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Abstract: In this paper, the portfolio selection problem is considered, where fuzziness and randomness 

appear simultaneously in optimization process. Since return and dividend play an important role in such 

problems, a new model is developed in a mixed environment by incorporating fuzzy random variable as 

multi-objective nonlinear model. Then a novel interactive approach is proposed to determine the preferred 

solution. Finally a numerical example is presented to illustrate the proposed model. 
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1. Introduction 

Portfolio selection is concerned with the 

problem of allocating one’s wealth among 

alternative assets so that the investment goal can 

be satisfied. Modern portfolio analysis started 

from initial research work of Markowitz (1952; 

1959) that was called mean-variance model, in 

which an investor should always stabilize between 

maximizing the expected return, as expected value 

of returns of assets, and/or minimizing the risk, as 

variance from the expected value, i.e., minimizing 

the risk for a given expected return, and/or 

maximizing expected return for a given risk. 

Portfolio theory has been greatly improved since 

Markowitz. Traditionally, returns of individual 

assets were assumed to be stochastic variables, 

and many researches were focused on extending 

Markowitz’s mean-variance models (Best and 

Hlouskova, 2000; Merton, 1972; Voros, 1986; 

Yoshimoto, 1996) and on developing new 

mathematical approaches to solve the problem of 

computation (Perold, 1984; Sharp, 1963). In those 

works, the investor must approve that all of the 

required information is brought to deal with the 

existing problem. However, identifying all 

relevant information for a decision does not mean 

that the investor has all information; in most cases, 

information is imperfect. Since decisions that 

must be made by the investor does not contain 

adequate knowledge of the problem, then s/he 

faces events in which reasonable probability for 

alternative outcomes does not exist; thus decision 

must be made under conditions of uncertainty. 

Though probability theory is one of the main 

techniques used for analyzing uncertainty in 

finance, the financial market is also affected by 

several non-probabilistic factors such as 

vagueness and ambiguity. Investors are commonly 

provided with information which is characterized 

by linguistic descriptions such as high risk, low 

profit, high interest rate, etc. (Sheen, 2005). With 

the introduction of fuzzy set theory by Zadeh 

(1965; 1978), scholars began to perceive that they 

could employ fuzzy set theory to manage portfolio 

in another type of uncertain environment called 

fuzzy environment. Among all, for instance, 

Tanaka and Guo (1999), Tanaka et al. (2000), 

Parra et al. (2001) and Carlsson et al. (2002) 

replaced probability distributions of returns of 

assets with possibility functions in their models. 

On the other hand, however, in the decision 

making process we may face a hybrid uncertain 

environment where linguistic and frequent 

imprecise nature coexist. For example, a farmer 

specializes in raising wheat, rice, corn and cotton 

on his 100 acres of land. At the beginning of each 

year, he would make a plan about how much land 

to devote to each crop. The yields of the crops are 

required to meet the personal needs, and the 

surplus will be sold. On the other hand, if the 

yields of some crop such as corn do not meet the 

personal needs, the farmer buy some from the 

market. Generally speaking, it is a hard work for 

the farmer to make a proper decision, because the 

yields of each crop depend on the changing 

weather conditions. Moreover, even if the farmer 

learns some information about weather conditions, 
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he usually expresses his judgment by good, 

average, bad or the terms around 100/acre, and 

about 100/acre for the yields of the crops at end of 

the year. Therefore, an appropriate expression 

about the judgment of the farmer might be as 

follows: the yields of the crops in the coming year 

may have a 50% chance of being good, a 30% 

chance of being average and a 20% chance of 

being bad. This is an example which fuzzy 

random (and not random fuzzy) variable may be 

used in a decision making process. There are other 

examples provided by some researchers in the 

literature, e.g., Wang and Qiao (1993), Luhandjula 

and Gupta (1996), Qiao and Wang (1993), 

Luhandjula (1996). Zadeh (2005) outlined the 

generalized Theory of Uncertainty in view of 

uncertainty in a broader perspective. Xu et al. 

(2008) proposed a fuzzy random environment 

applied to inventory problems. Katagiri et al. 

(2008) gave an interactive multi-objective fuzzy 

random linear programming. Liu (2001), where 

the concept of the primitive chance function of a 

fuzzy random event was introduced, and fuzzy 

random chance-constrained programming and 

dependent-chances programming models were 

built based on primitive chance. For the 

application of portfolio problem, Elikyurt and 

Ozekici (2007) studied a several multi-period 

portfolio optimization models where the market 

consists of a risk free asset and several risky 

assets with the returns in any period are random. 

