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Mathematical solution of multilevel fractional
programming problem with fuzzy goal
programming approach
Kailash Lachhwani1* and Mahaveer Prasad Poonia2

Abstract

In this paper, we show a procedure for solving multilevel fractional programming problems in a large hierarchical
decentralized organization using fuzzy goal programming approach. In the proposed method, the tolerance
membership functions for the fuzzily described numerator and denominator part of the objective functions of all levels
as well as the control vectors of the higher level decision makers are respectively defined by determining individual
optimal solutions of each of the level decision makers. A possible relaxation of the higher level decision is considered for
avoiding decision deadlock due to the conflicting nature of objective functions. Then, fuzzy goal programming
approach is used for achieving the highest degree of each of the membership goal by minimizing negative deviational
variables. We also provide sensitivity analysis with variation of tolerance values on decision vectors to show how the
solution is sensitive to the change of tolerance values with the help of a numerical example.
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Background
Hierarchical optimization or multilevel programming
problems (MLPPs) have the following common characteris-
tics: interactive decision making units exist within predom-
inantly hierarchical structures; the execution of decision
is sequential from higher level to lower level; each decision-
making unit independently controls a set of decision vari-
ables and is interested in maximizing its own objective but
is affected by the reaction of lower level decision makers
(DMs). Due to their dissatisfaction with the decision of the
higher level DMs, decision deadlock arises frequently in the
decision-making situation. Multilevel fractional program-
ming problems (MLFPPs) involve objective functions in

fractional form, i.e., f Xð Þ ¼ N Xð Þ
D Xð Þ at each level with the as-

sumption that the denominator of objectives remains posi-
tive at each level in the feasible region. Some important
existing solution approaches such as the extreme point
search, the procedure based on the Karush-Kuhn Tucker
condition, and the decent method (Anandilingam 1988;

Anandilingam and Apprey 1991; Biswas and Pal 2005;
Bellmann 1957; Charnes and Cooper 1962; Craven and
Mond 1975; Lai 1996) are effective only for solving simple
types of multilevel programming problems. Initially, fuzzy
approach was used to handle multiobjective optimization
problems (Chakraborty and Gupta 2002; Jimenez and Bilbas
2009). Lai and Hwang (1993) at first developed an effective
fuzzy approach using the concept of tolerance member-
ship functions for solving MLPPs in 1996. Shih et al.
(1996) extended Lai’s concept using a non-compensatory
maximum-minimum aggregation operator for solving
MLPPs. Shih and Lee (2000) further extended Lai’s concept
by introducing the compensatory fuzzy operator for solving
MLPPs. Sinha (2003a,b) studied alternative MLP techniques
based on fuzzy mathematical programming (FMP). The
basic concept of these fuzzy approaches is the same, and
evaluation of the problem again and again by redefining the
elicited membership values is essentially needed in the solu-
tion search process to obtain a satisfactory solution. So,
computational load is also inherently involved in the fuzzy
approaches developed so far. In the FMP techniques of
Sinha (2003a,b), the last (lower) level is the most important,
and the decision of the lowest level remains either un-
changed or closest to individual best decisions, which leads
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to the paradox that the decision power of the lowest level
DM dominates the higher level DM. To overcome such dif-
ficulties, the fuzzy goal programming (FGP) approach to
multidecision-making problems was introduced by
Mohamed (1997) which is extended by Pramanik and Roy
(2007) to solve MLPPs. Baky (2009) used fuzzy goal
programming to solve decentralized bilevel multiobjective
programming problems. Chang (2009) suggested goal
programming approach for fuzzy multiobjective fractional
programming problems. Recently, Pal and Gupta (2009)
studied a genetic algorithm to fuzzy goal programming
formulation of fractional multiobjective decision-making
problems.

In real-world decision-making situations, decision makers
sometimes may be faced with the decision to optimize
inventory/sales, actual cost/standard cost, output/employee,
etc. with respect to some constraints. Such type of problems
in a large hierarchical organization from higher level to
lower level and their sequential decisions on complex and
conflicting objectives formulate the MLFPPs. Practical
optimization situations involving multilevel with fractional
objectives have been rare, but such problems can be
encountered in the most complex design, pattern recogni-
tion, control theory, and resource allocation situations
(Mohamed 1997). Motivated by the concept of interactive
fuzzy goal programming and fractional programming, an
effort has been made to examine the possibility of unifying
the level-wise (hierarchical) and stage-wise operations with
the assumption of a positive denominator of objective
functions at each level. The aim of this paper is to present a
procedure to solve multilevel fractional programming
problems. Our proposed methodology involves the fuzzy
goal levels of the numerator and denominator part of each
objective as well as decision vectors controlled by the
higher level DMs, which are determined by individual opti-
mal solutions. Then, the fuzzy goals are characterized by
the associated membership functions which are trans-
formed into fuzzy flexible membership goals by means of
introducing negative and positive deviational variables and
assigning a higher membership value (unity) as aspiration
level to each of them. Since overdeviation from any fuzzy
goal implies the full achievement of the membership values,
we assign only negative deviational variables to the achieve-
ment function and minimize negative deviational variables
to get a compromise optimal solution. To illustrate our pro-
posed method, we solve a numerical example and compare
the results with the change in tolerance limits.
The paper is organized as follows: In the ‘Formulation

