem by con-

sidering minimization of makespan.  

The literature review reveals that there still exist 

several potential areas worthy of further research on 

SDGS problems [2]. The industry needs a solution 

approach with good quality (optimal or near optimal) 

in a short time. Considering the widespread practical 

applications of SDGS problems in industry such as 

auto industry and hardware manufacturing, and the 

importance of minimizing the makespan criterion, 

further research on this topic is still required. Indeed, 

that is the motivation for the research reported in the 

next several sections. 

2. Problem description 

In this research, it is assumed that g groups are as-

signed to a cell that has m machines. Each group in-

cludes bi jobs (i = 1, 2, …, g). The set-up time of a 

group for each machine depends on the immediately 

preceding group that is processed on that machine 

(sequence dependent set-up time).  

The goal is to find the best sequence of processing 

the jobs in each group as well as groups themselves 

by considering minimization of makespan. The as-

sumptions made in this research are: 

• The problem belongs to permutation scheduling 

problems. This is the only available method to 

produce in some industries. For instance, if a 

conveyer is used to transfer jobs among ma-

chines, then all jobs should be processed in the 

same sequence on all machines.  

• All jobs and groups have the same importance 

(weight) for the company. 

• All jobs and machines are available at the be-

ginning of the planning horizon.  

3. Complexity of the problem 

Gupta and Darrow [5] proved that the two machine 

sequence dependent job scheduling (SDJS) problem 

is a NP-hard problem. Garey et al. [4] also proved 

that the flowshop job scheduling problem by consid-

ering minimization of makespan criterion for more 

than two machines (m ≥ 3) is an NP-hard problem. 

Based on these insights, it is easy to see that the prob-

lem investigated in this paper is easily reducible to 

the ones already proven NP-hard. Thus, the fact that 

the proposed problem is NP-hard, follows immedi-

ately. 

4. Heuristic algorithm 

Since the research problem is shown to be NP-hard, 

a heuristic algorithm is needed to solve industry-size 

problems in a reasonable time. Previous research by 

Skorin-Kapov and Vakharia [19], Nowicki and 

Smutnicki [13], Logendran and Sonthinen [11], and 

Schaller [16], has shown tabu search (TS) to be a 

promising technique for solving similar scheduling 

problems.  

TS is a metaheuristic algorithm which is developed 

independently by Glover [6] and Hansen [7] for solv-

ing combinatorial optimization problems. It attempts 

to avoid getting trapped in a local optimal solution. 

While other hill-climbing heuristics terminate once a 

local optimum has been found, TS continues search-

ing for a better solution. 

The TS method, like other heuristic algorithms, 

needs an initial solution. At each iteration, the search 

moves from the current solution to the best solution 

in the neighborhood, which may have inferior objec-

tive function value to the previously found one. The 

process is continued until one of the stopping criteria 

is satisfied. In this research the stopping criteria are 

either the specified number of local optima or the 

maximum number of iterations without improvement. 

The moves to the solutions that contain the attributes 

of recently visited solutions are temporarily forbidden 

for a number of iterations in order to prevent cycling. 

If the objective function value of the new solution is 

better than a value called “the aspiration level”, this 

tabu restriction is overridden. TS also contains short-

term memory, which keeps track of the moves that 

are currently declared tabu.  
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Besides the short-term memory, the long-term 

memory is applied to enhance the quality of the solu-

tion. The long-term memory keeps the information on 

the frequency that each attribute appears in the solu-

tions. In this application, the attribute indicates the 

position of a group or a job within a group. The 

search can be intensified by shifting the explorations 

in the neighborhoods of the good solutions with fre-

quently added attributes and diversified by introduc-

ing the search to explore new regions that do not con-

tain the frequently added attributes of the inferior so-

lutions.  

The process of finding a solution for the research 

problem involves two levels. The first level investi-

gates to find the best sequence of groups. During the 

first level, a sequence of groups is chosen. The sec-

ond level investigates to find the sequence of jobs in 

each group based on the chosen group sequence by 

the first level. Thus, a two-level TS is developed to 

solve the research problem. In the first (outside) level, 

the best sequence of groups is investigated. It is done 

by moving from one group sequence to another. 

