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Abstract

In this paper, the main idea is to compute the robust regression numieled b
experimentation, in order to achieve a model with minimum effectsutifers and fixe
variation among different experimental runs. Both outliers and nongqualiresidua
variation can affect the response surface parameter estimBti@rcommon way to estimdte
the regression model coefficients is the ordinary least squatdl The weakness of this
method is its sensitivity to outliers and specific residual beinaso we pursue the modifi
robust method to solve this problem. Many papers have proposed differerntmalisds t
decrease the effect of outliers, but trends in residual behgyses another important issue
that should be taken into account. The trends in residuals can caugecfdimhations an
thus faulty future decisions and outcomes; so in this paper, anveenaighting method i
used to modify both the outliers and.the residuals that follow abnoremalst in variatio
like descending or ascending trends, so they will have less effecthe coefficien
estimation. Finally, a numerical example illustrates the proposed approach.
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Introduction

In many cases, especially in experimental results, sonteeafdta are wrong and should be
treated as outliers. These points, which may occur because ofoopeeading faults and the
like, may have a confusing effect on the total interpretationeofébults. A common method
of explaining and analyzing the results of experiments is §yorese surface design. This
term is used for a regression equation that shows the whole behatheraantrol variables,
the nuisance factors, and the response or responses. We can esenthged function to
predict the response to changes in the values of specific cdbligolfactors. After
determining an experimental design and performing experiments,xhsteps are generally
statistical analysis and then the selection of values for the input varialdessoptimize the
output. This can be done by fitting a regression model between thelladné factors and
the response variables. Future interpretations are based on tessi@gmodel, so the exact
model is very important and may affect the optimization stages model is generally
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constructed by the ordinary least squares (OLS) method. But ®aSids very sensitive to
outliers, and they may have an inordinate effect on the ultimateustmt! So a robust
method or a modified OLS should be used for decreasing the outliers’ sensitivity.

Our goal in this study is to decrease the destructive effemttliers. In order to do so, at the
first stage, the robust regression or modified regression model df®glimputed. Then the
trend of residuals in response surface design is another aspebtshibidd be considered.
The trend behaviors among residuals, both descending and ascendiagdaanchuse faulty
interpretations. However, there are some assumptions in estim#tggregression

coefficients that should not be violated. It seems that by decgedse effects of some
residuals in the coefficient estimation stage, the initialragsions can be satisfied, and
moreover, because this decreases the overall variability, the radsistnde model will be

increased. The main purpose of this paper is to decrease ttis effeutliers that violate the
variance equality test of residuals. An example of such trendsaBnormal behavior is
shown in Figure 1.

Figure 1 Trends in residual behavior. (a) Descending trend.bf Ascending trend.d
Oscillation trend.