of MLPP’ section, we discuss formulation of MLFPP and
the related terminology. In the ‘Fuzzy programming for-
mulation of MLFPP’ section, we characterize the linear
membership functions for the numerator and denomin-
ator of objective functions at each level as well as deci-
sion vectors controlled by the higher level DMs. In the

next section, we discuss the proposed FGP approach to
tackle MLFPPs and formulate different mathematical
models related to it. In the ‘Selection of compromise so-
lution’ section, selection criteria of compromise optimal
solution are described. To illustrate the proposed meth-
odology, a numerical example is considered and sensi-
tivity analysis is performed with the change in tolerance
limits in the ‘Numerical example’ section. Concluding
remarks are given in the last sections.

Results and discussion
Formulation of MLFPP
We consider a T-level fractional programming problem
of maximization-type objectives at each level. Mathemat-
ically, we can state it as follows:

Max�
X1

Z1
�Xð Þ ¼

�C11
�X1 þ �C12

�X2 þ ::::þ �C1T
�XT þ α1�D11

�X1 þ�D12
�X2 þ ::::þ�D1T

�XT þ β1

Max�
X2

Z2
�Xð Þ ¼

�C21
�X1 þ�C22

�X2 þ ::::þ�C2T
�XT þ α2�D21

�X1 þ �D22
�X2 þ ::::þ�D2T

�XT þ β2

Max�
XT

ZT
�Xð Þ ¼

�CT1
�X1 þ �CT2

�X2 þ ::::þ �CTT
�XT þ αT�DT1

�X1 þ�DT2
�X2 þ ::::þ �DTT

�XT þ βT

subject to

�Ai1
�X1 þ�Ai2

�X2 þ :::::::::þ
�AiT

�XT ≤;¼; ≥ð Þbi
8i ¼ 1; 2; ::::;m

and
�X1≥0;

�X2≥0; ::::;
�XT ≥0

ð1Þ

�X1 ¼ X1
1 ;X

2
1 ; ::::::::;X

N1
1

� �0 decision variables are under the

control of the first level DM; �XT ¼ X1
T ;X

2
T ; ::::::::;X

NT
T

� �0

decision variables are under the control of the t-level DM.
Where 0 denotes transposition, �Aij i ¼ 1; 2; ::::;m; and

j ¼ 1; 2; . . . ;T are m row vectors, each with dimension
1� Nj
� �

. �Ait
�Xt ; t ¼ 1; 2; ::::;T is a column vector of di-

mension M � 1ð Þ. �C11 ;
�C21 ; ::::;

�CT1 are row vectors of di-
mension 1� N1ð Þ . Similarly, �C1T ;

�C2T ; ::::;
�CTT and

�D1T ;
�D2T ; ::::;

�DTT are row vectors of dimension 1� NTð Þ.
We take �X ¼ �X1∪

�X2∪ . . . ∪
�XT and N ¼ N1 þ N2 þ :::::::þ

NT . Here, one DM is located on each level. Decision vec-
tor �Xt ; t ¼ 1; 2; . . . ;T is the control of the t-th level DM
having Nt number of decision variables. Here, it is
assumed that the denominator of objective functions is
positive at each level for all the values of decision vari-
ables in the constraint region.

Fuzzy programming formulation of MLFPP
To formulate the fuzzy programming model of MLFPP,
the objective numerator fiN

�Xð Þ þ αi;8t ¼ 1; 2; . . . ;T and
objective denominator fiD

�Xð Þ þ αi; 8t ¼ 1; 2; . . . ;T at
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each level and the decision vector �Xt ; t ¼ 1; 2; ::;T � 1ð Þ
would be transformed into fuzzy goals by means of assign-
ing an aspiration level to each of them. Then, they are to
be characterized by the associated membership functions
by defining tolerance limits for the achievement of the
aspired levels of the corresponding fuzzy goals.

