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Abstract

A very useful multi-objective technique is goal programming. There are many methodologies of goal
programming such as weighted goal programming, min-max goal programming, and lexicographic
goal programming. In this paper, weighted goal programming is reformulated as goal programming
with logarithmic deviation variables. Here, a comparison of the proposed method and goal program-
ming with weighted sum method is presented. A numerical example and applications on two industrial
problems have also enriched this paper.
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Background

The earliest goal programming formulation was introduced by Charnes et al. (1955). Later, Charnes and
Cooper (1977), Ijiri (1965), Lee (1972), and Ignizio (1976) are the contributors of goal programming for
which goal programming became a useful tool in multi-criteria decision-making (MCDM) problem. The
updated presentations of goal programming have been discussed by Tamiz et al. (1998), Lee and Olson
(2000), Jones and Tamiz (2002), and Ignizio and Romero (2003). Methodologies of goal programming
such as weighted goal programming, min-max goal programming, lexicographic goal programming
have been discussed in the study of Romero (2004). Except for these three methods, another method,
the logarithmic goal programming, is introduced (Wang et al. 2005).

Our proposed method is goal geometric programming with logarithmic deviational variables. In goal
programming formulation with logarithmic deviational variables, we use geometric programming for
solving because there are lots of real-life situations and many engineering applications where equations
may be nonlinear. For a special type of nonlinear programming problem, geometric programming is a
very useful tool. Since we use geometric programming method to solve a nonlinear goal programming
problem, therefore, the degree of difficulty has a great role in this context. The degree of difficulty of
the proposed method is lesser than that of other methods such as goal geometric programming using
weighted sum method.
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The concept of taking multiplicative deviational variables as an objective function is not new. Previously,
Verma (1990) and a paper entitled ‘Goal geometric programming problem (G2P 2) with product method’
by Ghosh and Roy (2012) used this concept. In this paper, we have started with additive deviational
variables as the objective function which were then converted into multiplicative deviational variables
as objective function using the logarithmic concept. The method of conversion is given in the form of
‘Result 1’.

The arrangement of the paper is as follows: the background of the study followed by the goal program-
ming model are presented. A result is presented together with its proof (Result 1), and the model of
weighted goal programming with logarithmic deviational variables is then presented. The sections for
goal geometric programming model with logarithmic deviational variables and its solution procedure
are followed by a theorem on the model of weighted goal programming with logarithmic deviational
variables and its proof (Result 2). Next, a numerical example and applications on lightly loaded bear-
ing problem, optimal production, and marketing planning are presented. Finally, the conclusions of the
study is presented.

Goal programming

A multi-objective programming can be written as follows:

Find X = (x1, x2, ..., xn)
T (1)

so as to minimize f10(X) =
∑P10

i=1C10i
∏

n
k=1x

akoi
k

with target C10,

minimize f20(X) =
∑P20

i=1C20i
∏

n
k=1x

akoi
k

with target C20,

minimize fm0(X) =
∑Pm0

i=1 Cm0i
∏

n
k=1x

akoi
k

with target Cm0,

subject to fr(X) =
∑Pr

i=1Cri
∏

n
k=1x

aki
k ≤ Cr; r = 1, 2, ..., q

xk > 0; k = 1, 2, ..., n.

Cj0i and Cri are positive real numbers ∀ j, r, i, and ak0i, aki are real numbers ∀ k, i.

Pj0 = Number of terms present in j0th objective function,

Pr = Number of terms present in rth constraint,

Cr = Boundary value of rth constraint,

The multi-objective programming model contains m, the number of minimizing objective functions; q,
the number of inequality type constraints; and n, the number of strictly positive decision variables.

Result 1. As mentioned, the goal programming model may be reduced to the following form:

Minimize
m∏
j=1

u+j0

q∏
r=1

v+r

subject to
fj0(X)/u+j0 ≤ Cj0, j = 1, 2, ..., m,

fr(X)/v+r ≤ Cr, r = 1, 2, ..., q,

xk > 0, k = 1, 2, ..., n;u+j0, v
+
r > 1,

with the conditions
fj0(X) > 0, Cj0 > 0, Cr > 0.
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Proof. In the multi-objective programming model (1), objective functions are minimized and have tar-
get values, e.g., minimize fj0(X) with target value Cj0, i.e., minimize log(fj0(X)) with target value
log(Cj0).