When a sequence of groups by the outside level is 

chosen, the second (inside) level finds the best se-

quence of jobs that belong to each group by consider-

ing minimization of makespan. This is done for the 

inside search by moving from a sequence of jobs in a 

group sequence to another sequence of jobs in the 

same group sequence. The relationship between the 

outside and inside search is that when the outside 

search is performed to get a new group sequence, the 

search process is shifted to inside search. The inside 

search is performed to find the best sequence of jobs 

in groups by considering the proposed group se-

quence by outside search. When the inside search 

stopping criteria are satisfied, the best found job se-

quence is considered. Then, the search returns back to 

the outside search. The outside search stops when the 

outside search stopping criteria are satisfied. The best 

found solution during the search is reported as the 

final solution. The final solution is comprised of the 

sequence of groups and the sequence of jobs in each 

group that provides the best makespan for the objec-

tive function.  

4.1. Construction of initial solution  

The quality of the final solutions as well as the ef-

ficiency of the search may significantly be improved 

if a good quality initial solution generator is applied. 

Schaller et al. [18] developed a heuristic algorithm to 

solve SDGS problems and suggested that to apply the 

result of their algorithm as an initial solution for a 

heuristic algorithm such as TS. In order to evaluate 

this suggestion, two different initial solution generat-

ing mechanisms are developed in this research. One 

based on a random initial solution and another based 

on the proposed algorithm by Schaller et al. [18]. 

4.2. Generation of neighborhood solutions 

When a feasible solution is considered as an initial 

solution, the neighborhoods of the seed are generated 

to explore the search. During the inside search, a 

neighborhood of a seed is generated by applying 

swap moves, i.e., changing the order of two se-

quenced jobs that belong to a group. The outside 

neighborhoods can be derived similar to the inside 

neighborhoods by applying swap moves.  

4.3. Steps of TS 

As is typically done in TS, the initial solution is 

considered as the first entry into the outside candidate 

list (OCL). Then, the neighborhood solutions are ex-

plored by perturbing it. The value of each neighbor-

hood solutions is determined by its objective function 

value. These neighborhoods have to be compared 

with the tabu-list filter whose goal is to prevent the 

cycle trap of local optima. This filter is implemented 

through comparison of neighborhood solutions 

against a set of restricted moves listed in tabu-list 

(TL). This list is constructed based on the recent 

change in previous best solutions. The tabu-list re-

cords these changes or moves in the order they are 

applied. The size of the tabu-list is determined 

through extensive experimentation.   

When all neighborhood solutions of a seed are gen-

erated, the best local move among them is compared 

against the TL. If the move is restricted, it is normally 

ignored and the second best move is considered. If a 

restricted move has a better value than the best global 

value found so far, namely the aspiration level, the 

tabu restriction is ignored. The best move, after filter-

ing against TL and aspiration criterion, is compared 

with the current members of the candidate list. If the 

chosen neighborhood does not belong to the current 

candidate list, it is selected for the next perturbation 

and generation of new neighborhood. Otherwise, the 

next best neighborhood is chosen. This move is re-

corded into the TL. This process is repeated until the 

search is terminated by one of the stopping criteria. 

When the outside search is completed, the solution 

with the best objective function value is reported as 

the result of the search. The steps of performing TS 
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for outside search are depicted in Appendix 1. The 

process for inside search is the same as well. 

4.4. Two-machine SDGS problem with minimization of 

makespan criterion 

For the two machine SDGS problems with minimi-

zation of makespan criterion, Logendran et al. [10] 

showed that the optimal sequence of jobs in each 

group conforms to Johnson’s algorithm [9]. Thus, the 

TS algorithm for these problems can be relaxed to a 

one level search in order to find the best sequence of 

groups. During the search, the sequence of processing 

jobs belonging to each group is identified based on 

Johnson’s [9] algorithm. 

4.5. Parameters for the research problem 

The sizes of problems investigated in this research 

include 2 to 16 groups in a cell and 2 to 10 jobs in a 

group. The maximum number of total jobs for the 

problems considered is at most 120 jobs in all groups. 

Extensive experimentation was performed to develop 

the empirical formulae for evaluating the parameter 

values used for these research problems, and the for-

mulae so developed are presented in Appendix 2. In 

some cases a formula for a range can be generated 

and in some of them a value for a parameter in a 

range is offered. If a formula does not provide an in-

teger value for a parameter, the result is rounded 

down. The two-machine problems, as noted in Sec-

tion 4.4, require only a one level search.  

