
Arc
hive

 of
 S

ID

www.SID.ir

ORIGINAL PAPER Open Access

A hybrid algorithm optimization approach for
machine loading problem in flexible
manufacturing system
Vijay M Kumar1*, ANN Murthy2 and K Chandrashekara3

Abstract

The production planning problem of flexible manufacturing system (FMS) concerns with decisions that have to be
made before an FMS begins to produce parts according to a given production plan during an upcoming planning
horizon. The main aspect of production planning deals with machine loading problem in which selection of a subset of
jobs to be manufactured and assignment of their operations to the relevant machines are made. Such problems are
not only combinatorial optimization problems, but also happen to be non-deterministic polynomial-time-hard, making
it difficult to obtain satisfactory solutions using traditional optimization techniques. In this paper, an attempt has been
made to address the machine loading problem with objectives of minimization of system unbalance and maximization
of throughput simultaneously while satisfying the system constraints related to available machining time and tool slot
designing and using a meta-hybrid heuristic technique based on genetic algorithm and particle swarm optimization.
The results reported in this paper demonstrate the model efficiency and examine the performance of the system with
respect to measures such as throughput and system utilization.
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Background
In recent years, competitive market conditions coerce
manufacturing firms to enhance response times and
flexibility in all operations. Flexible manufacturing sys-
tems (FMSs) have been proved to respond this challenge
positively because of their ability to produce a variety of
parts using the same system in the shortest possible lead
time. According to Stecke (1983), FMS is characterized
as an integrated, computer-controlled, complex arrange-
ment of automated material handling devices and com-
puter numerically controlled (CNC) machine tools that
can simultaneously process medium-sized volumes of a
variety of part types. The highly integrated FMS offers
the opportunity to combine the efficiency of transfer line
and the flexibility of a job shop to best suit the batch
production of mid-volume and mid-variety of products.
However, flexibility has a cost, and the capital investment
sustained by firms to acquire such systems is generally

very high. Therefore, adequate planning of FMS during
its development phase is pivotal so as to evaluate the
performance of the system and justify the investment in-
curred. Prior to production, careful operational planning
is essential to establish how well the system interacts
with the operations over time. Hence, successful oper-
ation of FMS requires more intense planning as com-
pared to any conventional production system. The
decisions related to FMS operations can be broadly
divided into pre-release and post-release decisions. Pre-
release decisions include the FMS operational planning
problem that deals with the pre-arrangement of jobs and
tools before the processing begins, whereas post-release
decisions deal with the scheduling problems. Pre-release
decisions, viz machine grouping, part type selection, pro-
duction ratio determination, resource allocation, and load-
ing problems, must be solved while setting up an FMS.
Amongst pre-release decisions, machine loading is consid-
ered as one of the most vital production planning pro-
blems since operational effectiveness of FMS largely
depends on it. Loading problem, in particular, deals with
allocation of jobs to various machines under technological
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constraints with the objective of meeting certain perform-
ance measures. Therefore, the problem is combinatorial in
nature and happens to be non-deterministic polynomial-
time (NP)-hard.
Researchers recognized early on that not all problems

can be solved this quickly, and they had a hard time fig-
uring out exactly which ones could and which ones
could not. There are several so-called NP-hard problems,
which cannot be solved in polynomial time, even though
nobody can prove a super-polynomial lower bound.
A decision problem is a problem whose output is a

single Boolean value: YES or NO. There are three classes
of decision problems:

� P is the set of decision problems that can be solved
in polynomial time. Intuitively, P is the set of
problems that can be solved quickly.

� NP is the set of decision problems with the following
property: If the answer is YES, then there is a proof
of this fact that can be checked in polynomial time.
Intuitively, NP is the set of decision problems where
it can verify a YES answer quickly if we have the
solution for it.

� Co-NP is the opposite of NP. If the answer to a
problem in co-NP is NO, then there is a proof of
this fact that can be checked in polynomial time.

The induction of the model is NP. There is a set of m
input values that produces a TRUE output as a proof of
this fact; the proof can be checked by evaluating the
model in polynomial time.