As mentioned before, the OLS method is very sensitive to outlierdiriinish the effect of
these points, some alternative methods of model fitting, such asbsadute deviations and
other robust approaches that simplify the task of outlier ideatidin by weighting the large
residuals, are used instead of OLS. Response surfaces have beed $tydmany
researchers, and many approaches have been proposed either to fibiant efsponse
surfaces or optimize the response surface by different modeééildeal. (2010) proposed a
novel approach based on goal programming to find the best combinatiorctafs f&o
optimize multi-response-multi-covariate surfaces by consideringtitot and dispersion
effects. Kazemzadeh et al. (2008) proposed a method to optimizeresplbnse surfaces
based on a goal programming method. Robust regression approaches have alswdygsh sur
by many researchers. Huber (Bertsimas and Shioda 2007) proposeiunst@smethods to
obtain robust regression.-Morgenthaler and Schumacher (1999) discabsstl response
surfaces in chemistry based on design of experiment. Becausee ofidakness of the
previous methods.in compensating for outliers, the redescendingrivkizsts (also named
GM-estimators) were proposed by Andrews et al. (1972), whichldeet@a reject extreme
outliers entirely. Hund et al. (2002) presented various methods of odd#tection and
evaluated robustness tests with different experimental desigokel®iand Frahwirthb
(2006) compared different robust estimators with their applicatibhe. M- and GM-
estimators work by an iterative procedure. As a consequenceglsavthors (e.g., Cummins
and Andrews 1995) have called these estimators as iteratexgbighted least squares, or
IRLS methods. Ortiz et al. (2006) discussed some of the robust maisedsfor robust
regression in analytical chemistry. To obtain a more efficaaak yet robust method, Siegel
(1982) proposed the repeated median estimator. Also another useful mudhed is the
least median squared (LMS) method proposed by Rousseeuw (1984). Masdaltl986)
showed the advantages of its use in chemical analysis. The o#fier mgthod is the least
trimmed squared (LTS) that was proposed by Rousseeuw and U&8y)( Nguyena and
Welsch (2010) studied outlier detection and proposed a new least tlinsoneares
approximation. Both the LMS and the LTS are defined by minimizingbast measure of
the scatter of the residuals. Generalizing this, Rousseeuw aimai ¥1984) introduced S-
estimators which are significantly more efficient than the previestimators. A more recent
suggestion is the constrained M-estimates, or CM, proposed by MandeByler (1995),
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which combines the good local properties of the M-estimates argbtteglobal robustness
properties of the S-estimates. A ‘partial’ version of the ddireator based on the ‘faigy
function and an appropriate weighting scheme was recently proposeérigelS et al.
(2005). The authors believed that the partial robust M-regression outpgriexisting
methods for robust partial least square regression. BertsintaStaoda (2007) presented
mixed integer programming or MIP models for the classificatiil robust regression
problems. Zioutas and Avramidis (2005) examined the effect of deletitigers in the
regression model obtained by mixed integer programming and contpareerformance of
this model with that of least squares, or LS, and LMS. Another method in robust
regression is the mixed linear model surveyed by Dornheim aamhBskas (2011). (Pop and
Sarbu 1996) proposed a new fuzzy regression algorithm to obtain robust.nvalelsna et
al. (2006) proposed many M-estimators using robust regression methdmgh single
response and multiple responses. Shahriari et al. (2011) proposed a rwsgggwobust
estimation of the process mean method based on M-estimator andnéteiod is less
sensitive to the presence of outliers. For better illustratigragosed method, the literature
review has been classified in Table 1.

Table 1 Summary of literature review

Author (year) Characteristic
Iterative method Considering Ordinary least Different M- Other regression
equality of square estimators models
variation of
residuals

Huber (1981)

Siegel (1982)

Rousseeuw (1984)

Massart et al. (1986)
Rousseeuw and Leroy (1987)
Cummins and Andrews (1995)
Pop and Séarbu (1996) v
Morgenthaler and Schumacher (1999)
Hund et al. (2002) v

Zioutas and Avramidis (2005) v
Serneels et al. (2005) V4 v

Bickela and Fruihwirthb (2006) v v

Ortiz et al. (2006) v v v

Bertsimas and Shioda (2007) v
Nguyena and Welsch (2010) v v

Dornheim and Brazauskas (2011) v
Proposed REVIM v v v
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In this paper, a novel robust approach considering both outlier ddt&remds in residuals
variations which do not violate the normality assumption is discussed.

This paper is organized as follows. The section ‘Robust estimaf the coefficients by
iterative weighting methods’ presents the robust modification ofgbponse surface by an
iterative weighting procedure. The proposed method is defined imrséRbbust estimation
of coefficients by testing equality of variations in spedifi@tervals’. To illustrate the
proposed method, a numerical example is presented in section ‘Nure@aaaple’. Finally,
the last section is the ‘Conclusion’ of this paper.
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Robust estimation of the coefficients by iterativeveighting methods

To compensate for the effects of the outlier values, we ¢hereemove the outlier data or
modifying them by weighting the residuals. The first approactoigational, so we choose
to modify them in order to decrease the effect of outliers ircttedficient estimation stage.
The proposed idea is as follows:

E(y)=4(B-B,). (1)

In this equationy; is a function defined by unknown coefficients).(For example, ifi = f1

+ fox1 andx; are constants, the resporysean be obtained from the experimental results, and
the regression model describes the relation between the vaabléebe expected values of
they;.