Characterization of membership function of MLFPP
In the decision-making context, each DM is interested in
maximizing his or her own objective function; the optimal
solution of each DM when calculated in isolation would be
considered as the best solution, and the associated objective
values can be considered as the aspiration level of the corre-

sponding fuzzy goal. Let �XB
t be the best solution of the t-th

level DM. It is quite natural that objective values which are

equal to or larger than ZB
t ¼ Zt

�XB
t

� �
¼ Max�

X2X
Zt �Xð Þ; t ¼ 1;

2; . . . ;T should be absolutely satisfactory to the t-th level

DM. If the individual best solutions �XB
t ; t ¼ 1; 2; . . . ;T are

the same, then a satisfactory optimal solution of the system
is reached. However, this rarely happens due to the
conflicting nature of the objectives. To obtain a satisfactory
solution, the higher DM should give some tolerance
(relaxation), and the relaxation of the decision of the higher
level DM depends on the needs, desires, and practical
situations in the decision-making situation. Then, the fuzzy
goals take the form

Zt
�Xð Þ≥Zt

�XB
t

� �
; t ¼ 1; 2; . . . ;T

and �Xt ffi �XB
t ; t ¼ 1; 2; . . . ; T � 1ð Þ.

To build membership functions, fuzzy goals and
tolerance should be determined first. However, they could
hardly be determined without meaningful supporting data.
Using the individual best solution, we find the values of all
the numerator objective functions and denominator
objective functions at each best solution and construct a
payoff matrix as follows:

XB
1 N1 N2 : : NT�

XB
1 N1

�
XB
1

� �
N2

�
XB
1

� �
: : NT

�
XB
1

� �
�
XB
2 N1

�
XB
2

� �
N2

�
XB
2

� �
: : NT

�
XB
2

� �
: : : : : :
: : : : : :�

XB
T N1

�
XB
T

� �
N2

�
XB
T

� �
: : NT

�
XB
T

� �

2
6666664

3
7777775

and

XB
1 D1 D2 : : DT�

XB
1 D1

�
XB
1

� �
D2

�
XB
1

� �
: : DT

�
XB
1

� �
�
XB
2 D1

�
XB
2

� �
D2

�
XB
2

� �
: : DT

�
XB
2

� �
: : : : : :
: : : : : :�

XB
T D1

�
XB
T

� �
D2

�
XB
T

� �
: : DT

�
XB
T

� �

2
6666664

3
7777775

ð2Þ

Here, �Xt t ¼ 1; 2; . . . ;Tð Þ are assumed to be the main
decision vectors. The maximum value of each column
Nt

�XB
t

� �
and Dt

�XB
t

� �
give upper tolerance limit or aspired

level of achievement for the t-th numerator objective
function and denominator objective function, respectively,

where NB
t ¼ Nt

�XB
t

� �
¼ Max�

X2X
Nt �Xð Þ; t ¼ 1; 2; . . . ;T . The

minimum value of each column gives the lower tolerance
limit or lowest acceptable level of achievement for the
t-th numerator objective function and denominator ob-
jective function, respectively, where NL

t ¼ Min
�X2X

Nt
�XB
1

� �
;

�
Nt

�XB
2

� �
; . . . ; Nt

�XB
T

� �g; . t ¼ 1; 2; . . . ;T . Then, the linear
membership functions for the defined fuzzy goals are as
follows (see also Figures 1 and 2):

μZt
Nt

�Xð Þð Þ ¼
1 if Nt

�Xð Þ≥NB
t

Nt �Xð Þ � NL
t

NB
t � NL

t
if NL

t ≤Nt
�Xð Þ≤NB

t

0 if Nt
�Xð Þ≤NL

t

8t ¼ 1; 2; . . . ;T

8>>>>>>><
>>>>>>>:

ð3Þ

( ( ))
tZ tD X

L
t

D B
t

D

1

( ( ))
tZ tN X

( )tN XL
t

N
B

t
N

1

( )tD X

(a)

(b)

Figure 1 (a): Membership function for μZt Di
�
Xð Þð Þ (b): Membership

function for μZt
Ni

�
Xð Þð Þ.
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μZt

Dt
�Xð Þð Þ ¼

0 if Dt
�Xð Þ≥DB

t
DB

t � Dt �Xð Þ
DB

t � DL
t

if DL
t ≤Dt

�Xð Þ≤DB
t

1 if Dt
�Xð Þ≤DL

t

8t ¼ 1; 2; . . . ;T

8>>>>>>><
>>>>>>>:

ð4Þ

Here, linear membership functions are more suitable
than nonlinear functions as less computational difficulties
arise in models due to it. Let �p�t ;�pþt t ¼ 1; 2; . . . ;T � 1ð Þ
be the negative and positive tolerance values on deci-
sion vectors �Xt considered by the t-th level DM. This
is a triangular fuzzy number. Then, the linear mem-
bership functions for decision vectors �Xt can be
formulated as follows:

μ�Xt

�Xtð Þ ¼

�Xt � �XB
t ��p�t

� �
�p�t

if �XB
t ��p�t

� �
≤�Xt≤

�XB
t

�XB
t þ

�
pþt

� �
��Xt

�
pþt

if �XB
t ≤

�Xt≤
�XB
t þ

�
pþt

� �
0 otherwise

8t ¼ 1; 2; . . . ;T

8>>>>>>>>>><
>>>>>>>>>>:

ð5Þ

Here, �p�t and
�
pþt are the negative and positive tolerance

vectors; �p�t and �pþt are not necessarily same. Generally,
�Xt lies between

�XB
t ��p�t and �XB

t þ
�
pþt . DMs may prefer to

shift the range of �XB
t which may be the left of �XB

t or the

right of �XB
t , only depending on the needs and desires of

the higher level DMs in the decision-making situation.
Then, the membership function becomes one-sided. For
example, if �X ¼ �0 , then �X should lie on the right of �0.
Then, the DM should assign �p�t ≤�0; �pþt ≥�0 and�p�t
�� ��≤ �pþt

�� ��. If the DM wants the shift towards the left of
�XB
t , then

�p�t should be assigned a positive value while �pþt

should be assigned a negative value, i.e., �p�t ≥�0 , �pþt ≤�0 ,
and �p�t

�� ��≥ �
pþt
�� �� . Similarly, if the shift is required to the

right of �XB
t , then the DM should assign �p�t ≤�0,

�
pþt ≥0, and�p�t

�� ��≤ �
pþt
��� ���. We may treat the tolerance as variables with

the restrictions that �p�t ≤�XB
t (so that the value of the

variables remain non-negative).

FGP solution approach
FGP is an extension of conventional goal programming
(GP) introduced by Charnes and Cooper (1962). GP has
been extensively studied and widely circulated in
literature (Arora and Gupta 2009; Pramanik and Roy
2007). In this paper, GP approach to fuzzy multiobjective
decision-making problems introduced by Mohamed
(1997) is extended to solve MLFPP problems. In a
decision-making situation, the aim of each DM is to
achieve the highest membership value (unity) of the
associated fuzzy goal in order to obtain the absolute
satisfactory solution. However, in real practice,
achievement of all membership values to the highest
degree (unity) is not possible due to conflicting
objectives. Therefore, the decision policy for minimizing
the regrets of the DMs for all the levels should be taken
into consideration. Then, each DM should try to
maximize his or her membership function by making
them as close as possible to unity by minimizing its
negative deviational variables. Therefore, in effect, we are
simultaneously optimizing all the objective functions. So,
for the defined membership functions in Equations 3, 4,
and 5, the flexible membership goals having the aspired
level unity can be represented as follows:

μZt
Nt

�Xð Þð Þ þ D�
t1 � Dþ

t1 ¼ 1; t ¼ 1; 2; . . . ;T ð6Þ

μZt
Dt

�Xð Þð Þ þ D�
t2 � Dþ

t2 ¼ 1; t ¼ 1; 2; . . . ;T ð7Þ

μ�X t

�Xtð Þ þ �D�
t3 ��Dþ

t3 ¼ �I ; t ¼ 1; 2; . . . ; T � 1ð Þ ð8Þ

Here, D�
t1;D

�
t2 are negative deviational variables, and

Dþ
t1;D

þ
t2 are positive deviational variables; �Dþ

t3;
�D�

t3

represent the vector of negative deviational and
positive deviational variables. It is to be noted that
any overdeviation from a fuzzy goal implies the full
achievement value. Then, Equations 6, 7, and 8 can
be written as follows:

μZt
Nt

�Xð Þð Þ þ D�
t1≥1 ; t ¼ 1; 2; . . . ;T ð9Þ

μZt
Dt

�Xð Þð Þ þ D�
t2≥1 ; t ¼ 1; 2; . . . ;T ð10Þ

μ�X t

�Xtð Þ þ �D�
t3≥�I ; t ¼ 1; 2; . . . ; T � 1ð Þ ð11Þ

( )
t

tX
X

tX
B

t t
X p

B
tX

1

B
t t

X p

Figure 2 Membership functions of decision vector �Xt t ¼1; 2; ::;ð
T�1Þ.
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FGP formulation can be presented as follows:
Model I: Find �X so as to minimize λ subject to