Literature review
Formulations of loading problems in FMS and solution
techniques have drawn the attention of researchers for
quite some time. FMS planning problem was formulated
as nonlinear 0–1 mixed integer programming by Stecke
(1983), and subsequently, a branch-and-bound algorithm
was developed by Berrada and Stecke (1986). Although
analytical and mathematical programming-based methods
are robust in applications, yet they tend to become imprac-
tical when the problem size increases. This motivated the
researchers to develop fast and effective heuristics for solv-
ing loading problems in large-sized FMSs. One of the im-
portant heuristics based on the concept of essentiality
ratio for maximization of throughput and minimization of
system unbalance simultaneously was proposed by
Mukhopadhyay et al. (1992). Later on, Tiwari et al. (1997)
developed heuristics using fixed, predetermined job order-
ing rules as an input while solving loading problems.
Moreno and Ding (1993) solved the loading problem
using standard sequencing rules such as the shortest
processing time (SPT), longest processing time (LPT),
first in, first out (FIFO), and last in, first�out (LIFO) and

established that the SPT rule works well in comparison to
other rules. The major limitation of heuristics lies in the
fact that their inability to estimate the results in a new or
completely changed environment as they are generally
rule-based and mostly rely on empirical data. Therefore,
numerous researchers have used meta-heuristic approaches
for solving the machine loading problem. Usually, FMS
loading problem seeks a solution that optimizes multiple
objectives simultaneously. In this regard, Kumar and
Shanker (2000), Tiwari and Vidyarthi (2000), and
Swamkar and Tiwari (2004) have addressed a machine
loading problem having the bi-criterion objectives of
minimizing system unbalance and maximizing the
throughput using a hybrid algorithm based on Tabu
search and simulated annealing (SA). Genetic algorithm
(GA)-based approaches for loading problems is found
to ensure an optimal solution with less computational
effort (Tiwari et al. 2007).
Since the objective of this paper is to propose an effi-

cient evolutionary search heuristic to solve problems per-
taining to job selection and machine loading in random
FMS to optimize the system imbalance and throughput
simultaneously, only the relevant literature are reviewed
in this section. Tiwari and Vidyarthi (2000) proposed a
GA-based heuristic to solve the machine loading problem
of a random-type FMS. The proposed GA-based heuristic
determines the part-type sequence and the operation-
machine allocation that guarantee the optimal solution
to the problem, rather than using fixed, predetermined
part sequencing rules. Swarnkar and Tiwari (Swamkar
and Tiwari 2004) proposed a generic 0–1 integer pro-
gramming formulation and a hybrid algorithm based on
Tabu search, and SA is employed to solve the problem.
Prakash et al. (Prakash et al. 2008) proposed a special
immune algorithm (IA) named ‘modified immune algo-
rithm.’ This method is capable of learning and memory
acquisition, improves some issues inherent in existing
IAs, and proposes a more effective IA with reduced
memory requirements and reduced computational com-
plexity. Chan et al. (2005) proposed a fuzzy goal pro-
gramming approach to model the machine tool
selection and operation allocation problem of FMSs.
The model is optimized using an approach based on
artificial immune systems, and the results of the com-
putational experiments are reported. Tripathi et al.
(2005) proposed a multi-agent-based approach for solv-
ing the part allocation problems in FMSs that can easily
cope with the dynamic environment. Kumar et al.
(2006) extended the simple GA and proposed a new
methodology, a constraint-based GA to handle a com-
plex variety of variables and constraints in a typical
FMS loading problem. Yogeswaran et al. (2008, in
press) proposed a hybrid algorithm using genetic algo-
rithm and simulated annealing algorithm for their
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problem. They also proposed efficient machine loading
heuristics. The machine loading problem of an FMS is well
known for its complexity. This problem encompasses
various types of flexibility aspects pertaining to part se-
lection and operation assignments along with con-
straints ranging from simple algebraic to potentially
very complex conditional constraints. In this paper, a
hybrid optimization algorithm involving GA and par-
ticle swarm optimization (PSO) is proposed to solve
this problem. The literature survey clearly supports the
proposal of an efficient heuristic to this problem. Be-
sides that, the justification to adopt PSO is mainly due
to its performance in solving scheduling problems.
The FMS under consideration in this paper consists of