If all the measurements are good, then the OLS method providasanable model and the
coefficients are estimated by minimizing the following equation:

(yl_ﬂl(lél""’lép))z +...

2 2)
(o=t BB

However, if the results appear abnormal, which may be a conseqferesalual behavior in
the experiments, the coefficients are determined by minimihiedollowing equation. The
abnormality occurs when a residual behaves like an outlier:

W (v~ 1B B,)) +

ANy 3)
ww, (v, =4 (B )

The weights are not pre-assigned values because the quakltgcb¥; is not known in
advance. The reasonable values for the weights are based on thalsedafined by the
following equation:

5 =Y~ (B B,). @)

To make the estimator invariant with respect to the scaleeofesiduals, thg is divided by

‘s,” which is a robust estimation of the scale. The valuesak'often taken to be equal to
1.4826 MAD, where MAD is the median of the absolute deviations of the residuals from thei
median and 1.4826 is a bias adjustment for the standard deviation under ried nor
distribution.

C
W,

The weights should be inversely proportional to the value of the residual |r|| . In other
words, the residuals with large values are weighted less, andhétieod produces better
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coefficient estimates. These weights can be chosen by aofurscich as the Huber weight
function:

! ()

wherec is a constant. The procedure is as follows: comphe first coefficients of the
regression model, compute the residuals and weightsthen compute the new coefficients
by the equation. This procedure can be repeateldaugdod solution is obtained, because the
values of the coefficients and the values of th&deals and weights are different. This
procedure is known as iterative weighting OLS. phecedure terminates when the change in
the estimation from one iteration to the next iisiently small.

This iterative method is good for modifying outgbut the trends in residual behavior are
not considered. As illustrated before, another apgn, in addition to taking outliers into
account, is the equality of variation between neaisl which is the main idea of the rest of
this paper.

Robust estimation of coefficients by testing equayi of variations in specified
intervals

First, normality assumption is checked. If the nality assumption is violated, this robust
approach based on Huber function cannot be applied. method proposed in this part
begins by dividing the experiment runs igtantervals to examine the hypothesis of equality
in variations in these intervals. The equality tesgd in this paper is Bartlett’s test (Anderson
and McLean 1974). The number of points in eachnmatecan be chosen in the analysis stage.
This stage satisfies one of the OLS hypotheseshidf parameter is small, the variation
between points might be large and if the numbehefpoints is large, the equality test of the
variances may not be reliable, so this value shbaldetermined rationally.

Bartlett’s test

Although residual plots are frequently used to dasg inequality of variance, statistical tests
have also been proposed. One widely used proceduiartlett’'s test. The procedure
involves computing a statistic whose sampling dtisation is closely approximated by the
chi-square distribution witla-1 degrees of freedom, where thgandom samples are from
independent normal populations. This statisticefsnegd as

x? = 2.30263 (6)
where

q:(N—a)Iong—Za:(ni—l) log?, , (7)

i=1
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c:1+3(1 1)(ia (ni—1)'1-(N-a)'1j, (8)

9)

2
and¥ is the sample variance of thb population.

2 2 2
The hypothesis of equality of variances is rejec'tteé0 g X‘“"l, where 7o is the uppemn
percentiles of the chi-square distribution wath degrees of freedom.

Proposed robust approach (robust equal variancesatative method)

The following steps are proposed as an iterativiéhotkto decrease the effect of trends in the
residuals and improve the robust estimation of fc@ehts. The proposed model is based on
OLS method which should be modified.