μZt
Nt

�Xð Þð ÞþD�
t1≥1; t ¼ 1; 2; . . . ;T

μZt
Dt

�Xð Þð Þ þ D�
t2≥1; t ¼ 1; 2; . . . ;T

μ�Xt

�Xtð Þ þ �D�
t3≥

�I ; t ¼ 1; 2; . . . ; T � 1ð Þ
λ≥D�

t1;t ¼ 1; 2; . . . ;T
λ≥D�

t2; t ¼ 1; 2; . . . ;T

λ≥�D�
t3
�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

D�
t1≥0;t ¼ 1; 2; . . . ;T

D�
t2≥0;t ¼ 1; 2; . . . ;T�D�
t3≥

�0;t ¼ 1; 2; . . . ; T � 1ð Þ
�Ai1

�X1 þ�Ai2
�X2 þ :::::::::::::: þ�AiT

�XT ≤;¼; ≥ð Þbi
8i ¼ 1; 2; ::::;m

and �X1≥0; �X2≥0; :::::::::::; �XT ≥0

ð12Þ

The above problem can be rewritten as follows:
Minimize λ subject to

Nt
�Xð Þ � NL

t

NB
t � NL

t
þ D�

t1≥1; t ¼ 1; 2; . . . ;T

DB
t � Dt

�Xð Þ
DB

t � DL
t

þ D�
t2≥1; t ¼ 1; 2; . . . ;T

�Xt � �XB
t ��p�t

� ��p�t þ�D�
t31≥�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

�XB
t þ�pþt

� �
��Xt

�pþt þ�D�
t32≥�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

λ≥D�
t1; t ¼ 1; 2; . . . ;T

λ≥D�
t2; t ¼ 1; 2; . . . ;T

λ≥�D�
t31
�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

λ≥�D�
t32
�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

D�
t1≥0; t ¼ 1; 2; . . . ;T

D�
t2≥0; t ¼ 1; 2; . . . ;T

�D�
t31≥�0; t ¼ 1; 2; . . . ; T � 1ð Þ

�D�
t32≥�0; t ¼ 1; 2; . . . ; T � 1ð Þ

�Ai1
�X1 þ�Ai2

�X2 þ :::::::::::::: þ�AiT
�XT ≤;¼; ≥ð Þbi

8i ¼ 1; 2; ::::;m
and

�X1≥0;
�X2≥0; :::::::::::;

�XT ≥0

ð13Þ

Here, D�
t1;D

�
t2 are negative deviational variables.�D�

t31;
�D�

t32 represent the vector of underdeviational vari-
ables. �I is the column vector having all components
equal to 1, and its dimension depends on �X .
Model IIa: Find �X so as to minimize

λ ¼
XT
t¼1

W�
t1D

�
t1 þ

XT�1

t¼1

W�
t2D

�
t2 þ

XT�1

t¼1

�W �
t3
�D�

t3

Model IIb: Find �X so as to minimize

λ ¼
XT
t¼1

D�
t1 þ

XT�1

t¼1

D�
t2 þ

XT�1

t¼1

�D�
t3

subject to

μZt
Nt

�Xð Þð Þ þ D�
t1≥1; t ¼ 1; 2; . . . ;T

μZt
Dt

�Xð Þð Þ þ D�
t2≥1; t ¼ 1; 2; . . . ;T

μ�Xt

�Xtð Þ þ �D�
t3≥�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

D�
t1≥0; t ¼ 1; 2; . . . ;T

D�
t2≥0; t ¼ 1; 2; . . . ;T

�D�
t3≥�0; t ¼ 1; 2; . . . ; T � 1ð Þ

�Ai1
�X1 þ�Ai2

�X2 þ :::::::::::::: þ�AiT
�XT ≤;¼; ≥ð Þbi

8i ¼ 1; 2; ::::;m
and

�X1≥0;
�X2≥0; :::::::::::;

�XT ≥0

ð14Þ

Here,D�
t1;D

�
t2 are negative deviational variables. �D�

t3

represents the vector of underdeviational variables.

The numerical weights are taken as W�
t1 ¼ 1

NB
t �NL

tð Þ
.

,

W�
t2 ¼ �1= DB

t �DL
tð Þ , and �W�

t3 ¼ 1
�p�tð Þ; 1 �pþtð Þ

. i.h
. �I is

the column vector having all components equal to 1,
and its dimension depends on �X . The above problem
in models IIa and IIb can be rewritten as follows:
Minimize

λ ¼
XT
t¼1

W�
t1D

�
t1 þ

XT�1

t¼1

W�
t2D

�
t2 þ

XT�1

t¼1

�W �
t31

�D�
t31

þ
XT�1

t¼1

�W �
t32

�D�
t32

Minimize

λ ¼
XT
t¼1

D�
t1 þ

XT�1

t¼1

D�
t2 þ

XT�1

t¼1

�D�
t31 þ

XT�1

t¼1

�D�
t32

subject to

Nt �Xð Þ � NL
t

NB
t � NL

t
þ D�

t1≥1 ; t ¼ 1; 2; . . . ;T

DB
t � Dt

�Xð Þ
DB

t � DL
t

þ D�
t2≥1 ; t ¼ 1; 2; . . . ;T

�Xt � �XB
t ��p�t

� ��p�t þ�D�
t31≥�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

�XB
t þ�pþt

� �
��Xt

�pþt þ�D�
t32≥�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

D�
t1≥0 ; t ¼ 1; 2; . . . ;T

D�
t2≥0 ; t ¼ 1; 2; . . . ;T

�D�
t3≥�0 ; t ¼ 1; 2; . . . ; T � 1ð Þ

�Ai1
�X1 þ�Ai2

�X2 þ :::::::::::::: þ�AiT
�XT ≤;¼; ≥ð Þbi

8i ¼ 1; 2; ::::;m
and
�X1≥0;

�X2≥0; :::::::::::;
�XT ≥0

ð15Þ
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Here, D�
t1;D

�
t2 are negative deviational variables. �D�

t31 and�D�
t32 represent the vector of underdeviational variables.