a number of multifunctional CNC machines, tools with
the potential to execute several operations. The jobs are
available in batches and arrive in random sequences with
different requirements for processing. The batch size,
number of operations, processing time, and number of
tool slots needed for each job are known initially. There
are two types of operations accessible for a job, namely
essential operation - the job can be performed only in a
particular machine - and optional operation - the job
can be performed in a number of machines available,
which gives the flexibility in the routing of the jobs. The
FMS considered has a maximum of six multifunctional
machines with each having 960 min of available proces-
sing time (8 h= one shift) and six tool slots.
Numerous methods based on mathematics, heuristics,

and meta-heuristics have been suggested by the researchers
in the pursuit of obtaining quality solutions to loading
problems and reducing computational burden. How-
ever, these approaches are hardly capable of producing
optimal/near optimal solutions or require excessive
computational efforts to arrive at quality solutions. In
order to alleviate these difficulties, an attempt has been
made in this paper to propose a multi-objective meta-
heuristic technique based on a hybrid algorithm using
genetic and particle swarm optimization (HAO) to
solve the machine loading problem of a random FMS
with the objective of minimization of system unbalance
and maximization of throughput while satisfying the
constraints related to available machining time and tool
slots. However, GA has an inherent drawback of trap-
ping at local optimum due to appreciable reduction in
velocity values as iteration proceeds and hence reduces
solution variety. This drawback has been addressed ef-
fectively by incorporating mutation, a commonly used
operator in GA, to improve the solution quality.
The remainder of this paper is organized as follows:

the ‘Problem description’ section formally defines the
problem studied in this paper along with the objectives
and assumptions made to solve the problem. In the
‘Results and discussion’ section, results of benchmark

problems from the open literature are compared with
those from the proposed method to illustrate its advan-
tage over other methods. Conclusions drawn from this
study are summarized and direction for future research
is outlined in the ‘Conclusions’ section. Finally, the pro-
posed hybrid algorithm based on genetic algorithm
optimization (GAO) and PSO is presented in the ‘Methods’
section.

Problem description
The loading problem in manufacturing deals with select-
ing a subset of jobs from a set of all the jobs to be manu-
factured and assigning their operations to the relevant
machines in a given planning horizon with the techno-
logical constraints in order to meet certain performance
measures such as minimization of system unbalance and
maximization of throughput. System unbalance can be
defined as the sum of unutilized or over-utilized times
on all the machines available in the system, whereas
throughput refers to the summation of the batch size of
the jobs that are to be produced during a planning hori-
zon. Minimization of system unbalance is equivalent to
maximization of machine utilization. The processing
time and tool slots required for each operation of the job
and its batch size are known beforehand. There are two
types of operations associated with the part types: essen-
tial and optional. Essential operations can be carried out
on a particular machine using a certain number of tool
slots, while the optional operation can be performed on
a number of machines with the same or different proces-
sing time and tool slots. The FMS under consideration
derives its flexibility in the selection of a machine for op-
tional operation of the job. Generally, the complexity of
these problems depends on whether the FMS is of a
dedicated type or a random type. A dedicated FMS is
designed to produce a rather small family of similar parts
with a known and limited variety of processing require-
ments, while in a random-type system, a large family of
parts having a wide range of characteristics with random
elements is produced and the product mix is not com-
pletely defined at the time of installing the system. This
paper addresses the loading problem in a random FMS.
The proposed approach has been tested on problems
pertaining to three sizes of FMSs (the details are given in
Table 1). The details of data related to problem l of FMS
type l (jobs, batch size, unit processing time, machine

Table 1 Details of different FMS scenarios

FMS
type

Number
of machines

Available time on
each machine (min)

Number of tool slots
on each machine

FMS 1 4 480, 480, 480, 480 5, 5, 5,5

FMS 2 5 960, 960, 960, 960, 960 10, l2, 10, 12, 10

FMS 3 6 960, 960, 960, 960, 960, 960 14,14,14,14, 14,16
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options, number of tool slots, etc.) having four machines
are given in Table 2.
In order to minimize the complexities in analyzing the

problem for a practical FMS as depicted in Figure 1, the
mathematical model is based on the following assumptions:

� Initially, all the jobs and machines are
simultaneously available.