In this research, three different versions of TS are 

applied to solve the problem. The first one (TS1) is 

TS with short term memory. The second one (TS2) is 

TS with long term memory and intensification (LTM-

max) and finally, the third one (TS3) is TS with long 

term memory and diversification (LTM-min). 

5. Lower bound 

 A lower bounding technique was previously de-

veloped to evaluate the quality of the heuristic algo-

rithms for the two-machine SDGS problem [10]. This 

lower bounding technique was modified by Salmasi 

[14] by adding a couple of new constraints in order to 

develop a more enhanced lower bound. The lower 

bound is based on relaxing the problem from SDGS 

to Sequence Dependent Job Scheduling (SDJS) prob-

lem. Every group is considered as an independent job. 

The run time of these independent jobs (groups) on 

each machine is considered equal to the summation 

of the run time of its jobs on each machine. The op-

timal solution of this problem is a lower bound for 

the original problem because the possible idle times 

between processing jobs that belong to a group on all 

machines are ignored. In this paper, this lower bound 

is applied in order to evaluate the quality of the de-

veloped heuristic algorithms. 

6. Experimental design 

An experiment is designed to evaluate the perform-

ance of three developed heuristic algorithms based on 

TS. The factors considered for this design are as fol-

lows: 

Number of groups: Problems up to 16 groups are 

investigated in this research. The levels of this factor 

are defined in three different categories: small, me-

dium, and large. Small size problems are problems 

including 2 to 5 groups. Problems with 6 through 10 

groups are considered as medium size problems, and 

problems with 11 through 16 groups are classified as 

large size problems.  

Number of jobs in a group: The maximum number 

of jobs of a group in a problem is considered as a fac-

tor. For instance, if in a group scheduling problem 

with three groups, groups have 3, 6, and 9 jobs re-

spectively, then the problem is classified as a 9-jobs 

problem. In this research the maximum number of 

jobs that belong to a group is limited to 10. This fac-

tor has also three levels. Level 1 includes problems 

with at most 2 to 4 jobs in a group. Problems with at 

most 5 to 7 jobs in a group are classified as level 2, 

and finally if one of the groups of a problem includes 

8 to 10 jobs, then the problem belongs to the third 

level based on its number of jobs factor. 

The ratio of set-up times: The experiments per-

formed indicate that the quality of solutions strongly 

depends on the ratio of set-up times of groups on 

consecutive machines. Thus, this factor is considered 

as a factor. Three levels are defined for this factor. In 

a sequential machine pair, if the set-up time of the 

first machine is significantly less than the set-up time 

of the second machine, the problem belongs to the 

first level. If both machines have almost the same set-

up times, the problem belongs to the second level. 

Finally, if the set-up time of the first machine is sig-

nificantly greater than the second machine, the prob-

lem is classified as the third level of this factor. This 

factor should be applied to all sequential machine 

pairs. For instance, in a three machines problem, this 
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ratio for “M1/M2” and “M2/ M3” should be compared. 

Thus, this can be considered as two separate factors 

in this problem.  

Initial solution: The initial solution for the heuristic 

algorithms is considered as a factor. Each of two dif-

ferent techniques of generating initial solution is con-

sidered as a level for this factor. 

Algorithm: Each of three heuristic algorithms is con-

sidered as a level for this factor. 

The group, job, and the set-up ratio factors are the 

ones which are used to generate a test problem. Then, 

each test problem is solved by the heuristic algo-

rithms by applying one of the two initial solution 

generators. Based on this explanation, each experi-

mental unit of the first three factors (which generate a 

test problem) is split into six different parts to be 

solved by one of the combinations of the heuristic 

algorithms and the initial solution generators. Thus, 

the split plot design is the most appropriate model to 

compare the results [12]. As the test problems are 

created based on the groups, jobs, and set-up ratio 

factors, these factors are put in the whole-plot and the 

remaining factors, i.e., the algorithm and the initial 

solution generator factors, are put in the sub-plot. The 

factors in the whole plot are considered nested to 

generate a test problem. A problem instance, which is 

considered as a block for the sub-plot factors, is gen-

erated for specific levels of whole-plot factors. The 

problems (blocks) are treated as a random factor. The 

model is a mixed model, because it includes fixed 

factors (groups, jobs, set-up ratios, algorithms, and 

initial solutions) as well as random factor (problem 

instances). The model of the experiment for a 3-

machine problem can be represented as: 

