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Abstract 

In this paper, the main idea is to compute the robust regression model, derived by 
experimentation, in order to achieve a model with minimum effects of outliers and fixed 
variation among different experimental runs. Both outliers and nonequality of residual 
variation can affect the response surface parameter estimation. The common way to estimate 
the regression model coefficients is the ordinary least squares method. The weakness of this 
method is its sensitivity to outliers and specific residual behavior, so we pursue the modified 
robust method to solve this problem. Many papers have proposed different robust methods to 
decrease the effect of outliers, but trends in residual behaviors pose another important issue 
that should be taken into account. The trends in residuals can cause faulty estimations and 
thus faulty future decisions and outcomes, so in this paper, an iterative weighting method is 
used to modify both the outliers and the residuals that follow abnormal trends in variation, 
like descending or ascending trends, so they will have less effect on the coefficient 
estimation. Finally, a numerical example illustrates the proposed approach. 
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Introduction 

In many cases, especially in experimental results, some of the data are wrong and should be 
treated as outliers. These points, which may occur because of operator reading faults and the 
like, may have a confusing effect on the total interpretation of the results. A common method 
of explaining and analyzing the results of experiments is by response surface design. This 
term is used for a regression equation that shows the whole behavior of the control variables, 
the nuisance factors, and the response or responses. We can use the estimated function to 
predict the response to changes in the values of specific controllable factors. After 
determining an experimental design and performing experiments, the next steps are generally 
statistical analysis and then the selection of values for the input variables so as to optimize the 
output. This can be done by fitting a regression model between the controllable factors and 
the response variables. Future interpretations are based on this regression model, so the exact 
model is very important and may affect the optimization stage. This model is generally 
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constructed by the ordinary least squares (OLS) method. But basic OLS is very sensitive to 
outliers, and they may have an inordinate effect on the ultimate conclusion. So a robust 
method or a modified OLS should be used for decreasing the outliers’ sensitivity. 

Our goal in this study is to decrease the destructive effect of outliers. In order to do so, at the 
first stage, the robust regression or modified regression model should be computed. Then the 
trend of residuals in response surface design is another aspect which should be considered. 
The trend behaviors among residuals, both descending and ascending trends, can cause faulty 
interpretations. However, there are some assumptions in estimating the regression 
coefficients that should not be violated. It seems that by decreasing the effects of some 
residuals in the coefficient estimation stage, the initial assumptions can be satisfied, and 
moreover, because this decreases the overall variability, the robustness of the model will be 
increased. The main purpose of this paper is to decrease the effects of outliers that violate the 
variance equality test of residuals. An example of such trends and abnormal behavior is 
shown in Figure 1. 

Figure 1 Trends in residual behavior. (a) Descending trend. (b) Ascending trend. (c) 
Oscillation trend. 