� Processing time required to complete an entire job
order is known a priori.

� Job undertaken for processing is to be completed
for all its operation before considering a new job.
This is called non-splitting of the job.

� Operation of a job, once started on a machine, is
continued until it is completed.

� Transportation time required to move a job between
machines is negligible.

� Sharing and duplication of tool slots is not allowed.

Objectives
The overall objective function is represented as:
Maximize ′F′ ¼ F1 þ F2

PM F ¼ m ¼ 1
PJ j ¼ 1

POj o ¼ 1 BjPjomXjomPM m ¼ 1Tm

þ
P J

j¼1 BjXjP J
j¼1 Bj

;

ð1Þ

where F1 indicates minimization of system imbalance
which is equivalent to maximizing the system utilization,
and F2 indicates the maximization of throughput which
is equivalent to maximizing the system efficiency.

Constraints

XM
m ¼ 1

XOj
j ¼ 1BjPjomXjom≤Tm; ð2Þ

where m ¼ 1; 2; . . . ;M ensures that overloading of
machines is not permitted.

X
J¼1

X
joG≤1; ð3Þ

where J ¼ 1; 2; . . . ; J and o ¼ 1; 2; . . . ;Oj ensure that a
particular operation of a job is done only on one machine,
and m ¼ 1; 2; . . . ;M ensures that the jobs will be loaded
only when there is availability of tool slots on each machine.

XOj
o ¼ 1

XM
m ¼ 1 Xjom ¼ XjOj; ð4Þ

where j ¼ 1; 2; . . . ; J ensures that the job cannot be split.

Results and discussion
The proposed HAO algorithm for the FMS loading prob-
lem is coded in Visual C++ and implemented in a Pen-
tium IV PC. The performance of the HAO algorithms is
evaluated using ten benchmark problems available in the
open literature representing three different FMS scenar-
ios. In solving the problems, parameters are set as

Table 2 Detailed description of jobs of problem number 1 (FMS 1)

Job number Batch size Operation number Machine number Unit processing time (min) Tool slots needed Total processing time

1 10 1 4 16 1 160

2 4, 2, 3 7, 7, 7 1, 1, 1 70

2 13 1 12, 3 25 1 325

2 2,1 17 1 221

3 1 24 1 312

3 14 1 4, 1 25, 26 2, 2 364

2 3 11 3 154

4 7 1 3 24 1 168

2 4 19 1 133

5 9 1 1, 4 25 1 255

2 4 25 1 255

3 2 22 1 198

6 8 1 3 20 1 160

7 9 1 2, 3 22, 22 2, 2 198

2 2 25 1 225
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population size = 50, w= 0.85, α= 0.9, and c1 = c2= 2 after
a thorough examination of the results.
One of the drawbacks of HAO is its premature conver-

gence. In order to alleviate such difficulties and improve so-
lution quality, the mutation operator is adopted from the
genetic algorithm. The results of the proposed HAO with
mutation (HAOM) are compared with those of the stand-
ard HAO, and four standard sequencing rules such as LPT,
SPT, FIFO, and LIFO are shown in Table 3. The results are
also tabulated for exact solutions using LINDO software
for the same data sets. The results indicate that HAOM
improves the solution quality and outperforms other tech-
niques in most of the instances. The combined objective of
both HAO and HAOM is summarized in Table 4. The last
column of Table 4 shows the percentage improvement of
HAOM over HAO. The result indicates that the maximum
improvement of 4.83 can be made using HAOM.
Figure 2 illustrates the convergence behavior of the

HAOM. It can be observed from the figure that the algo-
rithm can achieve the optimal solution after 33 iterations
for problem number 7 because no further improvement
is observed beyond 33 iterations.