Yijklmnr = µ + Gi + Jj + R1k + R2l +  (G*J)ij 

+  (G*R1)ik + (G*R2)il + (J*R1)jk + (J*R2)jl 

+ (R1*R2)kl  + Tt(ijkl) +  αm + In + subplot  

interactions  +   εijklmnr , 

where, 

µ      The overall mean, 

Gi      The effect of group factor, i = 1, 2, 3, 

Jj      The effect of job factor, j = 1, 2, 3, 

R1k    The ratio of set-up time of M1/M2 factor,  

R2l    The ratio of set-up time of M2/M3 factor, 

εijklmnr The error term, 

Tt       The block factor (a random factor), 

αm      The effect of algorithm factor  m = 1, 2, 3, 

In       The effect of initial solution factor  n = 1, 2, 

k        1, 2, 3, 

l         1, 2, 3. 

 

The goals of performing the experimental design 

are: 

• Find the heuristic algorithm with the best per-

formance. 

• Identify if there is a statistically significant 

difference between the performances of ini-

tial solution generators.  

The hypothesis tests to investigate for these goals 

are: 

H0: α1= α2 = α3= … = αm        

      H1: if any of the α’s is different from the others  

H0: I1= I2                                  H1: I1≠ I2 

 

As noted, a cell with more than six machines is 

highly unlikely in industry. In the interest of time, an 

experiment which includes the minimum and the 

maximum number of machines is considered. Thus, 

the comparison is performed for 2, 3, and 6 machine 

problems separately by solving the test problems 

generated with the heuristic algorithms.  

7. Results obtained from TS algorithms  

The generated test problems are solved by three 

different versions of TS by applying two different 

initial solution generators. The TS algorithm is coded 

in C programming language. The lower bounding 

technique is also applied to provide a lower bound for 

test problems. The ILOG CPLEX (version 9.0) is 

used to solve the lower bounding model. All of the 

heuristic algorithms and the lower bounding prob-

lems are run on a Power Edge 2650 with 2.4 GHz 

Xeon, and 4GB RAM. The results for two, three, and 

six machine problems are shown in Table 1. More 

detailed results are given in Salmasi [14]. This per-

centage error is calculated based on:  (The heuristic 

algorithm - The lower bound) / The lower bound.  
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Percentage error 

Initial 1 Initial 2 
Number of 

Machines 

Average 

Time to 

solve LB 

(seconds) TS1 TS2 TS3 TS1 TS2 TS3 

Two 10.2 1.3% 0.9% 1.2% 1.3% 1.1% 1.2% 

Three 65.4 1.7% 1.4% 1.6% 1.6% 1.4% 1.4% 

Six 4720 2.0% 1.8% 2.1% 2.0% 1.8% 1.9% 

 

 

 

The experimental design is coded with Statistical 

Analysis System, SAS, release 9.1, to find the best 

heuristic algorithm as well as the best initial solution 

generator. A significance level of 5% is used in all of 

the tests reported below. 

The results of the experiment for two machine 

problems are shown in Appendix 3. It shows that 

there is a significant difference among the objective 

function values of TS heuristic algorithms (the result 

of F test is equal to 0.0048). To find the difference 

among the TS heuristic algorithms, the Tukey test is 

performed. The result of Tukey’s test shows that TS2 

has a better performance compared to the others. The 

results of the experimental design also show that 

there is no difference between the initial solution 

generators for two machine problems (the result of F 

test is equal to 0.4975).  

The result of the experiment for three machine 

problem is shown in Appendix 4. It shows that there 

is a significant difference among the objective func-

tion values of heuristic algorithms (the result of F test 

is less than 0.0001). To find the best heuristic algo-

rithm, a Tukey test is performed. The result of 

Tukey’s test shows that TS2 has a better performance 

compared to the other two heuristic algorithms. The 

results of the experimental design show that there is 

no difference between applying different initial solu-

tion generators for three machine problems (the result 

of F test is equal to 0.2732). For six machine prob-

lems (Appendix 5), there is a significant difference 

among the objective function values of heuristic algo-

rithms (the result of F test is equal to 0.0004).  