W�
t1 ¼ 1

NB
t �NL

tð Þ
.

, W�
t2 ¼ �1= DB

t �DL
tð Þ and �W �

t31 ¼ 1
�p�tð Þ;

.
�W �

t31 ¼ 1
�pþtð Þ

.
. �I is the column vector having all

components equal to 1, and its dimension depends on �X .
By solving Equation 15, if the DMs are satisfied with this
solution, then a satisfying solution is reached. Otherwise,
higher level DMs should provide new tolerance limits for
the control variable until a satisfying solution is reached. In
general, considering a set of positive relaxation offered by
the higher level DMs, the solution of Equation 15 becomes
satisfying for all the level DMs.

Numerical example
Let us consider the following tri-level linear fractional
programming problem as

Max
x1;x2

Z1 ¼ 7x1 þ 3x2 � 4x3 þ 2x4
x1 þ x2 þ x3 þ 1

Max
x3

Z2 ¼ x2 þ 3x3 þ 4x4
x1 þ x2 þ x3 þ 2

Max
x4

Z3 ¼ 2x1 þ x2 þ x3 þ x4
x1 þ x2 þ x3 þ 3

subject to

x1 þ x2 þ x3 þ x4≤5

x1 þ x2 � x3 � x4≤2

x1 þ x2 þ x3≥1

x1 � x2 þ x3 þ 2x4≤4

x1 þ 2x3 þ 2x4≤3

x4≤2

and x1≥0; x2≥0; x3≥0; x4≥0.

We find the best optimal solution

NL
1 ¼ �6 at 0; 0; 1:5; 0ð Þ;

NB
1 ¼ 17 at 2:3333; 0; 0;0:3333ð Þ,

NB
2 ¼ 9:5 at ð0;3:5; 0;1:5Þ,

NL
2 ¼0 at ð1; 0; 0;0Þ,

NL
3 ¼1 at ð0; 1; 0;0Þ, and

NB
3 ¼ 5 at 2:3333; 0;0:3333;0ð Þ.

Similarly, DB
1 ¼ 6 at 0; 3:5;1:5;0ð Þ;

DL
1 ¼ 2 at 1; 0; 0;0ð Þ;

DB
2 ¼ 7 at 0; 3:5;ð 1:5; 0Þ;

DL
2 ¼ 3 at ð1; 0; 0;0Þ,

DB
3 ¼ 8 at ð0;3:5;1:5;0Þ,

and DL
3 ¼ 4 at ð1; 0; 0;0Þ.

Let the first level DM decide that x1 ¼ 2:3333 with −2
(negative) and +2 (positive) tolerance limits and x2 ¼ 0
with −6.43 (negative) and +6.43 (positive) tolerance
limits. Let the second level DM decide that x3 ¼ 0 with −1
(negative) and +1 (positive) tolerance limits.
Then, following the procedure, FGP model I gives the

problem as follows:

Minimize λ subject to

Nt �Xð Þ � NL
t

NB
t � NL

t
þ D�

t1≥1; t ¼ 1; 2; . . . ;T

⇒ 7x1 þ 3x2 � 4x3 þ 2x4 þ 23D�
11≥17

⇒ x2 þ 3x3 þ 4x4 þ 9:5D�
21≥9:5

⇒ 2x1 þ x2 þ x3 þ x4 þ 4D�
31≥5

DB
t � Dt �Xð Þ
DB

t � DL
t

þ D�
t2≥1 ; t ¼ 1; 2; . . . ;T

⇒ x1 þ x2 þ x3 � 4D�
12≥1

⇒ x1 þ x2 þ x3 � 4D�
22≤1

⇒ x1 þ x2 þ x3 � 4D�
32≤1

�Xt � �XB
t � �p�t

� �
�p�t þ �D�

t31≥�I ;

�XB
t þ �pþt

� �
� �Xt

�pþt þ �D�
t32≥�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

⇒� 0:5x1 þ D�
1311≥� 1:1666

⇒� 0:5x1 þ D�
1321≥� 1:1666

⇒� 0:1555x2 þ D�
1312≥0

⇒� 0:1555x2 þ D�
1322≥0

⇒� x3 þ D�
2311≥0

⇒� x3 þ D�
2321≥0
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Figure 3 Description (a) and solution (b) of example 1 with model I in LINDO 10.0 (trial version).
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Figure 4 Description (a) and solution (b) of example 1 with model IIb in LINDO 10.0 (trial version).
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λ≥D�
t1; t ¼ 1; 2; . . . ;T