As mentioned before, the OLS method is very sensitive to outliers. To diminish the effect of 
these points, some alternative methods of model fitting, such as least absolute deviations and 
other robust approaches that simplify the task of outlier identification by weighting the large 
residuals, are used instead of OLS. Response surfaces have been studied by many 
researchers, and many approaches have been proposed either to obtain efficient response 
surfaces or optimize the response surface by different models. Hejazi et al. (2010) proposed a 
novel approach based on goal programming to find the best combination of factors to 
optimize multi-response-multi-covariate surfaces by considering location and dispersion 
effects. Kazemzadeh et al. (2008) proposed a method to optimize multi-response surfaces 
based on a goal programming method. Robust regression approaches have also been surveyed 
by many researchers. Huber (Bertsimas and Shioda 2007) proposed M-estimator methods to 
obtain robust regression. Morgenthaler and Schumacher (1999) discussed robust response 
surfaces in chemistry based on design of experiment. Because of the weakness of the 
previous methods in compensating for outliers, the redescending M-estimators (also named 
GM-estimators) were proposed by Andrews et al. (1972), which are able to reject extreme 
outliers entirely. Hund et al. (2002) presented various methods of outlier detection and 
evaluated robustness tests with different experimental designs. Bickela and Frühwirthb 
(2006) compared different robust estimators with their applications. The M- and GM-
estimators work by an iterative procedure. As a consequence, several authors (e.g., Cummins 
and Andrews 1995) have called these estimators as iteratively reweighted least squares, or 
IRLS methods. Ortiz et al. (2006) discussed some of the robust methods used for robust 
regression in analytical chemistry. To obtain a more efficient and yet robust method, Siegel 
(1982) proposed the repeated median estimator. Also another useful robust method is the 
least median squared (LMS) method proposed by Rousseeuw (1984). Massart et al. (1986) 
showed the advantages of its use in chemical analysis. The other useful method is the least 
trimmed squared (LTS) that was proposed by Rousseeuw and Leroy (1987). Nguyena and 
Welsch (2010) studied outlier detection and proposed a new least trimmed squares 
approximation. Both the LMS and the LTS are defined by minimizing a robust measure of 
the scatter of the residuals. Generalizing this, Rousseeuw and Yohai (1984) introduced S-
estimators which are significantly more efficient than the previous estimators. A more recent 
suggestion is the constrained M-estimates, or CM, proposed by Mendes and Tyler (1995), 
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which combines the good local properties of the M-estimates and the good global robustness 
properties of the S-estimates. A ‘partial’ version of the M-estimator based on the ‘fair’ ψ 
function and an appropriate weighting scheme was recently proposed by Serneels et al. 
(2005). The authors believed that the partial robust M-regression outperforms existing 
methods for robust partial least square regression. Bertsimas and Shioda (2007) presented 
mixed integer programming or MIP models for the classification and robust regression 
problems. Zioutas and Avramidis (2005) examined the effect of deleting outliers in the 
regression model obtained by mixed integer programming and compared the performance of 
this model with that of least squares, or LS, and LMS. Another new method in robust 
regression is the mixed linear model surveyed by Dornheim and Brazauskas (2011). (Pop and 
Sârbu 1996) proposed a new fuzzy regression algorithm to obtain robust models. Maronna et 
al. (2006) proposed many M-estimators using robust regression methods in both single 
response and multiple responses. Shahriari et al. (2011) proposed a novel two-step robust 
estimation of the process mean method based on M-estimator and their method is less 
sensitive to the presence of outliers. For better illustration of proposed method, the literature 
review has been classified in Table 1. 

Table 1 Summary of literature review 
Author (year) Characteristic 

Iterative method Considering 
equality of 
variation of 

residuals 

Ordinary least 
square 

Different M-
estimators 

Other regression 
models 

Huber (1981) 
✓   

✓  

Siegel (1982) 
✓   

✓  

Rousseeuw (1984) 
✓   

✓  

Massart et al. (1986) 
✓   

✓  

Rousseeuw and Leroy (1987) 
✓   

✓  

Cummins and Andrews (1995) 
✓  

✓   

Pop and Sârbu (1996)     
✓ 

Morgenthaler and Schumacher (1999) 
✓  

✓ ✓  

Hund et al. (2002)   
✓   

Zioutas and Avramidis (2005)     
✓ 

Serneels et al. (2005) 
✓   

✓  

Bickela and Frühwirthb (2006) 
✓   

✓  

Ortiz et al. (2006) 
✓  

✓ ✓  

Bertsimas and Shioda (2007)     
✓ 

Nguyena and Welsch (2010) 
✓   

✓  

Dornheim and Brazauskas (2011)     
✓ 

Proposed REVIM 
✓ ✓ ✓   

In this paper, a novel robust approach considering both outlier data and trends in residuals 
variations which do not violate the normality assumption is discussed. 

This paper is organized as follows. The section ‘Robust estimation of the coefficients by 
iterative weighting methods’ presents the robust modification of the response surface by an 
iterative weighting procedure. The proposed method is defined in section ‘Robust estimation 
of coefficients by testing equality of variations in specified intervals’. To illustrate the 
proposed method, a numerical example is presented in section ‘Numerical example’. Finally, 
the last section is the ‘Conclusion’ of this paper. 
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Robust estimation of the coefficients by iterative weighting methods 

To compensate for the effects of the outlier values, we can either remove the outlier data or 
modifying them by weighting the residuals. The first approach is not rational, so we choose 
to modify them in order to decrease the effect of outliers in the coefficient estimation stage. 
The proposed idea is as follows: 

( ) ( )1, .i i pE y = …µ β β
 

(1) 

In this equation, µi is a function defined by unknown coefficients (βi). For example, if µ1 = β1 
+ β2x1 and xi are constants, the response yi can be obtained from the experimental results, and 
the regression model describes the relation between the variables and the expected values of 
the yi. 