In the above-cited works, expected return and 

risk are two main factors which investors consider. 

It is often found in portfolio selection that not all 

the relevant information for an investment 

decision can be captured in terms of explicit 

return and risk. By considering additional and/or 

alternative decision criteria, a portfolio that is 

dominated with respect to the expected return and 

risk may make up for the deficit in these two 

criteria by a very good performance on one or 

several other criteria and thus be non-dominated 

in a multi-criteria setting. As a result, portfolio 

selection models that consider more criteria than 

the standard expected return and variance 

objectives of the Markowitz model have become 

popular. Parra et al. (2001) proposed a model that 

considers three criteria, return, risk and liquidity. 

Ehrgott et al. (2004) took into account five criteria 

(short and long-term return, dividend, ranking and 

risk) and used an MCDM approach to solve the 

portfolio selection problem. Fang et al. (2006) 

proposed a portfolio rebalancing model with 

transaction costs based on fuzzy decision theory 

considering three criteria (return, risk and 

liquidity). Gupta et al. (2008) used short term 

return, long term return, dividend, risk and 

liquidity through an application of fuzzy 

mathematical programming. The paper at hand 

has two important applied and theoretical 

contributions. First, it presents a practical, but 

tractable, optimization model for portfolio 

selection problem and it is considers two 

objectives; returns and dividend. And second, it 

introduces a novel solution procedure for finding 

an efficient solution to a fuzzy random multi- 

objective nonlinear program.   

The remainder of this paper is organized as 

follows: In Section 2 we define our notation, state 

our assumptions and propose a fuzzy random 

multi-objective for portfolio selection problem. In 

Section 3 we convert the model into its crisp 

equivalent and present an interactive algorithm to 

derive a satisfying solution for an investor. In 

Section 4 a numerical example of the proposed 

model and algorithm is illustrated. Finally, 

conclusion remarks and further research directions 

are the subject of Section 5. 

2. Problem formulation 

In this section, we formulate portfolio selection 

problem as an optimization problem with multiple 

objectives. We assume that an investor allocates 

his/her wealth among n assets offering fuzzy 

random rates of return and annual dividend. We 

define a fuzzy random variable at first and then 

introduce some notations as follows: 

Definition 1. (Liu and Liu, 2003) Let ( )Pr,, AΩ  

be a probability space. A fuzzy random variable is 

a function F→Ω:ξ such that for any Borel set B 

or R, })({))(( BPosB ∈=∗ ωξωξ is a measurable 

function ofω . 

iR
~

   Rate of return associated with i
th
 asset. 

iD
~

  Annual dividend on the i
th
 asset. 

ic  Fixed sum for the service associated 

with i
th
 asset. 

C Capital invested. 

∂  Preset tolerable level. 

iu  Maximum proportion invested in i
th
 

asset. 

ix  Proportion of total funds invested in the 

i
th

 asset. 
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iy  Binary variable indicating whether the i
th
 

asset is contained in the portfolio or not. 

In the proposed possibilistic multi-objective 

asset portfolio selection problem, we consider the 

following objectives and constraints: 

2.1. Objectives 

Rate of return. The expected rate of return is the 

most practical objective which is usually used in 

portfolio optimization models. However, the 

investor may feel that maximizing return of a 

portfolio itself better match one’s intuition than 

maximizing expected value of the portfolio. For n 

assets portfolio, the return of the portfolio is 

expressed as, 

∑
i

ii xR
~

Max                          (1) 

Annual dividend. This objective function 

represents the relative annual dividend of the 

portfolio. It is calculated as the weighted sum of 

the relative annual dividends Di of the individual 

assets in the portfolio, where the total dividend of 

an asset is set in relation to its highest sales price 

during the last twelve months.  

Alternatively, the lowest price of an asset 

during the last twelve months or its current value 

could be used as a reference value. We decide to 

use the highest price of an asset here since this 

approach, in general, underestimate the relative 

annual dividend and is therefore a cautious value. 

Hence, 

∑
i

ii xD
~

Max                          (2) 

2.2. Constraints 

Since portfolio return is fuzzy random variable, 

the goal function cannot give a deterministic 

number. Then it is natural for the investor to set it 

the goal that at a given confidence level which is 

considered as the safety margin, the maximal 

return must be achieved.  