According to the method of goal formulation, positive deviation should be minimized. Similarly, in
model (1), constraints are of ≤ type. Thus, positive deviations should also be minimized. Therefore,
when

fr(X) ≤ Cr ,

then
log(fr(X)) ≤ log(Cr).

The goal formulation is as follows:

Minimize
m∑
j=1

d+j0 +

q∑
r=1

d+r (2)

subject to
log(fj0(X)) + d+j0 − d−j0 = log(Cj0); j = 1, 2, ..., m,

log(fr(X)) + d+r − d−r = log(Cr); r = 1, 2, ..., q,

xk > 0, k = 1, 2, ..., n d+j0, d
−
j0, d

+
r , d

−
r > 0,

d+j0 × d−j0 = 0; d+r × d−r = 0.

d+j0 = Positive deviation of objective function,

d−j0 = Negative deviation of objective function,

d+r = Positive deviation of constraint,

d−r = Negative deviation of constraint.

However, with a logarithmic change of deviational variables d+j0 = log(u+j0), d
−
j0 = log(u−j0),

d+r = log(v+r ), d
−
r = log(v−r ), we can turn model (2) into the following problem:

Minimize

log

m∏
j=1

u+j0

q∏
r=1

v+r

 (3)

subject to
log(fj0(X) · u−j0/u

+
j0) = log(Cj0), j = 1, 2, ..., m,

log(fr(X) · v−r /v+r ) = log(Cr), r = 1, 2, ..., q,

xk > 0, k = 1, 2, ..., n;u+j0, u
−
j0, v

+
r , v

−
r > 1,

which is obviously equivalent to the following goal programming form with logarithmic deviational
variables:

Minimize
m∏
j=1

u+j0

q∏
r=1

v+r (4)

subject to
fj0(X) · u−j0/u

+
j0 = Cj0, j = 1, 2, ..., m,

fr(X) · v−r /v+r = Cr, r = 1, 2, ..., q,
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xk > 0, k = 1, 2, ..., n;u+j0, u
−
j0, v

+
r , v

−
r > 1.

The goal programming formulation where the constraints are in inequality form the following:

Minimize
∏m

j=1 u
+
j0

∏q
r=1 v

+
r (5)

subject to
fj0(X)/u+j0 ≤ Cj0, j = 1, 2, ..., m,

fr(X)/v+r ≤ Cr, r = 1, 2, ..., q,

xk > 0, k = 1, 2, ..., n;u+j0, v
+
r > 1,

hence the result.

Results and discussion

Weighted goal programming with logarithmic deviational variables

According to model (1), all of the objective functions are minimized. If the decision maker wants
to get a much more minimized value for any particular objective function or wants to satisfy strictly
the constraints, then weight factors (priorities) are introduced. In goal programming formulation with
logarithmic deviational variables, weights (priorities) are given with the deviational variable. Hence, the
weighted goal programming formulation becomes the following:

Minimize
∏m

j=1(u
+
j0)

Wj0
∏q

r=1(v
+
r )

Wr (6)

subject to
fj0(X)/u+j0 ≤ Cj0, j = 1, 2, ..., m,

fr(X)/v+r ≤ Cr, r = 1, 2, ..., q,

xk > 0, k = 1, 2, ..., n;u+j0, v
+
r > 1.

Here, Wj0 values are the weights for objective functions and Wr values are the weights for the con-
straints.

Solutions of goal programming (Romero 1991), even those of weighted goal programming and lexico-
graphic goal programming (Miettinen 1999), are pareto optimal. Here, we prove a result which also
shows that goal programming with logarithmic deviation gives pareto optimal solutions.

Result 2. The following is the solution of weighted goal programming with logarithmic deviation:

Minimize
∏k

i=1(u
+
i )

wi

subject to
(
∑p

r=1Cmr
∏n

l=1 x
alr
l )i(u

+
i )

−1 ≤ Ci, i = 1, 2, ..., k,

X ∈ S, u+i > 1, i = 1, 2, ..., k,

which comes from the following goal programming model:

Minimize fi(X) = (
∑P

r=1Cmr
∏

n
l=1x

alr
l )i with target Ci,
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i = 1, 2, ..., k; X ∈ S

is pareto optimal if u+i for each function fi(X) to be minimized has a value greater than 1
at the optimum.