If all the measurements are good, then the OLS method provides a reasonable model and the 
coefficients are estimated by minimizing the following equation: 

( )( )
( )( )
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1 1 1
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(2) 

However, if the results appear abnormal, which may be a consequence of residual behavior in 
the experiments, the coefficients are determined by minimizing the following equation. The 
abnormality occurs when a residual behaves like an outlier: 

( )( )
( )( )
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(3) 

The weights are not pre-assigned values because the quality of each yi is not known in 
advance. The reasonable values for the weights are based on the residuals defined by the 
following equation: 

( )1̂
ˆ, , .i i i pr y= − …µ β β

 
(4) 

To make the estimator invariant with respect to the scale of the residuals, the ri is divided by 
‘s,’ which is a robust estimation of the scale. The value of ‘s’ is often taken to be equal to 
1.4826 MAD, where MAD is the median of the absolute deviations of the residuals from their 
median and 1.4826 is a bias adjustment for the standard deviation under the normal 
distribution. 

The weights should be inversely proportional to the value of the residuals, 
i

i

c
w

r
=

 . In other 
words, the residuals with large values are weighted less, and this method produces better 
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coefficient estimates. These weights can be chosen by a function such as the Huber weight 
function: 

1

,
i i

i i
i

w if r c

c
w f r c

r

 = <

 = >
  

(5) 

where c is a constant. The procedure is as follows: compute the first coefficients of the 
regression model, compute the residuals and weights, and then compute the new coefficients 
by the equation. This procedure can be repeated until a good solution is obtained, because the 
values of the coefficients and the values of the residuals and weights are different. This 
procedure is known as iterative weighting OLS. The procedure terminates when the change in 
the estimation from one iteration to the next is sufficiently small. 

This iterative method is good for modifying outliers, but the trends in residual behavior are 
not considered. As illustrated before, another approach, in addition to taking outliers into 
account, is the equality of variation between residuals which is the main idea of the rest of 
this paper. 

Robust estimation of coefficients by testing equality of variations in specified 
intervals 

First, normality assumption is checked. If the normality assumption is violated, this robust 
approach based on Huber function cannot be applied. The method proposed in this part 
begins by dividing the experiment runs into a intervals to examine the hypothesis of equality 
in variations in these intervals. The equality test used in this paper is Bartlett’s test (Anderson 
and McLean 1974). The number of points in each interval can be chosen in the analysis stage. 
This stage satisfies one of the OLS hypotheses. If this parameter is small, the variation 
between points might be large and if the number of the points is large, the equality test of the 
variances may not be reliable, so this value should be determined rationally. 

Bartlett’s test 

Although residual plots are frequently used to diagnose inequality of variance, statistical tests 
have also been proposed. One widely used procedure is Bartlett’s test. The procedure 
involves computing a statistic whose sampling distribution is closely approximated by the 
chi-square distribution with a-1 degrees of freedom, where the a random samples are from 
independent normal populations. This statistic is defined as 

2 2.3026
q

x
c

=
 

(6) 

where 

( ) ( )
2 2

10 10
1
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a
s s

i
i

q N a n
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= − − −∑
 

(7) 
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and 
2
is  is the sample variance of the ith population. 

The hypothesis of equality of variances is rejected if 
2 2
0 , 1x xα α −>

, where 
2

, 1xα α −  is the upper α 
percentiles of the chi-square distribution with a-1 degrees of freedom. 

Proposed robust approach (robust equal variances iterative method) 

The following steps are proposed as an iterative method to decrease the effect of trends in the 
residuals and improve the robust estimation of coefficients. The proposed model is based on 
OLS method which should be modified. 

First of all, our goal is that the residuals that violate the hypothesis of equality in variances 
should have less effect on the estimates of the coefficients of the regression model, so we 
should consider modifying these points to have equal variances. Therefore, the residuals 
derived by experiments are divided into a intervals, and then the variances of each interval 

are calculated and denoted by 
2
is . The next step is to test the equality of variances with 

Bartlett’s test; if the result shows that the variances in a intervals do not have significant 
differences, this part of the procedure is stopped, whereas if the result shows that the 
variances in the a intervals differ significantly, the iterative weighting procedure is used to 
modify. As the next step, the critical q statistic in Bartlett’s test, for which the hypothesis will 
be rejected, is computed. The critical q for Bartlett’s test is denoted by qc, and in our case,

cq q> . The ( )
2
1s

 is the ith rank-sorted variances of the intervals, in descending order. The ( )
( )2 j

is
 

is the variances of the points in ith ranked interval in the jth. In the proposed approach, in 
higher and higher iterations approach, the residual variances approach equality. The 
maximum feasible variance of each intervals for which Bartlett’s test is fulfilled is denoted as 

2 maxis . 