Conclusions
This paper presents an efficient and reliable meta-
heuristic-based approach to solve the FMS loading
problem. The designed and proposed algorithm based
on HAO defined the trade-off regions between the
two objectives. Extensive computational experiments
have been conducted on different benchmark

problems to show the effectiveness of the proposed
approach. A comparative study has been carried out
for the same problem with similar objective functions
and constraints, and the computational experience
manifests that the proposed meta-heuristic approach
based on HAO outperforms the existing methodolo-
gies as far as the solution quality is concerned with
reasonable computational efforts. To avoid premature
convergence, HAO algorithm is modified in this paper
with the introduction of mutation operation. The per-
formance of this algorithm is compared with that of
the standard HAO, and the percentage improvement
of up to 4.83 is possible using HAOM over HAO.
It is clear from this research that the machine load-

ing problem can be solved using a hybrid algorithm-
based heuristic that can tackle the problem in a syn-
ergistic way. By combining effective GAO and PSO,
resource allocation can be done efficiently. This re-
search had also highlighted the efficiency of the
HAOM in the optimization process. The HAOM
reduced the time to reach the best fitness value by a
considerate amount in most cases. The results pre-
sented in Table 5 clearly show that the HAOM algo-
rithm is comparable to the better performing
algorithms reported in the literature and it obtains
the best results obtained so far at a faster rate. The
future work is to fine-tune the parameters of GAO
and PSO. In the future, the study can be extended to
solve the loading problem by considering more realis-
tic variables and constraints such as availability of

Figure 1 Layout of FMS. F-1: FMS type with a number of machines equal to four. F-2: FMS type with a number of machines equal to five. F-3:
FMS type with a number of machines equal to six.
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pallets, jigs, fixtures, AGVs, etc. in addition to tool
slots and machining time.

Methods
Genetic algorithms
GAs are evolutionary programs and adaptive search and
optimization algorithms based on the mechanics of nat-
ural selection and natural genetics. These are robust in
complex search spaces and are versatile in their applica-
tion. GA is a search and optimization technique operated
on Darwin's principle of the ‘survival of the fittest,’ where
weak individuals die before reproducing, while stronger
ones survive, bear many offspring, and breed children,
which often inherit qualities that are, in many cases,

superior to their parents' qualities. GA evolves with a
population of strings created randomly. Each string is
evaluated in the population. There are three main GA
operators: reproduction, crossover, and mutation. The
reproduction is an operator in which the individual
strings are copied according to their objective values
which results in more highly fit individuals and less
weak individuals in the intermediate mating pool. The
reproduction operator is followed by the crossover op-
erator which is done in two steps: First, the members of
the mating pool are mated at random. Second, each pair
of mating individuals undergoes crossover with respect
to one or more crossing sites in which portions of the
strings are interchanged between pairs. The mechanics
of reproduction and crossover, though, seem to be sim-
ple; the combined action provides the GA with much of itsTable 4 Comparison of combined objective obtained

using HAO and HAOM

Problem
number

Number of
part types

HAO HAOM % Importance
of HAOM over HGAO

1 7 1.275 1.275 0.00

2 6 1.581 1.581 0.00

3 6 1.410 1.410 0.00

4 8 1.877 1.882 0.26

5 6 1.645 1.645 0.00

6 5 1.611 1.611 0.00

7 10 1.715 1.776 3.43

8 12 1.696 1.772 1.51

9 8 1.901 1.901 0.00

10 14 1.516 1.593 4.83

Table 3 Summary of results

Problem
number

Number of
part types

SPT
(SU; TH)

LPT
(SU; TH)

LIFO
(SU; TH)

FIFO
(SU; TH)

Hybrid algorithm
(SU; TH)

HAOM
(SU; TH)