To find the best heuristic algorithm, a Tukey test is 

performed. The result of Tukey’s test shows that TS2 

has a better performance compared to the other two 

heuristic algorithms. The results show that there is no 

difference between the initial solution generator for 

six machine problems (the result of F test is equal to 

0.3344).  

8. Comparison of the best TS algorithm with other 

algorithms  

Table 2 presents the percentage error obtained for 

each size of the test problem instances solved with 

the Schaller et al. [18] initial solution generator as 

well as the best TS algorithm (TS2 with the first ini-

tial solution generator). A paired t-test is performed 

between the results of the best TS and the results of 

Schaller et al. [18] algorithm for two, three and six 

machine problems, separately. The results show that 

in all three cases (two, three & six machine problems), 

there is a significant difference between the perform-

ance of the TS algorithm and Schaller et al. [18] algo-

rithm and in all of them TS shows a superior per-

formance compared to Schaller et al. [18] algorithm. 

9. Conclusion  

In this research, for SDGS problems, three different 

versions of TS with two different initial solution gen-

erators are developed. The first initial solution gen-

erator is a random sequence generator and the second 

one is developed based on the result of Schaller et al. 

[18] algorithm. Test problems with two, three, and six 

machines are solved by these algorithms. A lower 

bounding technique is also applied to evaluate the 

quality of the heuristic algorithms. The results of the 

experiment show that TS2 (LTM_Max) has the best 

performance compared to the other heuristic algo-

rithms. 

Table 2. The results of current available algorithms. 

Percentage error 

for  The best TS 

Percentage error 

for Schaller et. al. 

Number of  

machines 

 (2000) 

Two 0.9% 9.1% 

Three 1.4% 8.8% 

Six 1.8% 7.1% 

Table 1. The results for the test problems. 
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In other words, TS2 provides a better sequence for 

groups as well as jobs in each group. Based on the 

results, there is no statistically significant difference 

between the objective function values of the heuristic 

algorithms by applying different initial solutions. It 

means that applying Schaller et al. [18] algorithm as 

the initial solution generator does not help to improve 

the quality of solution.  

The feasible solution space of the problem has too 

many local optima. Thus, starting with a good quality 

local optimal solution as the initial solution does not 

guarantee of obtaining a better final solution by the 

heuristic algorithm. This may be the reason for not 

improving the quality of solutions by applying 

Schaller et al. [18] algorithm as an initial solution 

generator. The comparison of results of the TS algo-

rithm and the lower bound shows that the average 

percentage error of TS for the test problems with two, 

three, and six machines is around 1.0%. The detailed 

experimentation has also proved the fact that TS is 

clearly superior to Schaller et al. [18] algorithm. 
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Appendix 1. Flow chart for tabu search  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start with an outside initial solution 

Admit the solution to OCL and OIL 

Initialize OTL, OIWI, OAL, OLTM 

Apply outside swap moves 

Perform the inside search to find the 

best job sequence and get the value of 

objective function 

Perform inside search to get the objective 

function value for each neighbour 

Is the 

move 

tabu? 

Is OAL 

satisfied?  

Disregard 

the move 

Identify the best solution 

Does the new 

solution belong to 

OCL? 

Apply the move that corresponds to the 

best solution 

Update OTL, OAL, OCL, OIL, OIWI, OLTM 

Is stopping criteria met?  

(OIWI>=MOIWI) or 

(ONWI>=MOILS) 

Is the outside 

maximum no. 

of restarts 

reached? 