Proof. If x∗ ∈ S with a positive deviation vector, then let (u+i )
∗ (> 1) be the solution of the following

weighted goal programming problem:

Minimize
∏k

i=1(u
+
i )

wi (7)

subject to
(
∑p

r=1Cmr
∏n

l=1 x
alr
l )i(u

+
i )

−1 ≤ Ci, i = 1, 2, ..., k,

X ∈ S, u+i > 1, i = 1, 2, ..., k.

If possible, let x∗ be not pareto optimal, then there exists a vector x0 with a positive deviational variable
(u+i )

0(> 1) such that

(
p∑

r=1

Cmr

n∏
l=1

(x0l )
alr

)
i

≤

(
p∑

r=1

Cmr

n∏
l=1

(x∗l )
alr

)
i

; ∀ i = 1, 2, ..., k (7.1)

and (
p∑

r=1

Cmr

n∏
l=1

(x0l )
alr

)
j

<

(
p∑

r=1

Cmr

n∏
l=1

(x∗l )
alr

)
j

; for at least one j. (7.2)

or
(
∑p

r=1Cmr
∏n

l=1(x
∗
l )

alr)j(∑p
r=1Cmr

∏n
l=1(x

0
l )

alr
)
j

> 1.

Let
(
∑p

r=1Cmr
∏n

l=1(x
∗
l )

alr)j

(
∑p

r=1Cmr
∏n

l=1(x
0
l )

alr)j
= β > 1. (7.3)

We set
(u+i )

0 = (u+i )
∗ ( > 1 ) for i = 1, 2, ..., k (7.4)

and
(u+j )

0 = max(1, (u+j )
∗/β) ≥ 1 and i ̸= j. (7.5)

Here, (u+i )
0 is the positive deviational variable corresponding to x0, i = 1, 2, ..., k. From (7.1),(

p∑
r=1

Cmr

n∏
l=1

(x0l )
alr

)
i

((u+i )
0)−1 ≤

(
p∑

r=1

Cmr

n∏
l=1

(x∗l )
alr

)
i

((u+i )
0)−1

≤

(
p∑

r=1

Cmr

n∏
l=1

(x∗l )
alr

)
i

((u+i )
∗)−1 using (7.4)

≤ Ci as x∗ be the solution of (7), i.e.,
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(
p∑

r=1

Cmr

n∏
l=1

(x0l )
alr

)
i

((u+i )
0)−1 ≤ Ci for i = 1, 2, ..., k, but i ̸= j. (7.6)

From (7.5),

(u+j )
0 = max

(
1,

(u+j )
∗

β

)
,

Thus,

(u+j )
0 =

(u+j )
∗

β
, if

(u+j )
∗

β
> 1 (7.7)

= 1 if
(u+j )

∗

β
≤ 1 (7.8)

Case 1
(u+j )

∗

β
> 1, then using (7.7),(

p∑
r=1

Cmr

n∏
l=1

(x0l )
alr

)
j

((u+j )
0)−1 =

(
p∑

r=1

Cmr

n∏
l=1

(x0l )
alr

)
j

((u+j )
∗)−1β

=

(
p∑

r=1

Cmr

n∏
l=1

(x∗l )
alr

)
j

((u+j )
∗)−1 ≤ Cj

Therefore, (
p∑

r=1

Cmr

n∏
l=1

(x0l )
alr

)
j

((u+j )
0)−1 ≤ Cj (7.9)

Thus, x0 satisfies the constraints of (7). From (7.7), (u+j )
0 =

(u+
j )∗

β < (u+j )
∗.

Since β > 1 and (u+j )
∗ > 1,

using (7.4),
(u+i )

0 ≤ (u+i )
∗, ∀ i = 1, 2, ..., k.

Case 2
(u+j )

∗

β
≤ 1, then using (7.8),(

p∑
r=1

Cmr

n∏
l=1

(x0l )
alr

)
j

((u+j )
0)−1 =

(
p∑

r=1

Cmr

n∏
l=1

(x0l )
alr

)
j

=
(
∑p

r=1Cmr
∏n

l=1(x
∗
l )

alr)j
β

.