First of all, our goal is that the residuals thetlate the hypothesis of equality in variances
should have less effect on the estimates of th&iceats of the regression model, so we
should consider modifying these points to have kegaaances. Therefore, the residuals
derived by experiments are divided irgantervals, and then the variances of each interval

2

are calculated and denoted t§'y The next step Is to test the equality of varianedth

Bartlett’s test; if the result shows that the vades ina intervals do not have significant

differences, this part of the procedure is stoppelereas if the result shows that the

variances in thea intervals differ significantly, the iterative weiting procedure is used to

modify. As the next step, the critiagistatistic in Bartlett’s test, for which the hypesis will

be rejected, is computed. The criticpfor Bartlett's test is denoted kg, and in our case,
2A)

92 % The szl) is theith rank-sorted variances of the intervals, in dediey order. Thes(i)

is the variances of the points it ranked interval in thgh. In the proposed approach, in

higher and higher iterations approach, the residwmiances approach equality. The

maximum feasible variance of each intervals forohiBartlett’s test is fulfilled is denoted as

s max

Because thq value is greater tham after its computation, it should be decreaseatitezly
until the both values are equal. To do this, wedehe largest variance of all intervals. This

2
value is decreased in each iteration. If the vablﬂesle) equals ) in this decreasing
2
procedure, both%) and ) decrease in the next iteration. If the vadudoes not equal., the

2 2
values of the variances decrease again. If theesabf szl) and %) equal ) in this
decreasing procedure, all three variances declieafee next iteration, and this procedure
continues untily is equal toge. All maximum feasible variances of intervals tkatisfy the
hypothesis of Bartlett's test are computed witls titerative procedure. Next, we consider
two parallel linesl;:y = +w andl,y = -, with slope zero and parallel to tkeaxis. We
decrease the values iteratively and compute the variances ohtpobetween these two
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lines. Until the variances of the points are eqoahe maximum variance of intervals derived
from the last step, this decreasing procedure coes. After that, the points outside these
lines are weighted by function in (10).

The pseudo code of the proposed method illusttatespproach:

1. Divide residuals inta intervals.

2
2. Compute the variances of outliers in each interaadl denote these variances%y

w

Sort the variances of each interval in descendidgraand denote them bi).
Calculate the critical value of Bartlett's testémms of confidence level and the number

4. )
of intervals.
5. Compute theg value by formula in (7).
6. Compute the statistic of Bartlett’s test by fatenin (6).
7. Compute thec by considering the critical value of Bartlett'sté®ased on formula (6).
Do whileq> g,
o) ) o) Ai)
s W T o T %) >
: () o) vy ) 40) ) e _
S =% == =% 0 If §j <s,f=2 3.«
j=]+1

Determines® max as the maximum feasible variances of eachvileto satisfy the
hypothesis of equal variances.
Consider two parallel lines,|»,
Iy = +o andlzy = .
Do whilesé < s° max,
11y = Hmw andlzly = ‘mo.
12.Determine the points outside linkeandl..
Determine the weight of the outside residuals mgfion below (formula 10)

w =1 if I, <r <lI.

1

9.
10

11

13.
W =— fr>l,r<l, (10)

- I

After this step, by the robust iterative weightmgthod, the outliers are modified. After each
iteration, the test of equality in variances is aitezl, and if the hypothesis is violated, the
above mentioned method is applied. After the etyual variances is satisfied, the iterative
weighting method continues, and this procedureicoes as long as a minor change in the
estimation occurs from each iteration to the nexg.orhis procedure is called the robust
equal variances iterative method procedure (REVIM).

The flowchart in Figure 2 illustrates this method.

Figure 2 Flowchart of REVIM method.
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Numerical example

This is a hypothetical nhumerical experiment. Suppbsit we have an experiment containing
one response variable and four explanatory continhbles, each of which has three levels,
and the objective of the study is to optimize theddyof a product. The data to be used are
shown in Table 2. We want to explore the yield oese surface by using a second-order
regression model. A Box-Behnken design with 27ttnests is used for this experiment. The
blocking is used to diminish the effect of nuisaf@etors, and the blocks are assigned, for
example, to 3 days.