Since a portfolio with a relatively high variance 

can also be relatively safe if its expected value is 

sufficiently high (Li and Huang, 1996), the 

investor can change the constraint to the 

requirement that the result of expected value of 

the portfolio divided by variance should be equal 

to or greater than a preset level. To express the 

goal and constraints in mathematical expression, 

we have the following relation: 

∂≥

∑

∑

i

ii

i

ii

xRV

xRE

)
~

(

)
~

(

                        (3) 

where E(.) and V(.) denote expected value and 

variance operators respectively. 

Total investment. It requires that be at most equals 

to capital invested, 

Cyc
i

ii ≤∑                                   (4) 

Capital budget constraint on the assets denotes 

the proportion of total amount of capital invested 

in a single asset, 

∑ =
i

ix 1                                    (5) 

Asset satisfaction. This assures that each asset 

which holds a value, will be selected in the 

portfolio, 

ii yx ≤  ni ...,,2,1=  (6) 

Maximal fraction. Proportion of the capital that 

can be invested in a single asset, 

ii ux ≤  ni ...,,2,1=  (7) 

No short selling of assets, 

0≥ix , ni ...,,2,1=  (8) 

Asset selected, 

}1,0{∈iy , 
ni ...,,2,1=  (9) 

2.3. Model relaxation 

To formulate the portfolio models, it is 

necessary to know the probability distribution of 

the portfolio return. At least, we need to know the 

mean vector and the covariance matrix of the 

return vector. However, in order to determine the 

covariance matrix of risky assets in a fuzzy 
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random economic environment, it needs to 

estimate the joint possibility distribution of pair 

assets and that is nearly impossible. For this 

reason we provide some theorems to avoid using 

covariance matrix. 

Theorem 1. (Liu, 2007) Let f be a convex 

function on ],[ ba , and ξ  a fuzzy variable that 

takes values in ],[ ba . Then, 

)(
)(

)(
)(

)]([ bf
ab

aE
af

ab

Eb
fE

−

−
+

−

−
≤

ξξ
ξ . 

Theorem 2. (Liu, 2007) Let ξ  be a fuzzy 

variable that takes values in ],[ ba . Then, 

)](][)([][ ξξξ EbaEV −−≤ . 

Theorem 3. Under the same assumptions as in 

Theorem 2, for fuzzy random variable ∑
i

ii
xR

~ ,  

we have:  









−









−≤

∑ ∑

∑ ∑∑

i i

iiii

i i

iiii

i

ii

xREx

xxRExRV

)
~

(

)
~

()
~

(

β

α

 

Proof. By definition 1 we know that fuzzy 

random variable 
iR

~
 where ],[

~
iiiR βα∈  has a 

fuzzy nature at first therefore from Theorems 1 

and 2 it is clear that the variance of ∑
i

ii xR
~

is 

convex function in ],[ ∑∑
i

ii

i

ii xx βα ,and by 

∑=
i

ii xR
~

ξ  

we have: 









−









−≤

∑ ∑

∑ ∑∑

i i

iiii

i i

iiii

i

ii

xREx

xxRExRV

)
~

(

)
~

()
~

(

β

α

 

This completes the proof. ■   

From (3) and Theorem 3 it can be seen that: 

{














−








−

∂
≤

∑ ∑∑ ∑

∑∑

i i

iiii

i i

iiii

i ii

i

ii

xRExxxRE

xRExRV

)
~

()
~

(

,)
~

(1min)
~

(

βα

 

Now we introduce an additional decision 

variable Vmax such that V ≤ Vmax, It is clear that the 

following constraint is feasible by all feasible 

solution in the above constraint: 

{














−








−

∂
=

∑ ∑∑ ∑

∑

i i

iiii

i i

iiii

i ii

xRExxxRE

xREV

)
~

()
~

(

),
~

(1minmax

βα

 

Now we use the surrogate constraints (10) to 

(14) instead of (3) as follows: 

0)
~

( max ≥∂−∑ VxRE
i

ii
                      (10) 

λMxREV
i ii +

∂
≤ ∑ )

~
(1

max
                   (11) 

)1()
~

(

)
~

(max

λβ

α

−+







−









−≤

∑ ∑

∑ ∑

MxREx

xxREV

i i

iiii

i i

iiii

   (12) 

)1()
~

(

)
~

(max

λβ

α

−+







−









−≤

∑ ∑

∑ ∑

MxREx

xxREV

i i

iiii

i i

iiii

    (13) 

)
~

(1)1(

)
~

(

.)
~

(max

∑

∑ ∑

∑∑

∂
−

+







−









−=

i ii

i i

iiii

i

ii

i

ii

xRE

xREx

xxREV

λ

β

αλ

          (14) 

{ }1,0∈λ  

where M is a big positive number.  