Using (7.3), ≤
(
∑p

r=1Cmr
∏n

l=1(x
∗
l )

alr)j

(u+j )
∗ ; from (7.8), ≤ Cj (7.10)
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Thus, x0 satisfies the constraints of (7), and from (7.8),

(u+j )
0 = 1 < (u+j )

∗. (7.11)

Therefore, from (7.4) and (7.11), (u+i )
0 ≤ (u+i )

∗ ∀ i = 1, 2, ..., k. Thus, ∀ positive weights Wi,
(i = 1, 2, ..., k)

((u+i )
0)Wi ≤ ((u+i )

∗)Wi or

k∏
i=1

((u+i )
0)Wi ≤

k∏
i=1

((u+i )
∗)Wi . (7.12)

Thus, from (7.6), (7.9), (7.10), and (7.12), we have seen that x0 is a solution of (7), which contradicts
the fact that x∗ is a solution of (7). Hence, x∗ is pareto optimal.

Goal geometric programming model with logarithmic deviational variables and its solution pro-
cedure

Linear goal programming is a very commonly used tool of the MCDM problem. However, nonlinear
goal programming is very rare in this context. In many engineering problems, as well as problems of
science, there are nonlinear equations to optimize. To solve that type of nonlinear goal programming
problem, the geometric programming method can be used. Hence, we can turn model (6) into a goal
geometric programming form as in the following:

Minimize
m∏
j=1

(u+j0)
Wj0

q∏
r=1

(v+r )
Wr (8)

subject to
fj0(X)(u+j0)

−1/Cj0 ≤ 1, j = 1, 2, ..., m,

fr(X)(v+r )
−1/Cr ≤ 1, r = 1, 2, ..., q,

xk > 0, k = 1, 2, ..., n; u+j0, v
+
r > 1.

The corresponding dual geometric programming of model (8) can be written as follows:

Maximize d(δ) =

( 1

δ10

)δ10 m∏
j=1

Pj0∏
i=1

(
Cj0i

Cj0δji

)δji q∏
r=1

Pr∏
i=1

(
Cri

Crδri

)δri m∏
j=1

λj(δ)
λj(δ)

q∏
r=1

λr(δ)
λr(δ)


such that

δ10 = 1, Wj0δ10 −
Pj0∑
i=1

δji = 0, j = 1, 2, ..., m; Wrδ10 −
Pr∑
i=1

δri = 0, r = 1, 2, ..., q;

m∑
j=1

Pj0∑
i=1

ak0iδji −
q∑

r=1

Pr∑
i=1

akiδri = 0; k = 1, 2, ..., n; λj(δ) =

Pj0∑
i=1

δji, j = 1, 2, ..., m;

λr(δ) =

Pr∑
i=1

δri, r = 1, 2, ..., q.
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Numerical example: a multi-objective goal programming problem

Minimize f1(x1, x2) = x−1
1 x−2

2 with target value 4, (9)

Minimize f2(x1, x2) = 2x−2
1 x−3

2 with target value 50,

subject to x1 + x2 ≤ 1, x1, x2 > 0.

In goal geometric programming model with logarithmic deviational variables, model (8) can be written
as follows:

Minimize uW1vW2 (10)

subject to
x−1
1 x−2

2 u−1 ≤ 4,

2x−2
1 x−3

2 v−1 ≤ 50,

x1 + x2 ≤ 1, x1, x2 > 0, u, v > 1.

Illustration

Degree of difficulty = 5− (4 + 1) = 0, dual of (10) is given by the following:

Maximize d(δ) =

[(
1

δ10

)δ10 ( 1

4δ11

)δ11 ( 2

50δ21

)δ21 ( 1

δ31

)δ31 ( 1

δ32

)δ32

λ1(δ)
λ1(δ)λ2(δ)

λ2(δ)λ3(δ)
λ3(δ)

]

such that
δ10 = 1, (10.1)

W1δ10 − δ11 = 0, (10.2)

W2δ10 − δ21 = 0, (10.3)

−δ11 − 2δ21 + δ31 = 0, (10.4)

−2δ11 − 3δ21 + δ32 = 0, (10.5)

λ1(δ) = δ11, λ2(δ) = δ21, λ3(δ) = δ31 + δ32.