Table 2 A hypothetical data created according to Box-Behnken design

Material 1  Material 2 Material 3 Material 4 Block Y value X1 Xz X3 X4
0.82 1 -55 0 1 96.49 -0.1 -0.1 0 0
0.82 1 -45 -25 1 93.22 -0.1 -0.1 1 -1
0.82 1 -65 -25 1 87.43 -0.1 -0.1 -1 -1
0.91 0.91 -55 0 1 77.20 0.8 -1 0 0
0.91 1.09 -55 0 1 82.83 0.8 0.8 0 0
0.73 0.91 -55 0 1 94.87 -1 -1 0 0
0.73 1.09 -55 0 1 63.46 -1 0.8 0 0
0.82 1 -65 25 1 91.88 -0.1 -0.1 -1 1
0.82 1 -45 25 1 91.88 -0.1 -0.1 1 1
0.83 1.02 -55 0 2 100.28 0 0.1 0
0.92 1.02 -55 -25 2 90.44 0.9 0.1 0 -1
0.74 1.02 -55 -25 2 92.53 -0.9 0.1 0 -1
0.83 0.93 -65 0 2 90.32 0 -0.8 -1 0
0.83 111 -65 0 2 91.45 0 1 -1 0
0.83 1.11 -45 0 2 90.85 0 1 1 0
0.83 0.93 -45 0 2 69.08 0 -0.8 1 0
0.92 1.02 -55 25 2 88.55 0.9 0.1 0 1
0.74 1.02 -55 25 2 91.55 -0.9 0.1 0 1
0.83 1.02 -55 0 3 90.96 0 0.1 0 0
0.83 0.92 -55 -25 3 85.67 0 -0.9 0 -1
0.83 111 -55 =25 3 80.21 0 1 0 -1
0.74 1.02 -45 0 3 84.74 -0.9 0.1 1 0
0.93 1.02 -65 0 3 93.70 1 0.1 -1 0
0.74 1.02 -65 (0] 3 92.24 -0.9 0.1 -1 0
0.93 1.02 -45 0 3 95.60 1 0.1 1 0
0.83 111 -55 25 3 87.83 0 1 0 1
0.83 0.92 =55 25 3 83.21 0 -0.9 0 1

The primary fitted response regression model ®l®vs:

y=93.65+ 0.3% + 0.4,- 1.92+ 0.39
-3.89¢ - 9.55%; - 0.19;- 0.9Z+ 12X,
+2.02¢%, — 0.3Xx,+ 478X+ 2.47x,
—-1.44x,x, + block effect.

(11)

The normality assumptions are checked in this ekauapd the results are given in Figure 3.
The P value obtained by normality test is 0.414. Thitugashows that the residuals follow
normal distribution.

Figure 3 Normality assumption and adequacy checking of residuals.
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The analysis of variance (ANOVA) results are shamwiiable 3.

Table 3The ANOVA results

Term Coefficient Standard error T value P value
Constant 93.6635 4,732 19.794 0
Block 1 -1.6534 2.305 -0.717 0.49
Block 2 1.1817 2.284 0.517 0.616
X1 0.329 2.636 0.125 0.903
X2 0.408 2.636 0.155 0.88
X3 -1.9282 2.416 -0.798 0.443
X4 0.3978 2.416 0.165 0.872
X1 * Xg -3.898 4.215 -0.925 0.377
X2 * Xo -9.5556 4173 -2.29 0.045
X3 * X3 -0.1949 3.571 -0.055 0.958
X4 * Xy —-0.9236 3.578 =0.258 0.802
X1 * Xo 12.3039 5.054 2.434 0.035
X1 * X3 2.0222 4.366 0.463 0.653
X1 * Xq -0.3262 4.619 -0.071 0.945
X2 * X3 4.733 4.564 1.037 0.324
Xo * Xq 2.4782 4,342 0.571 0.581
X3 * X4 -1.4475 4,174 -0.347 0.736

Figure 4 shows the residuals of the model in tlieoof runs. As shown in the figure, the
residuals have a rough trend, and if we dividertims into 3 equal intervals, each containing
9 runs, the second interval has larger variance. @n be proved by Bartlett’s test.