From the discussions above, by integrating of 

(1), (2), (4) to (9) and (10) to (14), we can 

formulate the fuzzy random multi-objective 

nonlinear programming model as follows: 
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Model 1 

∑
i

ii xR
~

Max  

∑
i

ii xD
~

Max  

Subject to:  

0)
~

( max ≥∂−∑ VxRE
i

ii
 

λMxREV
i ii +

∂
≤ ∑ )

~
(1

max
 

)1()
~

(

)
~

(max

λβ

α

−+







−









−≤

∑ ∑

∑ ∑

MxREx

xxREV

i i

iiii

i i

iiii

 

)
~

(1)1()
~

(

)
~

(max

∑∑ ∑

∑∑

∂
−+








−









−=

i ii

i i

iiii

i

ii

i

ii

xRExREx

xxREV

λβ

αλ

 

Cyc
i

ii ≤∑  

∑ =
i

ix 1  

ii yx ≤  ni ...,,2,1=  

ii ux ≤  ni ...,,2,1=  

0≥ix  ni ...,,2,1=  

{ }1,0∈iy  ni ...,,2,1=  

{ }1,0∈λ  

where x is a feasible solution vector from feasible 

solution space (X) in Model 1. (i.e. Xx∈ ). 

Lemma 1. (Liu and Liu, 2003) assume that ξ  is 

a fuzzy random variable, for any realization 

Ω∈ω , )]]([[)( ωξξ EEE = . 

By Lemma 1;  

( )
i ii

E R x =∑ �
[0.25 ( 2 ( ) ) ]

i i i ii
E xα γ ω β× + +∑  

where )(ωγ i
 is the mid point of fuzzy random 

number iR
~

 and x is a feasible solution vector 

from feasible solution space (X) in Model 1. 

(i.e. Xx ∈ ). 

3. Methodology 

Generally, in order to solve the model above, 

we have to transform these fuzzy random 

variables into deterministic parameters. To solve 

this problem, we apply a two-phase approach. In 

the first phase, the original problem is converted 

into an equivalent auxiliary crisp multi-objective 

nonlinear model. Then, in the second phase, an 

interactive fuzzy random programming approach 

is proposed for finding a preferred solution 

through an interaction between the investor and 

model analyzer. 

3.1. Prob.-Pos. approach 

One way of solving a fuzzy random 

multi-objective programming model is to convert 

the constraints of problem into their 

corresponding crisp equivalents. 

Definition 2. Consider the following 

multi-objective programming problem with fuzzy 

random coefficients (Lia et al., 2006): 

),(Max

),(Max 1

ξ

ξ

xf

xf

m

�  

Subject to:  

Prxg r ,...,2,1,0),( =≤ξ  

By the definition of primitive possibility, the 

fuzzy random multi-objective programming 

model is proposed as: 

mf

f

Max

Max 1

�  

Subject to:  

mjfxfPos jjj ,...,1,}}),({Pr{ =≥≥≥ ρδξω  

prxgPos rr ,...,1,}}0),({Pr{ =≥≥≤ ρδξω  
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Based on Definition 2 and Model 1 we can 

transform uncertain objectives into deterministic 

ones.  

Model 2 

1Max f                               (15) 

2Max f                               (16) 

Subject to:  

111 }})(
~

{Pr{ ρδωω ≥≥≥∑ fxRPos
i

ii     (17) 

222 }})(
~

{Pr{ ρδωω ≥≥≥∑ fxDPos
i

ii   (18) 

Xx∈  

To solve this problem we consider a special 

case and present the result. 

Lemma 2. (Sakawa, 1993) Let m and n  are 

two independently fuzzy numbers with continuous 

membership functions. For given confidence 

level [ ]1,0∈η , 

{ } LR nmnmPos ηηη ≥⇔≥≥ , 

where R
mη  and L

nη  are the right and left side 

extreme points of the η −level sets ],[ RL mm ηη  

and ],[ RL nn ηη  of m  and n , respectively, and 

{ }nmPos ≥  means the degree of possibility that 

m  is greater than or equal to n . 