Use OTLM 

to identify 

new restarts 

Terminate 

the search 

Return the best 

solution from 

OIL 

End 

OTL: Outside Tabu List 

OAL: Outside Aspiration Level 

OCL: Outside Candidate List 

OIL: Outside Index List 

OLTM: Outside Long Term 

Memory 

OTLS: Outside Tabu List Size 

OIWI: Number of Outside Itera-

tions Without Improvement 

ONWI: Number of Entries to the 

Outside Index List  

MOIWI: Maximum Number of 

Outside Iterations Without Im-

provement  

MOILS: Maximum Outside In-

dex List Size 
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Appendix 2. The parameter values for TS for different problems 

 

Index list 
Iterations without  

improvement 
Tabu list size 

Number of 

groups (G) 

Number of 

groups (G) 

Number of 

groups (G) 

 

From To 

Parameter 

value/formula 
From To 

Parameter 

value/formula 
From To 

Parameter 

value/formula 

2 3 2 2 9 G*1.25 2 10 (G/4)+1 

4 6 G*3 10 16 G*2 11 15 (G/4)+2 

7 10 G*10    16 16 5 

Outside 

search for 

two ma-

chines 

11 16 G*50       

 From To  From To  From To  

2 3 2 2 2 1 2 12 (G/5)+1 

4 4 G 3 5 (G/2)+1 13 15 (G/4)+1 

5 6 G*2 6 12 G 16 16 (G/4) 

7 9 G*10 13 16 12    

Outside 

search for 

three and 

six ma-

chines 
10 16 G*50       

 Job Numbers 

 From To  From To  From To  

2 30 2 2 29 1 2 64 1 

31 80 3 30 39 2 65 120 2 

81 120 4 40 49 3    

   50 59 4    

   60 79 5    

   80 99 6    

Inside 

search for 

three and 

six ma-

chines 

   100 120 7    
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Appendix 3. The ANOVA table for the two machine problem by considering minimization of makespan  

       Num  Den 

Effect  DF   DF  F Value   Pr > F 

G       2    0   434444    <.0001 

J       2    0   122878    <.0001 

R1      2    0  16974.6    0.0488 

A       2  135     5.56    0.0048 

I       1  135     0.46    0.4975 

G*J     4    0  14163.4    0.0445 

G*R1    4    0  4021.26    0.5347 

G*A     4  135     2.69    0.0339 

G*I     2  135     1.81    0.1671 

J*R1    4    0  7523.18    0.2300 

J*A     4  135     0.90    0.4682 

J*I     2  135     4.37    0.0145 

R1*A    4  135     0.55    0.7023 

R1*I    2  135     0.72    0.4869 

A*I     2  135     0.51    0.5992 

 

           Num  Den 

Effect      DF  DF   F Value  Pr> F 

G*J*R1      8   0   1976.72  0.9140 

G*J*A       8  135    0.58   0.7895 

G*J*I       4  135    1.24   0.2962 

G*R1*A      8  135    0.18   0.9937 

G*R1*I      4  135    1.93   0.1083 

G*A*I       4  135    0.48   0.7482 

J*R1*A      8  135    0.53   0.8285 

J*R1*I      4  135    0.64   0.6352 

J*A*I       4  135    1.02   0.4005 

R1*A*I      4  135    0.18   0.9460 

G*J*R1*A   16  135    0.89   0.5868 

G*J*R1*I    8  135    1.07   0.3889 

G*J*A*I     8  135    0.77   0.6318 

G*R1*A*I    8  135    0.39   0.9229 

J*R1*A*I    8  135    0.43   0.9036 

G*J*R1*A*I 16  135    0.38   0.9844 

 

Appendix 4. The ANOVA table for the three machine problem by considering minimization of makespan  