⇒λ≥D�
11; λ≥D�

21; λ≥D�
31

λ≥D�
t2; t ¼ 1; 2; . . . ;T

⇒λ≥D�
12; λ≥D�

22; λ≥D�
32

λ≥�D�
t31
�I;λ≥�D�

t32
�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

⇒λ≥D�
1311; λ≥D�

1321; λ≥D�
1312;

λ≥D�
1322; λ≥D�

2311; λ≥D�
2321

D�
t1≥0; t ¼ 1; 2; . . . ;T

⇒D�
11≥0;D

�
21≥0;D

�
31≥0

D�
t2≥0; t ¼ 1; 2; . . . ;T

⇒D�
12≥0;D

�
22≥0;D

�
32≥0

�D�
t31≥�0;�D

�
t32≥�0; t ¼ 1; 2; . . . ; T � 1ð Þ

⇒D�
1311≥0;D

�
1321≥0;D

�
1312≥0;D

�
1322≥0;

D�
2311≥0;D

�
2321≥0

�Ai1 �X1 þ �Ai2 �X2 þ :::::::::::::: þ �AiT �XT ≤;¼; ≥ð Þbi
8i ¼ 1; 2; ::::;m

⇒x1 þ x2 þ x3 þ x4≤5
x1 þ x2 � x3 � x4≤2

x1 þ x2 þ x3≥1

x1 � x2 þ x3 þ 2x4≤4

x1 þ 2x3 þ 2x4≤3

x4≤2

and �X1≥0; �X2≥0; :::::::::::; �XT ≥0

⇒x1≥0; x2≥0; x3≥0; x4≥0:

Solving the above programming problem using
nonlinear packages (as shown in Figure 3a,b), we obtain
solution x1 ¼ 0:4471; x2 ¼ 1:69105; x3 ¼ 0:0000; and
x4 ¼ 1:2764; λ ¼ 0:2845 ; and Z1 ¼ 3:42738; Z2 ¼
1:642437; and Z3 ¼ 0:7515643.

Model IIb: Find �X so as to minimize

λ ¼
XT
t¼1

D�
t1 þ

XT�1

t¼1

D�
t2 þ

XT�1

t¼1

�D�
t3

min λ ¼ D�
11 þ D�

21 þ D�
31

� �þ D�
12 þ D�

22 þ D�
32

� �
þ D�

1311 þ D�
2311 þ D�

1321 þ D�
1312 þ D�

2321 þ D�
1322

� �

subject to

μZt
Nt �Xð Þð Þ þ D�

t1≥1; t ¼ 1; 2; . . . ;T

⇒7x1 þ 3x2 � 4x3 þ 2x4 þ 23D�
11≥17

⇒x2 þ 3x3 þ 4x4 þ 9:5D�
21≥9:5

⇒2x1 þ x2 þ x3 þ x4 þ 4D�
31≥5

μZt
Dt �Xð Þð Þ þ D�

t2≥1; t ¼ 1; 2; . . . ;T

⇒x1 þ x2 þ x3 � 4D�
12≥1

⇒x1 þ x2 þ x3 � 4D�
22≤1

⇒x1 þ x2 þ x3 � 4D�
32≤1

μ�Xt
�Xtð Þ þ �D�

t3≥�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

�Xt � �XB
t � �p�t

� �
�p�t þ �D�

t31≥�I ;

�XB
t þ �pþt

� �
� �Xt

�pþt þ �D�
t32≥�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

⇒� 0:5x1 þ D�
1311≥� 1:1666

⇒� 0:5x1 þ D�
1321≥� 1:1666

⇒� 0:1555x2 þ D�
1312≥0

⇒� 0:1555x2 þ D�
1322≥0

⇒� x3 þ D�
2311≥0

⇒� x3 þ D�
2321≥0

D�
t1≥0; t ¼ 1; 2; . . . ;T

⇒D�
11≥0;D

�
21≥0;D

�
31≥0

D�
t2≥0; t ¼ 1; 2; . . . ;T

⇒D�
12≥0;D

�
22≥0;D

�
32≥0 �;D�

t3≥�0; t ¼ 1; 2; . . . ; T � 1ð Þ
⇒D�

1311≥0;D
�
1321≥0;D

�
1312≥0;

D�
1322≥0;D

�
2311≥0;D

�
2321≥0

�Ai1 �X1 þ �Ai2 �X2 þ :::::::::::::: þ �AiT �XT ≤;¼; ≥ð Þbi
8i ¼ 1; 2; ::::;m

⇒x1 þ x2 þ x3 þ x4≤5

x1 þ x2 � x3 � x4≤2

x1 þ x2 þ x3≥1

x1 � x2 þ x3 þ 2x4≤4

x1 þ 2x3 þ 2x4≤3

x4≤2 and �X1≥0; �X2≥0; :::::::::::; �XT ≥0

⇒x1≥0; x2≥0; x3≥0; x4≥0:

Solving the above FGP model problem using nonlinear
packages (as shown in Figure 4a,b), we obtain solution
x1 ¼ 1:0000, x2 ¼ 0:0000, x3 ¼ 0:0000, and x4 ¼ 1:0000;
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Z3 ¼ 0:7515643 (see Table 1 for a comparison of Euclidean
distance and Table 2 for the solution set of example 1).