Because the q value is greater than qc after its computation, it should be decreased iteratively 
until the both values are equal. To do this, we select the largest variance of all intervals. This 

value is decreased in each iteration. If the value of ( )
2
1s

 equals ( )
2
2s

 in this decreasing 

procedure, both ( )
2
1s

 and ( )
2
2s

 decrease in the next iteration. If the value q does not equal qc, the 

values of the variances decrease again. If the values of ( )
2
1s

 and ( )
2
2s

 equal ( )
2
3s

 in this 
decreasing procedure, all three variances decrease in the next iteration, and this procedure 
continues until q is equal to qc. All maximum feasible variances of intervals that satisfy the 
hypothesis of Bartlett’s test are computed with this iterative procedure. Next, we consider 
two parallel lines l1:y = +ω and l2:y = −ω, with slope zero and parallel to the x-axis. We 
decrease the ω values iteratively and compute the variances of points between these two 
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lines. Until the variances of the points are equal to the maximum variance of intervals derived 
from the last step, this decreasing procedure continues. After that, the points outside these 
lines are weighted by function in (10). 

The pseudo code of the proposed method illustrates this approach: 

1. Divide residuals into a intervals. 

2. Compute the variances of outliers in each interval, and denote these variances by 
2
is . 

3. Sort the variances of each interval in descending order and denote them by ( )
2
is

. 

4. 
Calculate the critical value of Bartlett’s test in terms of confidence level and the number 
of intervals. 

5. Compute the q value by formula in (7). 
6. Compute the statistic of Bartlett’s test by formula in (6). 
7. Compute the qc by considering the critical value of Bartlett’s test based on formula (6). 

8. 

Do while q ≥ qc, 

( ) ( )
( )

( )
( )

( )
( )

( ) ( ) ( ) ( )
( )

( )
( )

( )
( )

( 1)

( 1) ( 1) ( 1)

2 2 2 2
1 1 2

2 2 2 2 2 2
1 1 1 1 2,  3,

1.

j j jj

j j jj j j

i

f f

s s If s s

s s s s If s s f

j j

+

+ + +

= − >

= = = = − ≤ =

= +

… …

δ

δ

 

 

 

9. 
Determine si

2 max as the maximum feasible variances of each intervals to satisfy the 
hypothesis of equal variances. 

10. 
Consider two parallel lines, l1,l2, 
l1:y = +ω and l2:y = −ω. 

11. 
Do while sk

2 < si
2 max, 

l1:y = +mω and l2:y = −mω. 
12. Determine the points outside lines l1and l2. 

13. 

Determine the weight of the outside residuals by function below (formula 10) 

2

1 2

1

1
,

i i i

i i i
i

w if l r l

w f r l r l
r

= < <

 = > <
  

(10) 

 

After this step, by the robust iterative weighting method, the outliers are modified. After each 
iteration, the test of equality in variances is checked, and if the hypothesis is violated, the 
above mentioned method is applied. After the equality of variances is satisfied, the iterative 
weighting method continues, and this procedure continues as long as a minor change in the 
estimation occurs from each iteration to the next one. This procedure is called the robust 
equal variances iterative method procedure (REVIM). 

The flowchart in Figure 2 illustrates this method. 

Figure 2 Flowchart of REVIM method.  
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Numerical example 

This is a hypothetical numerical experiment. Suppose that we have an experiment containing 
one response variable and four explanatory control variables, each of which has three levels, 
and the objective of the study is to optimize the yield of a product. The data to be used are 
shown in Table 2. We want to explore the yield response surface by using a second-order 
regression model. A Box-Behnken design with 27 treatments is used for this experiment. The 
blocking is used to diminish the effect of nuisance factors, and the blocks are assigned, for 
example, to 3 days. 

Table 2 A hypothetical data created according to Box-Behnken design 
Material 1 Material 2 Material 3 Material 4 Block Y value x1 x2 x3 x4 

0.82 1 −55 0 1 96.49 −0.1 −0.1 0 0 
0.82 1 −45 −25 1 93.22 −0.1 −0.1 1 −1 

0.82 1 −65 −25 1 87.43 −0.1 −0.1 −1 −1 
0.91 0.91 −55 0 1 77.20 0.8 −1 0 0 
0.91 1.09 −55 0 1 82.83 0.8 0.8 0 0 