Theorem 4. Assume that the fuzzy random 

variable 
i

R
~

 is characterized by the fuzzy 

triangular number )),(,( iii βωγα , and then we 

have: 

111 }})(
~

{Pr{ ρδωω ≥≥≥∑ fxRPos
i

ii
  

if and only if: 

∑

∑ ∑

−Φ+

++−≤

−

i

ii

i i

iiii

x

xdxf

22
1

1
1

111

)1(

)1(

σρδ

δβδ
 

Proof. We denote that:  

),)(,(
~

∑∑∑∑ =
i

ii

i

ii

i

ii

i

ii xxxxR βωγα ,  

where ),(~)( 2
iii dN σωγ , 

then ∑ ∑∑
i i

iiii

i

ii xxdNx ),(~)( 22σωγ  hence  

∑ ∑∑∑ =
i

i

i

ii

i

iiii

i

i xxxxR ),)(,()(
~

βωγαω . 

By lemma 2 we have: 

∑ ∑

∑

≥−−⇔

≥≥≥

i

i

i

iiii

i

ii

fxx

fxRPos

11

111

))((

}})(
~

{

ωγβδβ

ρδω

 

Then we have: 

111 }})(
~

{Pr{ ρδωω ≥≥≥∑ fxRPos
i

ii
 

}))((Pr{ 11∑ ∑ ≥−−⇔
i

i

i

iiii fxx ωγβδβω  

∑
∑

≥−−

≥⇔

i

ii

i

ii

xf

x

111
1

)})1((1

)(Pr{

ρβδδ

ωγω

1
22

11
1

22

))1((1

)(

Pr

ρ
σ

βδδ

σ

ωγ

ω

≥








−−−










≥

−

⇔

∑

∑∑

∑

∑∑

i

ii

i

ii

i

ii

i

ii

i

iii

i

i

x

xdxf

x

xdx

 

1
22

111
1

1

))1((1

ρ
σ

βδδ
−≤

















 −−−

Φ⇔

∑

∑∑

i

ii

i

i

i

ii

x

xdxf

 

∑

∑ ∑

−Φ

++−≤⇔

−

i

ii

i

i

i

iii

x

xdxf

22
1

1
1

111

)1(

)1(

σρδ

δβδ
 

This completes the proof. ■ 
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Similarly, second objective can be converted 

into its crisp equivalent. 

Theorem 5. Assume that the fuzzy random 

variable 
iD

~
 is characterized by the fuzzy 

triangular number )),(,( iii βωγα ′′′ , and then we 

have: 

222 }})(
~

{Pr{ ρδωω ≥≥≥∑ fxDPos
i

ii
  

if and only if: 

∑

∑ ∑

′−Φ+

′+′−≤

−

i

ii

i i

iiii

x

xdxf

22
2

1
2

222

)1(

)1(

σρδ

δβδ
 

Proof. We denote that:  

),)(,(
~

∑∑∑∑ ′′′=
i

ii

i

ii

i

ii

i

ii xxxxD βωγα , 

where ),(~)( 2
iii dN σωγ ′′′ , 

then ∑ ∑∑ ′′′
i i

iiii

i

ii xxdNx ),(~)( 22σωγ  hence  

∑ ∑∑∑ ′′′=
i

i

i

ii

i

iiii

i

i xxxxD ),)(,()(
~

βωγαω . 

By lemma 2 we have: 

∑ ∑

∑

≥′−′−′⇔

≥≥≥

i

i

i

iiii

i

ii

fxx

fxDPos

22

222

))((

}})(
~

{

ωγβδβ

ρδω

, 

Then we have: 

222 }})(
~

{Pr{ ρδωω ≥≥≥∑ fxDPos
i

ii
 

}))((Pr{ 22∑ ∑ ≥′−′−′⇔
i

i

i

iiii fxx ωγβδβω  

∑
∑

≥′−−

≥′⇔

i

ii

i

ii

xf

x

222
2

)})1((1

)(Pr{

ρβδδ

ωγω
 

2
22

22
2

22

))1((1

)(

Pr

ρ
σ

βδδ

σ

ωγ

ω

≥










′

′−′−−










≥
′

′−′

⇔

∑

∑∑

∑

∑∑

i

ii

i

ii

i

ii

i

ii

i

iii

i

i

x

xdxf

x

xdx

 