Conclusion
An effort has been made to solve the multilevel fractional
programming problem based on the fuzzy set theory and
goal programming approach. The main advantage of the
proposed approach is that computational complexity is
reduced by defining separate membership functions for
numerator and denominator functions of objectives at each
level, but tolerance values (positive and negative) are chosen
so that the satisfying solution is forced towards the optimal
solutions. However, the main difficulties of these methods
are the following: (1) Preference information required from
the DM cannot easily be given, particularly when the
information thus required is large and complex and/or the
objective functions in fractional form are measured on
different scales, and (2) if DMs are not satisfied with
solution, then higher level DMs should provide new
tolerance limits for the control variables until a satisfying
solution is reached.
Besides this, the proposed methodology can be easily

reduced to the solution procedure as given by Sinha
(2003b) and Pramanik and Roy (2007) for the multilevel
linear programming case by avoiding the goal membership
functions for denominators of objectives and corresponding
goal variables.

Methods
Selection of compromise solution
The concept of utopia point (the ideal point) and the use
of distance function for group decision analysis was first
studied by Yu (1973). Biswas and Pal (2005) used the
Euclidean distance function to select the appropriate

priority structure in the application of fuzzy goal
programming technique to land use planning in the
agricultural system. Here, different FGP models provide
different optimal solutions. The Euclidean distance
function is used only to identify which FGP model
(model I, model IIa, and model IIb) offers a better
optimal solution. In the FGP formulation, since the
aspired level of each of the membership function goals is
unity, the point consisting of the highest membership
value of each of the goals would represent the ideal
point. The Euclidean distance function can be defined in
this case as follows:

D2 ¼
XT
t¼1

1� μZt
Nt �Xtð Þð �2 þ 1� μZt

Dt �Xtð Þð �2
h oh i1

2;=
	"

where μZt
Nt

�Xtð Þð and μZt
Dt

�Xtð Þð represent the achieved
membership value of the t-th numerator and denominator
objective goals, respectively. The solution for which D2 is
minimum would be the most satisfying solution.
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Table 1 Comparison of euclidean distance for the solution of example 1

Method x1; x2; x3; x4ð Þ Z1; Z2; Z3ð Þ μz1 N1 �Xð Þ; μz1 D1 �Xð Þ; μz2 N2 �Xð Þ; μz2 D2 �Xð Þ; μz3 N3 �Xð Þ; μz3 D3 �Xð Þð Þ������
Euclidean distance

Proposed
method I

(0.4471, 1.69105,
0.0000, 1.2764)

(3.42738, 1.642437,
0.7515643)

(0.7285, 0.7155, 0.7154, 0.7155, 0.7154, 0.7154) 0.6918

Proposed
method IIb

(1.0000, 0.0000,
0.0000,1.0000)

(4.5, 1.3333, 0.75) (0.6521, 1, 0.42105, 1, 0.5000, 1) 0.706163

Based on proposed FGP methods I and IIb.

Table 2 Solution set (for example 1) based on the tolerance on the decision variables for model

p�1 ; p
þ
1

� �
p�1 ; p

þ
1

� �
p�2 ; p

þ
2

� �
x1; x2; x3; x4; λð Þ Z1; Z2; Z3ð Þ

(−2, 2) (−6.43, 6.43) (−1, 1) (0.4471, 1.69105, 0.0000, 1.2764, 0.2845) (3.42738, 1.642437, 0.7515643)

(−2, 2) (−5.5, 5.5) (−1, 1) (0.46383, 1.623581, 0.0000, 1.268083, 0.295167) (3.450697, 1.638180, 0.7507402)

(−2, 2) (−5, 5) (−1, 1) (0.48427, 1.54088, 0.0000, 1.25786, 0.3081761) (3.480241, 1.632814, 0.7496851)

(−2, 2) (−4.5, 4.5) (−1, 1) (0.50655, 1.450743, 0.0000, 1.24672, 0.322355) (3.513862, 1.626774, 0.7485059)

(−2, 2) (−4, 4) (−1, 1) (0.5310345, 1.351724, 0.0000, 1.234481, 0.337931) (3.552630, 1.619892, 0.7471748)
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