0.73 0.91 −55 0 1 94.87 −1 −1 0 0 
0.73 1.09 −55 0 1 63.46 −1 0.8 0 0 
0.82 1 −65 25 1 91.88 −0.1 −0.1 −1 1 

0.82 1 −45 25 1 91.88 −0.1 −0.1 1 1 
0.83 1.02 −55 0 2 100.28 0 0.1 0 0 
0.92 1.02 −55 −25 2 90.44 0.9 0.1 0 −1 

0.74 1.02 −55 −25 2 92.53 −0.9 0.1 0 −1 
0.83 0.93 −65 0 2 90.32 0 −0.8 −1 0 
0.83 1.11 −65 0 2 91.45 0 1 −1 0 

0.83 1.11 −45 0 2 90.85 0 1 1 0 
0.83 0.93 −45 0 2 69.08 0 −0.8 1 0 
0.92 1.02 −55 25 2 88.55 0.9 0.1 0 1 

0.74 1.02 −55 25 2 91.55 −0.9 0.1 0 1 
0.83 1.02 −55 0 3 90.96 0 0.1 0 0 
0.83 0.92 −55 −25 3 85.67 0 −0.9 0 −1 

0.83 1.11 −55 −25 3 80.21 0 1 0 −1 
0.74 1.02 −45 0 3 84.74 −0.9 0.1 1 0 
0.93 1.02 −65 0 3 93.70 1 0.1 −1 0 

0.74 1.02 −65 0 3 92.24 −0.9 0.1 −1 0 
0.93 1.02 −45 0 3 95.60 1 0.1 1 0 
0.83 1.11 −55 25 3 87.83 0 1 0 1 

0.83 0.92 −55 25 3 83.21 0 −0.9 0 1 

The primary fitted response regression model is as follows: 

1 2 3 4

2 2 2 2
1 2 3 4 1 2

1 3 1 4 2 3 2 4

3 4

ˆ 93.65 0.32 0.4 1.92 0.39

3.89 9.55 0.19 0.92 12.3

2.02 0.32 4.73 2.47

1.44 block effect.

y x x x x

x x x x x x

x x x x x x x x

x x

= + + − +

− − − − +
+ − + +
− +

 (11) 

The normality assumptions are checked in this example and the results are given in Figure 3. 
The P value obtained by normality test is 0.414. This value shows that the residuals follow 
normal distribution. 

Figure 3 Normality assumption and adequacy checking of residuals. 
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The analysis of variance (ANOVA) results are shown in Table 3. 

Table 3 The ANOVA results 
Term Coefficient Standard error  T value P value 

Constant 93.6635 4.732 19.794 0 
Block 1 −1.6534 2.305 −0.717 0.49 
Block 2 1.1817 2.284 0.517 0.616 
x1 0.329 2.636 0.125 0.903 
x2 0.408 2.636 0.155 0.88 
x3 −1.9282 2.416 −0.798 0.443 
x4 0.3978 2.416 0.165 0.872 
x1 * x1 −3.898 4.215 −0.925 0.377 
x2 * x2 −9.5556 4.173 −2.29 0.045 
x3 * x3 −0.1949 3.571 −0.055 0.958 
x4 * x4 −0.9236 3.578 −0.258 0.802 
x1 * x2 12.3039 5.054 2.434 0.035 
x1 * x3 2.0222 4.366 0.463 0.653 
x1 * x4 −0.3262 4.619 −0.071 0.945 
x2 * x3 4.733 4.564 1.037 0.324 
x2 * x4 2.4782 4.342 0.571 0.581 
x3 * x4 −1.4475 4.174 −0.347 0.736 

Figure 4 shows the residuals of the model in the order of runs. As shown in the figure, the 
residuals have a rough trend, and if we divide the runs into 3 equal intervals, each containing 
9 runs, the second interval has larger variance. This can be proved by Bartlett’s test. 

Figure 4 The least squares residuals of the model in order of the runs. 

The result of Bartlett’s test is illustrated in Figure 5 and Table 4. 

Figure 5 The results of equality test of variances. 