Solving (10.1) to (10.5), we get the following:

δ10 = 1, δ11 = W1, δ21 = W2, δ31 = W1 + 2W2, δ32 = 2W1 + 3W2, λ1(δ) = W1, λ2(δ) = W2,

λ3(δ) = 3W1 + 5W2.

From primal dual relation

x−1
1 x−2

2 u−1

4
=

δ11
λ1(δ)

= 1 or u =
1

4x1x22
,

2x−2
1 x−3

2 v−1

50

δ21
λ2(δ)

= 1 or v =
2

50x21x
3
2

,

x1 =
W1 + 2W2

3W1 + 5W2
, x2 =

2W1 + 3W2

3W1 + 5W2
.

Solving from primal dual relation for different values of weights, we get the optimal values of the
decision variables which are given in Table 1.
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Table 1 Optimal values of decision variables using G2P 2 with logarithmic deviational variables
W 1 W 2 Primal variables Dual variables First objective (f∗

1) Second objective (f∗
2)

0.9 0.1 x∗1 = 0.34375, d01 = 1, d11 = 0.9 6.754896 59.88756
x∗2 = 0.65625, d21 = 0.1, d31 = 1.1
u∗ = 1.688724, d32 = 2.1
v∗ = 1.197751

0.8 0.2 x∗1 = 0.3529412 d01 = 1, d11 = 0.8, 6.767218 59.26442
x∗2 = 0.6470588, d21 = 0.2, d31 = 1.2,
u∗ = 1.691804 d32 = 2.2
v∗ = 1.185288

0.7 0.3 x∗1 = 0.36111 d01 = 1, d11 = 0.7 6.784354 58.81286
x∗2 = 0.638889, d21 = 0.3, d31 = 1.3
u∗ = 1.696088, d32 = 2.3
v∗ = 1.176257

0.6 0.4 x∗1 = 0.3684211 d01 = 1, d11 = 0.6 6.804563 58.48684
x∗2 = 0.6315789, d21 = 0.4, d31 = 1.4
u∗ = 1.701141 d32 = 2.4
v∗ = 1.169737

0.5 0.5 x∗1 = 0.375 d01 = 1, d11 = 0.5 6.826667 58.25422
x∗2 = 0.625, d21 = 0.5, d31 = 1.5
u∗ = 1.70667, d32 = 2.5
v∗ = 1.165084

0.4 0.6 x∗1 = 0.3809524 d01 = 1, d11 = 0.4 6.849852 58.09201
x∗2 = 0.6190476, d21 = 0.6, d31 = 1.6
u∗ = 1.712463, d32 = 2.6
v∗ = 1.16184

0.3 0.7 x∗1 = 0.3863636 d01 = 1, d11 = 0.3 6.873558 57.98348
x∗2 = 0.6136364, d21 = 0.7, d31 = 1.7
u∗ = 1.718389, d32 = 2.7
v∗ = 1.159670

0.2 0.8 x∗1 = 0.3913043 d01 = 1, d11 = 0.2 6.897392 57.91620
x∗2 = 0.6086957, d21 = 0.8, d31 = 1.8
u∗ = 1.724348 d32 = 2.8
v∗ = 1.158324

0.1 0.9 x∗1 = 0.3958333 d01 = 1, d11 = 0.1 6.921084 57.88086
x∗2 = 0.6041667, d21 = 0.9, d31 = 1.9
u∗ = 1.730271 d32 = 2.9
v∗ = 1.157617

From the table, we see that each deviation (ui, vi) has values greater than 1 when minimized. Thus,
according to our theorem, the solutions are pareto optimal.

Again, we have solved the mentioned example in goal geometric programming with weighted sum
method. Here, we have compared the results of the mentioned example in equal weights solved in
two different methods: goal geometric programming with weighted sum method and goal geometric
programming with logarithmic deviational variables which are given in Table 2.