Branch-and-bound
technique using LINDO software

1 7 929; 65 814; 62 459; 36 871; 81 459; 66 449; 65 440; 66

2 6 804; 47 619; 52 467; 62 650; 50 323; 53 313; 51 310; 48

3 6 819; 51 659; 51 819; 51 681; 51 319; 51 314; 51 310; 48

4 8 1,122; 86 950; 81 1,662; 107 932; 86 590; 75 566; 77 555; 71

5 6 896; 54 689; 56 1,398; 110 654; 54 304; 54 301; 56 299; 58

6 5 608; 42 584; 40 2,640; 42 584; 45 296; 46 286; 48 285; 46

7 10 1,388; 92 1,106; 101 1,007; 106 1,118; 80 601; 82 589; 89 585; 82

8 12 1,417; 98 948; 142 707; 127 1,245; 132 790; 115 766; 116 765; 118

9 8 1,154; 87 990; 85 1,699; 88 940; 88 589; 72 569; 78 566; 71

10 14 1,532; 110 1,459; 158 928; 112 1,218; 144 871; 128 845; 136 841; 131

11 6 876; 55 685; 54 1,385; 98 651; 51 301; 52 300; 51 300; 57

12 8 1,110; 84 948; 78 1,658; 101 938; 85 791; 114 764; 114 762; 115

13 10 1,310; 89 1,110; 99 1,001; 102 1,115; 81 602; 83 588; 88 588; 84

14 12 1,410; 95 942; 140 701; 122 1,240; 130 792; 116 762; 114 762; 115

15 14 1,512; 112 1,448; 148 921; 110 1,210; 142 867; 125 841; 131 839; 129

Obtained using different sequencing rules, HAOM, and branch-and-bound technique using the LINDO software for system unbalance (SU) and throughput (TH).
SPT, shortest processing time; LPT, longest processing time; LIFO, last in, first�out; FIFO, first in, first out; HAOM, hybrid algorithm with mutation.

Figure 2 Convergence curve for HAOM.
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searching power. Mutation plays a secondary role in the
GA and tries to ensure potential solutions (individuals).
The other operator's reproduction and crossover provide
solution convergence, avoiding local optima. The resulting
new population is then further evaluated and tested for
termination. The termination criteria are designed based
on the available response time within which the solution is
to be obtained or based on an expected performance level.
If the termination criteria are not met, the new population
is again produced by the above three genetic operators and
evaluated. This procedure is continued and repeated until
the termination criteria are met.

Coding
If the binary coding system is considered for making up
chromosomes directly, then the digit of the chromosome
chain will reach n×m, and the genes will not be inde-
pendent of each other. This coding system sets the line
number of the element valued 1 in each row of matrix X
as genes. A natural number is adopted to code the genes
since they are independent with each other. The gene
code k1; k2; . . . ; kj; . . . ; kn , where kjЄ [1;m], is a repeat-
able positive integer. The gene code is also the number
of the machine on which every job is processed; hence,
the method is named as genetic algorithm based on the
machine code.

Select initial population
Firstly, generate N positive integer-coded n-digit
chromosome chains randomly, and set them as the initial
population.
Calculate x(i,j)

8j 2 1; n½ �and i 2 1;m½ �; if kj ¼ i; then x i; jð Þ
¼ 1;else x i; jð Þ ¼ 0: ð5Þ

Reproduce
The fitness function is obtained by means of transform-
ing the objective function, i.e.,

letF ið Þ ¼ αexp �βG ið Þð Þ; ð6Þ
where α and β are positive real numbers, and the selec-
tion tactics is roulette wheel selection. Assume that P(i)
is the selection probability of individual i, then

P ið Þ ¼ F ið Þ
Pn
j¼1

F kð Þ
;where i ¼ 1; 2; . . . ;N : ð7Þ

Let S(0)=0, then

S ið Þ ¼ P 1ð Þ þ P 2ð Þ þ . . .þ P ið Þ;where i
¼ 1; 2; . . . ;N : ð8Þ

Generate N random real numbers ζs which are uni-
formly distributed between 0 and 1, that is,

ζs 2 U 0; 1ð Þ;where s ¼ 1; 2; . . . ;N : ð9Þ
If S i� 1ð Þ < ζs < S ið Þ, therefore, individual i is sent to

the . The objective function is as follows:

G ið Þ ¼ max
X

x 1; jð Þt jð Þ; . . . ;
X

x k; jð Þt jð Þ; . . . ;
X

x m; jð Þt jð Þ
h i

:

ð10Þ

Crossover
The crossover is carried with the combination of two
genes in proper order. The coding method used in this
paper makes the crossover completely independent of
the genes between each other; if kj (1,m), the crossover
method could adopt a common two-point crossover
whose advantages include making message exchange be-
tween genes more abundant and obtaining the best solu-
tion quickly. Consider a crossover between individuals A
and B, randomly select two positions from the chromo-
some chain, and exchange the chromosome between two
positions, thereby generating two child chromosome
chains.
The crossover is as follows:

A1 A2j jA3XB1 B2j jB3⇒A1 B2j jA3;B1 A2j jB3;
where the symbol | represents the position of the cross-
over point selected randomly, and signal X represents
the crossover operation.