Table 4 Bartlett’s test results (test statistic = 9.09) 
Intervals Number Lower Standard deviation Upper 

1 9 3.94377 6.32629 14.3264 
2 9 4.07722 6.54037 14.8112 
3 9 1.29441 2.07639 4.7021 

In this case, we have three intervals, so a-1 = 2. If we consider the significance level 0.95, the 
critical statistic x0.05,2

2 is equal to 5.99 and the test statistic = 9.09 is greater than 5.99, then 
the hypothesis is rejected. Therefore, we want to compute the maximum standard deviation of 
each interval that satisfies the hypothesis of Bartlett’s test. By the proposed method, the 
maximum values of these standard variations are ordered as follows: s1 = 2.07, s2 = 4.95, s3 = 
4.95. Based on these values, we can compute the limits, l1 = 8.7 and l1 = −8.75. Two points 5 
and 16 are outside these limits (circled in the figure), so the weighting procedure is applied 
and new coefficients are calculated by the robust weighting method. Figure 6 shows the 
method graphically. 
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Figure 6 Proposed method. 

The residuals are computed by this procedure, and the hypothesis of equal variance in three 
intervals is satisfied. Bartlett’s test is applied to the residuals obtained from the proposed 
method, and the results are given in Figure 7. 

Figure 7 Proposed method residuals. 

The value of Bartlett’s test is 4.32, and the hypothesis of equal variances is not rejected. 
Figure 8 illustrates the result better. 

Figure 8 Bartlett’s test results after applying REVIM.  

Therefore, the iterative weighting method based on these coefficients to modify the effect of 
outliers by Huber function with c = 2 is applied. This process is applied in each iteration, and 
if the equality test is not satisfied, the modification is applied. The final robust coefficients 
and residuals are presented in Tables 5 and 6. 

Table 5 Final robust coefficients 
Coefficient Value 
Intercept 94.19 
x1 0.63 
x2 1.6 
x3 −1.5 
x4 0.39 
x1x2 13.29 
x1x3 2.06 
x1x4 −0.32 
x2x3 3.59 
x2x4 2.46 
x3x4 −1.44 
x1

2 −4.13 
x2

2 −9.32 
x3

2 −0.19 
x4

2 −1.47 
Block 1 −1.36 
Block 2 1.28 
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Table 6 Final residuals of robust model 
Run Residual 
1 3.89 
2 3.09 
3 −3.94 
4 8.07 
5 −11.6 
6 4.44 
7 −9.28 
8 −2.75 
9 4.28 
10 4.73 
11 −1.69 
12 4.51 
13 −2.1 
14 5.97 
15 1.2 
16 −14.5 
17 −4.28 
18 1.65 
19 −3.38 
20 −13.6 
21 −2 
22 −1.29 
23 2.63 
24 0.19 
25 2.71 
26 −0.13 
27 1.23 

So the residuals in final iteration show that residuals which hinted to be an outlier in first 
iteration are really outliers, and the model estimation is more accurate and close to the model 
with no outlier data that we call it actual model. These results can be compared with the 
results obtained by the model with no outlier data. The comparison shows that the proposed 
model is more precise and accurate than the OLS method in estimation of the regression 
coefficients by considering unequal variation between residuals. The results are given in 
Table 7. 

  

www.SID.ir


Arc
hive

 of
 S

ID

www.SID.ir

Table 7 Comparison between REVIM approach and OLS method 
Coefficient Method 

Actual OLS REVIM  
Intercept 95.67 93.66 94.19 
x1 1.25 0.32 0.63 
x2 −1.16 0.40 1.6 
x3 0.79 −1.92 −1.5 
x4 0.39 0.39 0.39 
x1x2 14.73 12.30 13.29 
x1x3 2.29 2.02 2.06 
x1x4 −0.32 −0.32 −0.32 
x2x3 −2.66 4.73 3.59 
x2x4 2.47 2.47 2.46 
x3x4 −1.44 −1.44 −1.44 
x1

2 −5.4 −3.89 −4.13 
x2

2 −7.71 −9.55 −9.32 
x3

2 1.11 −0.19 −0.19 
x4

2 −3.48 −0.92 −1.47 
Block 1 −1.99 −1.65 −1.36 
Block 2 3.03 1.18 1.28 

Conclusions 

A robust estimation of the response surface is the primary goal of this paper. To this end, the 
proposed method is defined, instead of the common ordinary least squares method of 
estimating coefficients of the response surface, to decrease the effects of two main causes of 
the imprecise estimation of coefficients, outliers, and trends in residuals. As the effect of 
trends in residuals should be taken into account, the proposed method simultaneously 
modifies the effects of trends and outliers. For each iteration, an equality test of residual 
variances is performed, and after this hypothesis is satisfied, the outliers are modified. A goal 
for future research may be to examine the weighting; instead of computing the distance of the 
residuals from base line after plotting the responses in a normal probability plot (NPP), the 
weighting function may be proportional to the distance of the response from the NPP 
regression line. 
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