2
22

22
2

1

))1((1

ρ
σ

βδδ
−≤



















′

′−′−−

Φ⇔

∑

∑∑

i

ii

i

ii

i

ii

x

xdxf

∑

∑ ∑
′−Φ+

′+′−≤⇔

−

i

ii

i

i

i

iii

x

xdxf

22
2

1
2

222

)1(

)1(

σρδ

δβδ
 

This completes the proof.■ 

From Theorems 4 and 5, we have that Model 2 

is equivalent to the following multi-objective 

programming problem: 

1Max f  

2Max f  

Subject to:  

∑

∑ ∑

−Φ+

+−≤

−

i

ii

i i

iiii

x

xdxf

22
1

1
1

111

)1(

)1(

σρδ

δβδ
 

∑

∑ ∑

′−Φ+

′+′−≤

−

i

ii

i i

iiii

x

xdxf

22
2

1
2

222

)1(

)1(

σρδ

δβδ
 

Xx ∈  

or equivalently: 

Model 3 

∑

∑ ∑

−Φ

++−=

−

i

ii

i i

iiii

x

xdxZ

22
1

1
1
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)1(
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σρδ

δβδ
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Subject to: 

Xx ∈  

4. Proposed interactive fuzzy random prog- 

ramming approach 

Now we are ready to construct an interactive 

algorithm for multi-objective nonlinear 

programming with fuzzy random coefficients 

Model 1 in order to derive a satisfying solution. It 

is noteworthy that we inspired the 6
th
 step from 

Torabi and Hassini (2008). The proposed 

interactive solution procedure to solve the original 

the model is as follows: 

1. Elicit the appropriate triangular fuzzy 

distributions from the investor for the parameters. 

2. Ask the investor to set the aspiration 

levels 1ρ , 2ρ and 1δ , 2δ . 

3. Convert the original fuzzy random 

multi-objective problem into the crisp one 

regarding to Model 3. 

4. Calculate the individual
11 max ZZ

Xx∈

+ = , 

11 min ZZ
Xx∈

− = , the individual 
22 max ZZ

Xx∈

+ =  and 

22 min ZZ
Xx∈

− =  under the given constraints. 

5. Specify a linear membership function for each 

objective function as follows for 2,1=j : 










<

≤≤
−

−
>

=

−

+−

−+

−

+

jj

jjj

jj

jj

jj

j

ZZ

ZZZ
ZZ

ZZ
ZZ

x

;0

;

;1

)(µ       (21) 

6. Convert the multi-objective model into an 

equivalent single-objective using the following 

given crisp formulation: 

Model 4 

∑−+=
j

jj xwx )()1()(Max 0 µττππ  

Subject to: 

2,1),(0 =≤ jxjµπ               (22) 

Xx ∈  

[ ]1,0,0 ∈τπ  

where { })(min0 xjj µπ =  also, jw  and τ  

indicate relative importance of the j
th
 objective 

function and the coefficient of compensation, 

respectively. 

7. If the investor is satisfied with the current  

solution of (22), then stop. The current ideal 

solution is a satisfying solution for the investor. 

Otherwise, ask him/her to update the current 

controllable parameters such as ρ , δ and τ , 

and  return to Step 3. 

5. Numerical example 

In this section the computational results of a 

real case study in IML Co. are given to illustrate 

details of the proposed model and algorithm. This 

company is a leading consultant in financing and 

stock market.  

At the time of this study, the aim was to 

construct a mathematical model to determine the 

optimal investment on different assets. Since each 

investor should consult with experts of the 

company, s/he is given some information about 

different parameters of assets such as rate of 

return (Ri), dividend (Di) and unit purchase cost 

(ci), so the proposed model is applied to solve this 

problem.  

As a result, Tables 1, 2 and 3 provide an insight 

into the data characteristics of the model. IML Co. 

has chosen 10 top ranking assets from 3856 

existing assets based on the related coefficients of 

rate of return (Ri), dividend (Di) and unit purchase 

cost (ci). All information has gathered from 

Iranian Stock Exchange. The corresponding 

computational results are summarized in Tables 4 

and 5. 
 

 

 

 

 

Table 1: The source of data set. 