 
        Num Den 

Effect  DF  DF F Value Pr>F 

G       2   0  360.42 .0001 

J       2   0  57.00 <.0001 

R1      2   0  16.96 <.0001 

R2      2   0  10.54 <.0001 

A       2 405  14.97 <.0001 

I       1 405   1.20 0.2732 

G*J     4   0   3.87 0.0063 

G*R1    4   0   1.74 0.1490 

G*R2    4   0   2.56 0.0444 

G*A     4 405   2.77 0.0270 

G*I     2 405   4.58 0.0108 

J*R1    4   0   0.46 0.7651 

J*R2    4   0   0.16 0.9576 

J*A     4 405   0.67 0.6122 

J*I     2 405   0.94 0.3911 

R1*R2   4   0   0.58 0.6813 

R1*A    4 405   1.14 0.3354 

R1*I    2 405   4.71 0.0095 

R2*A    4 405   0.90 0.4623 

R2*I    2 405   1.04 0.3546 

A*I     2 405   0.15 0.8649 

G*J*R1  8   0   0.28 0.9720 

G*J*R2  8   0   0.13 0.9979 

G*J*A   8 405   0.33 0.9539 

G*J*I   4 405   6.37 <.0001 

G*R1*R2 8   0   0.94 0.4906 

G*R1*A  8 405   0.21 0.9898 

G*R1*I  4 405   0.45 0.7722 

G*R2*A  8 405   0.90 0.5130 

G*R2*I  4 405   5.01 0.0006 

G*A*I   4 405   0.20 0.9399 

J*R1*R2 8   0   0.39 0.9253 

              Num Den 

Effect        DF  DF F Value    Pr >F 

J*R1*A         8 405    0.74    0.6580 

J*R1*I         4 405    1.63    0.1654 

J*R2*A         8 405    0.48    0.8678 

J*R2*I         4 405    5.85    0.0001 

J*A*I          4 405    0.45    0.7754 

R1*R2*A        8 405    0.36    0.9430 

R1*R2*I        4 405    0.92    0.4542 

R1*A*I         4 405    0.26    0.9014 

R2*A*I         4 405    0.37    0.8271 

G*J*R1*R2     16   0    0.81    0.6686 

G*J*R1*A      16 405    0.69    0.8090 

G*J*R1*I       8 405    1.60    0.1242 

G*J*R2*A      16 405    0.17    0.9999 

G*J*R2*I       8 405    3.36    0.0010 

G*J*A*I        8 405    0.78    0.6205 

G*R1*R2*A     16 405    0.51    0.9402 

G*R1*R2*I      8 405    3.73    0.0003 

G*R1*A*I       8 405    0.17    0.9951 

G*R2*A*I       8 405    0.32    0.9589 

J*R1*R2*A     16 405    0.31    0.9953 

J*R1*R2*I      8 405    1.65    0.1078 

J*R1*A*I       8 405    0.13    0.9979 

J*R2*A*I       8 405    0.53    0.8365 

R1*R2*A*I      8 405    0.11    0.9990 

G*J*R1*R2*A   32 405    0.33    0.9998 

G*J*R1*R2*I   16 405    2.14    0.0063 

G*J*R1*A*I    16 405    0.33    0.9943 

G*J*R2*A*I    16 405    0.22    0.9995 

G*R1*R2*A*I   16 405    0.48    0.9569 

J*R1*R2*A*I   16 405    0.67    0.8243 

G*J*R1*R2*A*I 32 405    0.53    0.9837 
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Appendix 5. The ANOVA table for the six machine problem by considering minimization of makespan  

       Num Den 

Effect   DF  DF F Value Pr >F 

 

G      2    0 253.77 <.0001 

J      2    0   6.97 0.0036 

R1     2    0 270.48 <.0001 

A      2  135   8.41 0.0004 

I      1  135   0.94 0.3344 

G*J    4    0   3.99 0.0114 

G*R1   4    0  37.48 <.0001 

G*A    4  135   4.02 0.0041 

G*I    2  135   5.57 0.0047 

J*R1   4    0   2.34 0.0804 

J*A    4  135   0.35 0.8408 

J*I    2  135   0.82 0.4443 

R1*A   4  135   1.02 0.3992 

R1*I   2  135   0.37 0.6915 

A*I    2  135   0.75 0.4763 

 

           Num Den 

Effect     DF    DF     F Value Pr > F 

 

G*J*R1      8    0      0.83    0.5810 

G*J*A       8   135     0.75    0.6474 

G*J*I       4   135     2.00    0.0987 

G*R1*A      8   135     0.54    0.8264 

G*R1*I      4   135     4.09    0.0037      

G*A*I       4   135     0.46    0.7668 

J*R1*A      8   135     0.31    0.9610 

J*R1*I      4   135     3.42    0.0107 

J*A*I       4   135     0.08    0.9873 

R1*A*I      4   135     0.51    0.7270 

G*J*R1*A   16   135     0.45    0.9662 

G*J*R1*I    8   135     3.08    0.0032 

G*J*A*I     8   135     0.18    0.9935 

G*R1*A*I    8   135     0.58    0.7968 

J*R1*A*I    8   135     0.37    0.9336 

G*J*R1*A*I 16   135     0.21    0.9995 
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