From the comparison, it is clear that in both methods, the optimum values of the first and second ob-
jectives are almost the same. We have solved the same example in both processes where we have used
geometric programming to solve a nonlinear goal programming problem. The advantage of the pro-
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Table 2 Comparison of optimal solutions in two different methods
Method W 1 W 2 First objective (f∗

1) Second objective (f∗
2)

Goal geometric programming 0.5 0.5 6.919487 57.88240
with weighted sum
Goal geometric programming 0.5 0.5 6.826667 58.25422
with logarithmic deviational variables

posed method lies in the method of solution, i.e., geometric programming where degree of difficulty is
less than the degree of difficulty of the previous process (goal geometric programming with weighted
sum method). For this reason, the solution procedure of this process becomes easier than that of the
previous.

Application on lightly loaded bearing problem

A lightly loaded bearing is to be designed to minimize the linear combination of frictional moment and
angle of twist of the shaft and the temperature rise of the oil while carrying a load of 1,000 lb, and the
angular velocity of the shaft is to be greater than 100 rad s−1. Assume that 1 in-lb of frictional moment
in the bearing is equal to 0.0025 rad of the angle of twist. The following are the goals:

Priority 1: Linear combination of frictional moment, angel of twist of the shaft, and temperature rise of
the oil should be minimized and near 10.

Priority 2: Angular velocity of the shaft per 100 rad s−1 should be minimized and near 0.2.

In formulating the mentioned goal programming problem and finding the dimension of the bearing that
is to be built for this purpose, it should be done in such a way that it can carry the maximum load.

Solution Let R (in.) be the radius of the journal and L (in.) be the half length of the bearing, T be the
temperature rise of the oil, and frictional moment of the bearing (M ) = 8πµωR2L√

1−n2 c
where ω is the angular

velocity of the shaft, µ is the viscosity of the oil (lubricant), n is the eccentricity ratio, and c is the radial
clearance.

The angle of twist of the shaft (ϕ) = Sel
GR , where Se is the shear stress, l is the length between the

driving point and rotating mass, and G is the shear modulus. The temperature rise of the oil in the
bearing is given by T = 0.045µωR2

c2n
√
1−n2

. For the given data, c
R = 0.0015, n = 0.9, µ = 10−6 lb s in.−2,

l = 10 in., Se = 30, 000 psi, and G = 12× 106 psi.
Hence, linear combination of frictional moment, angle of twist of the shaft, and temperature rise of the
oil equals

0.038ωR2L + 0.025R−1 + 0.592RL−3 with target value 10 (11.1)

and angular velocity
ω ≥ 100 rad s−1. (11.2)

From the given data in the chart of ‘Dimensionless performance parameters for full journal bearing’
ωR−1L3 = 11.6, i.e., ω = 11.6R/L3.

As per the assumption that 1 in. lb of frictional moment in bearing is equal to 0.0025 rad angle of twist,
Equation 11.1 becomes Z1 = 0.44R3L−2 + 10R−1 + 0.592RL−3 with the target value of 10.
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Equation 11.2 becomes Z2 = 8.62R−1L3 with the target value of 0.2. Hence, the model of lightly
loaded bearing problem in G2P 2 with logarithmic deviational variable is as follows:

Minimize uW1vW2 (11.3),

subject to
0.44R3L−2u−1 + 10R−1u−1 + 0.592RL−3u−1 ≤ 10,

8.62R−1L3v−1 ≤ 0.2,

u, v > 1, R, L > 0.

In solving with the use of geometric programming method where the degree of difficulty is 5−(4+1) =
0, we get the optimal values of the radius of the journal (R) and half length of the bearing (L) which
are given in Table 3. From the table, we have seen that each deviation (u, v) has values greater than 1.
Thus, the solution is pareto optimal.

Table 3 Optimal values of radius of the journal (R) and half length of the bearing (L)
W 1 W 2 Dual variables Primal variables First objective (Z1) Second objective (Z2)
0.6 0.4 d01 = 1, R∗ = 0.97395, 35.2027 0.2485057

d11 = 0.075, L∗ = 0.3039405,
d12 = 0.175, d13 = 0.35, u∗ = 3.520266,
d21 = 0.4. v∗ = 1.24253.