Mutation
First, generate a one-digit positive integer, kjЄ [1; m],
randomly, then replace the old one when mutating. If
kj is equal to the old one, then select a new positive in-
teger again until they are different; the efficiency of
the mutation could be greatly improved using the

Table 5 Performance comparison between HAO and
HAOM with respect to computation time

Data
set

Number of
part types

CPU computation
time for HAO (s)

CPU computation
time for HAOM (s)

1 7 1.627 1.426

2 6 1.423 1.420

3 6 1.428 1.410

4 8 1.781 1.666

5 6 1.424 1.410

6 5 1.395 1.390

7 10 1.923 1.788

8 12 2.122 2.010

9 8 1.788 1.688

10 14 2.315 2.210

CPU, central processing unit; HAO, hybrid algorithm optimization; HAOM, HAO
with mutation.
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method. The optimization procedure is explained in
Figure 3.

Particle swarm optimization
PSO is a population-based, bio-inspired optimization
method. It was originally inspired in the way crowds of
individuals move towards predefined objectives, but it is
better viewed using a social metaphor. Individuals in the
population try to move towards the fittest position
known to them and to their informants, that is, the set
of individuals of their social circle. The objective is to
maximize a fitness function. The structure of the pro-
posed PSO algorithm is as follows:

t! 0;
for (k = 1, N)

Generate Pk
t ;

Evaluate Z Pk
t ;

e Pk
t !Pk

t

Gt!P having max {Z (e Pk
t ), k 1, N}

for (k = 1,N)
Initialize vk

t

//iterative improvement process
do {

for (k = 1,N)
update Position Pk

t+1

update velocity vk
t+1

Apply local search on all particle positions;
Evaluate all particles;
update e Pk

t and Gt+1 , (k = 1,N);
t! t +1 ;
}( ) while t< tmax

Output Gt

Solution representation
One of the most important issues when designing the
HAO lies on its solution representation. In order to
construct a direct relationship between the problem
domain and the HAO chromosomes for the FMS
loading problem, a number of dimensions for n num-
ber of jobs are considered. In other words, each di-
mension represents a typical job. In addition, the
chromosome X t

i ¼ xt1i;x
t
2i; . . . ; x

t
in

� �
corresponds to the

continuous position values for n number of jobs in
the loading problem. The particle itself does not
present a permutation. Instead, we use the smallest
position value (SPV) rule to determine the sequence
implied by the position values xtij of particle Xt

i .

Table 6 illustrates the solution representation of par-
ticle Xt

i for the FMS loading problem together with
its corresponding velocity and sequence. According to
the SPV rule, the SPV is xtil ¼ 0:11, so the dimension
j ¼ 1 is assigned to the first job xtil ¼ 4 in the se-
quence; the second SPV is xti2 ¼ 0:57 , so the dimen-
sion j ¼ 2 is assigned to be the second job xti2 ¼ 6 in

Figure 3 Genetic algorithm for scheduling procedure.

Table 6 Solution representation of chromosome xti in HAO

Dimension j xti vtij Job sequence

1 1.67 2.98 4

2 2.82 −0.87 6

3 1.23 1.51 7

4 0.11 −3.54 3

5 3.47 0.45 1

6 0.57 2.32 2

7 0.98 −1.50 5
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the sequence; and so on. In other words, dimensions are
sorted according to the SPV rule, i.e., according to the pos-
ition values xtij to construct the initial sequence.