Parameter Corresponding value 

∂  0.9 

C 2700 

M 1000 

ui 0.25 

w1 0.75 

w2 0.25 

www.SID.ir



Arc
hi

ve
 o

f S
ID

20                                            M.B. Aryanezhad et al. / Journal of Industrial Engineering International 7(13) (2011) 12-21 

Table 2: Information of the top 10 returns. 

Return Asset 

)05.0,1(~
1

Nγ  (−0.21,γ1,2.25) 1 

)2.0,1(~2 Nγ  (0.1, γ2,3) 2 

)31.0,2(~
3

Nγ  (−0.34, γ3,4.1) 3 

)28.0,1(~
4

Nγ  (0.15, γ4,2.88) 4 

)25.0,9.1(~
5

Nγ  (−0.6, γ5,4.2) 5 

)22.0,5.1(~
6

Nγ  (0.12, γ6,3.35) 6 

)25.0,8.1(~
7

Nγ  (−0.21, γ7,4) 7 

)38.0,5.1(~
8

Nγ  (0, γ8,4.2) 8 

)35.0,1(~
9

Nγ  (−0.3, γ9,3.4) 9 

)15.0,7.2(~
10

Nγ  (−0.22, γ10,4.31) 10 

 
 

 

Table 3: Information of the top 10 dividends. 

Cost Dividend Asset 

312 )01.0,03.0(~
1

Nγ ′  (0, γ’1,0.38) 1 

218 )01.0,31.0(~
2

Nγ ′  (0.31, γ’2,0.67) 2 

324 )04.0,23.0(~
3

Nγ ′  (0.13, γ’3,0.92) 3 

159 )06.0,12.0(~
4

Nγ ′  (0.05, γ’4,1) 4 

340 )02.0,21.0(~5 Nγ ′  (0.12, γ’5,0.75) 5 

192 )01.0,51.0(~
6

Nγ ′  (0.43 γ’6,1) 6 

331 )05.0,6.0(~7 Nγ ′  (0.51, γ’7,0.92) 7 

224 )06.0,24.0(~
8

Nγ ′  (0, γ’8,1.12) 8 

209 )03.0,31.0(~
9

Nγ ′  (0.2, γ’9,1.1) 9 

312 )01.0,35.0(~
10

Nγ ′  (0.31, γ’10,0.72) 10 

 

 

 

Table 4: Results corresponding to step 4. 

+
1Z  

−
1Z  

+
2Z  

−
2Z  

90.01 =ρ  85.02 =ρ  

3.4607 2.5393 0.71620 0.54075 

 

 

 

Table 5: Interactive process ( 4.0=τ ). 

1δ  2δ  
*

1
x  *

2
x  *

3
x  *

4
x  *

5
x  *

6
x  

0.8 0.8 0 0 0.1 0 0.057 0.043 

0.8 0.85 0 0 0.1 0 0.008 0.092 

0.9 0.85 0 0 0.1 0 0.037 0.1 

0.9 0.9 0 0 0.1 0 0 0.1 

0.95 0.9 0 0 0.1 0 0.010 0.1 

0.95 0.95 0 0 0.1 0 0.1 0.1 

 

 

 

Table 5: Interactive process ( 4.0=τ ) (Continued). 

*
7x  

*
8x  

*
9x  

*
10x  

*
maxV  *

1Z  
*
2Z  *π  

0.1 0.1 0.1 0.1 2.900 3.447 0.714 0.985 

0.1 0.1 0.1 0.1 2.875 3.405 0.706 0.939 

0.1 0.1 0.1 0.1 2.894 3.360 0.697 0.891 

0.1 0.1 0.1 0.1 2.870 3.322 0.687 0.842 

0.1 0.1 0.1 0.1 2.877 3.295 0.685 0.820 

0.1 0.1 0.1 0.1 2.870 3.285 0.667 0.760 

6. Conclusion  

It has been observed through the paper that 

portfolio selection would be considered under 

fuzzy environment which is a suitable for 

modeling vagueness and uncertainty of decision 

making in the real world. The proposed model is a 

comprehensive and practical one that could be 

constructed easily by real data as the researchers 

have done. The proposed algorithm could be 

changed to enhance other criteria of multi- 

objective decision making models well. Another 

development would be when the assets are not 

independent of each other in price, rate of return, 

dividend and etc, where for lack of controllability 

there may be different categories of assets in 

which all experts are agreed not to invest on more 

than one.  
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