Application on optimal production and marketing planning

Consider a manufacturer who produces a single product where the demand is affected by the selling
price. Let P be the selling price per unit, α be the price elasticity to the demand, M be the marketing
expenditure per unit, and γ be the marketing expenditure elasticity to the demand (Sadjadi et al. 2005).
Assume that demand D = KP−αMγ , where K is the predetermined constant and production cost C,
which is inversely related to production lot size (units) Q, i.e., C = rQ−β , where r is the predefined
constant for unit production cost and β is the lot size elasticity of production unit cost. Again, let µ and
a be the production rate and the setup cost of production, respectively. We assume the production rate
µ to vary with the demand D proportionally. Hence, µ = uD where u > 1. There are some restrictions
on variables such as α, γ, and β. The equation α > 1 indicates that D increases at a diminishing rate as
P decreases. The equation 0 < β < 1 is almost the same as α and 0 < γ < 1.

We want to minimize the equation (Marketing cost + Production cost + Setup cost + Holding cost),
which is subject to some constraint that total revenue should be bigger. These are the following goals:

Priority 1: Total revenue should be greater than 0.1386×105,

Priority 2: (Marketing cost + Production cost + Setup cost + Holding cost) should be minimized and
near 0.692791.

Thus, the model is as follows:

Minimize MD + CD +
aD

Q
+ iC

(
1− D

µ

)
Q

2
with target value 0.692791

subject to
PD ≥ 0.1386× 105
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P,M,Q > 0.

Let û = 1− 1
u , and from assumptions and consideration, the above model becomes the following:

Minimize KP−αMγ+1 + rKP−αMγQ−β + aKP−αMγQ−1 (12.1)

+ irû
Q−β+1

2
with target value 0.692791

subject to
KP−αMγ ≥ 0.1386× 105

P, M, Q > 0.

Consider the following data: α = 2.5, β = 0.01, γ = 0.03, r = 5, K = 106, a = 50, i =
0.1, û = 0.7, and converting the model (12.1) according to the goal geometric programming model,
we have the following:

Minimize (Z) 106P−2.5M1.03 + 5× 106P−2.5M0.03Q−0.01 + 50× 106P−2.5M0.03Q−1

+
0.1× 0.7× 5

2
Q0.99 with target value 0.692791 (12.2)

subject to
0.1386× 105 × 10−6P 1.5M−0.03 ≤ 1

P, M, Q > 0.

Transforming the model (12.2) into G2P 2 with logarithmic deviation variables, we get the following:

Minimize uW1vW2 (12.3)

subject to

106P−2.5M1.03u−1

0.692791
+

5× 106P−2.5M0.03Q−0.01u−1

0.692791
+

50× 106P−2.5M0.03Q−1u−1

0.692791

+
0.1×0.7×5

2 Q0.99u−1

0.692791
≤ 1

0.1386× 105 × 10−6P 1.5M−0.03v−1 ≤ 1

P, M, Q > 0, u, v > 1.

Solving with the use of geometric programming method where the degree of difficulty is 6− (5 + 1) =
0, we get the optimal values of decision variables, e.g., price per unit (P ), production lot size (Q), and
marketing expenditure per unit (M ), which are given in Table 4.
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Table 4 Optimal values of price per unit (P ), production lot size (Q), marketing expenditure per
unit (M )
W 1 W 2 Dual variables Primal variables Objective function (Z) Total revenue

(US$) (US$)
0.4 0.6 d01 = 1, P ∗ = 72.38344, 129.7589 9098297

d11 = 0.0072, M∗ = 0.1189591,
d12 = 0.3163636, Q∗ = 83.07024,
d13 = 0.03643, u∗ = 200.7293,
d14 = 0.04, v∗ = 9.098298.
d21 = 0.6.

Here, we have also observed from the table that each deviation (u, v) has values greater than 1. Thus,
the solution is pareto optimal.

Conclusions

The aim of this paper was to introduce a new approach to solve a nonlinear goal programming problem.
The geometric programming approach is the best tool to solve nonlinear programming problems as
compared with the other approach (Khun-Tucker conditions) that is already discussed in this paper. We
have used logarithmic deviational variables in the goal programming model instead of the commonly
used addition of deviational variables. Also, the applications on lightly loaded bearing problem and
optimal production and marketing planning shows the efficiency of this method. Two applications have
two different aims. In the first application, the decision maker has given more priority to the first
objective function, whereas in the second application, priority is given to the second objective. Further,
this method could be more applicable in imprecise environment rather than in precise environment.
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