Lack of diversity and mutation operator
HAO schemes described above typically converge rela-
tively rapidly in the first part of the search and then
slows down or stops. This behavior has been attributed
to the loss of diversity in the population, and a number
of researchers have suggested methods to overcome this
drawback with varying degrees of success.
As mutation is capable of introducing diversity in the

search procedure, two types of mutation have attracted
the researchers - mutation of global best and mutation
based on sharing information from neighbors. Because
the global best individual attracts all members of the
swarm, it is possible to lead the swarm away from a
current location by mutating a single individual if the
mutated individual becomes the new global best. This
mechanism potentially provides a means of both escap-
ing local optima and speeding up the search. Looking at
the individual components of solution vectors corre-
sponding to the global best function values revealed that
it was often only a few components which had not con-
verged to their global optimum values. This suggested
the possibility of mutating a single component only of a
solution vector. The latter approach introduces diversity
by mutating few individuals in the swarm.
In this work, a mutation operator is introduced which

mutates position vectors of few particles selected randomly.
The mutation operation is not executed in every iteration.
HAO algorithm with mutation operation is as follows:
// t: time //
// P: populations // n A
// DELTA: the elapsed time of no further
progress //
// MAXT: maximum time of no further
progress // "
t = 0
Initialize P (t)
Evaluate P (t)
While (not—termination—conditi0n) do
t = t + 1
Update swarm according to formulae (ll) and (l2)
If (DELTA>Randi (0, MAXT)
Do mutation
End if
Evaluate the swarm
End

Proposed algorithm
The following are the steps of the proposed algorithm:
Step 1. Input the total number of available machines,

jobs, batch size, tool slots on each machine operation of

all the jobs (both essential and optional), and processing
time of every operation of each job.
Step 2. Initialize the parameters. Generate initial popu-

lation randomly. Construct the initial position values of
the particle uniformly: xtij ¼ xmin þ xmax � xminð Þ �
U 0; lð Þ , where xmin ¼ 0:0 , xmax ¼ 4:0 , and U(0, 1) is a
uniform random number between 0 and l. Generate ini-
tial velocities of the particle vtij ¼ vmin þ vmax � vminð Þ �
U 0; 1ð Þ , where vmin ¼ �4:0, vmax ¼ 4:0, and U(0, l) is a
uniform random number between 0 and l.
Step 3. Get the initial sequence by using the SPV rule.

Then, select the first job from that sequence, and do the
following:
a. First, load the essential operation on the machine if

and only if the available machining time is greater than the
time required by the essential operation; otherwise, reject
the job.
b. Similarly load the optional operation if and only if

the available machining time and tool slot is greater than
the time and tool slot required by the optional operation
on the basis of the machine having the maximum avail-
able time; otherwise, reject the job.
Step 4. Evaluate each particle fitness value, i.e., the ob-

jective function.
Step 5. Find out the personal best (pbest) and global

best (gbest).
Step 6. If no progress in the pbest value is observed for

an elapsed period of DELTA, carry out the mutation of a
particle using the mutation strategy as outlined in the
‘Particle swarm optimization’ section provided that
DELTA is greater at random number between zero and
maximum time of no progress (MAXT).
Step 7. Update velocity, position, and inertia weight.
Step 8. Compute particle fitness similar to step 3, and

find a new pbest and gbest.
Step 9. Terminate if the maximum number of itera-

tions is reached, and store the gbest value; otherwise, go
to step 2.

Abbreviations
Notations used for defining the objective function
J, job index, j= l, 2,. . .,J; M, machine index, m= 1, 2,. . .,
M; Sm, tool slot capacity of machine m; O, number of
operations for job j, o= l, 2,. . .,Oj; Bj, batch size of job j;
Tm, length of scheduling period for the mth machine;
Pjom, processing time of operation o of job j on machine
m; Sjom, number of tool slots required for processing op-
eration 0 of job i on machine m; B(j,o), set of machines
on which operation o of job j can be performed.

Variables used for defining the objective function
SU, system unbalance V; TH, throughput ({l, if operation
0 of job j is assigned on machine m).
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Parameters used for defining the objective function
Xjom = {0, otherwise; Xj = {1, if job is selected; {0, otherwise.
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