Figure 4 The least squares residuals of the model in order of the runs.

The result of Bartlett’s test is illustrated in &g 5 and Table 4.

Figure 5 The results of equality test of variances.

Table 4Bartlett's test results (test statistic = 9.09)

Intervals Number Lower Standard deviation Upper
1 9 3.94377 6.32629 14.3264
2 9 4.07722 6.54037 14.8112
3 9 1.29441 2.07639 4.7021

In this case, we have three intervalsasb= 2. If we consider the significance level 0.95, the
critical statisticxo.0s £ is equal to 5.99 and the test statistic = 9.0§réster than 5.99, then
the hypothesis is rejected. Therefore, we wanbtopute the maximum standard deviation of
each interval that satisfies the hypothesis of |Biit test. By the proposed method, the
maximum values of these standard variations arereddas followss; = 2.07,s, = 4.95,5; =
4.95. Based on these values, we can compute tlits, ligr= 8.7 and; = —8.75. Two points 5
and 16 are outside these limits (circled in theirg), so the weighting procedure is applied
and new coefficients are calculated by the robusiglting method. Figure 6 shows the
method graphically.
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Figure 6 Proposed method.

The residuals are computed by this procedure, laadhypothesis of equal variance in three
intervals is satisfied. Bartlett’s test is appliedthe residuals obtained from the proposed
method, and the results are given in Figure 7.

Figure 7 Proposed method residuals.

The value of Bartlett’s test is 4.32, and the higpsts of equal variances is not rejected.
Figure 8 illustrates the result better.

Figure 8 Bartlett’s test results after applying REVIM.

Therefore, the iterative weighting method basedhese coefficients to modify the effect of
outliers by Huber function with = 2 is applied. This process is applied in eagfaiton, and
if the equality test is not satisfied, the modifioa is applied. The final robust coefficients
and residuals are presented in Tables 5 and 6.

Table 5Final robust coefficients

Coefficient Value
Intercept 94.19
X1 0.63
X2 1.6
X3 -1.5
X4 0.39
X1 X2 13.29
X1X3 2.06
X1X4 -0.32
XoX3 3.59
XoX4 2.46
X3X4 -1.44
X1 -4.13
Xo" -9.32
X3~ -0.19
X4” -1.47
Block 1 -1.36

Block 2 1.28
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Table 6 Final residuals of robust model

Run Residual
1 3.89
2 3.09
3 -3.94
4 8.07
5 -11.6
6 4.44
7 -9.28
8 -2.75
9 4.28
10 4.73
11 -1.69
12 451
13 -2.1
14 5.97
15 1.2
16 ~-14.5
17 -4.28
18 1.65
19 -3.38
20 -13.6
21 -2
22 -1.29
23 2.63
24 0.19
25 2.71
26 -0.13
27 1.23

So the residuals in final iteration show that raald which hinted to be an outlier in first
iteration are really outliers, and the model estiomais more accurate and close to the model
with no outlier data that we call #tual model. These results can be compared with the
results obtained by the model with no outlier datae comparison shows that the proposed
model is more precise and accurate than the OL®aden estimation of the regression
coefficients by considering unequal variation betweesiduals. The results are given in
Table 7.
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Table 7Comparison between REVIM approach and OLS method

Coefficient Method

Actual OoLS REVIM
Intercept 95.67 93.66 94.19
X1 1.25 0.32 0.63
X2 -1.16 0.40 1.6
X3 0.79 -1.92 -1.5
X4 0.39 0.39 0.39
X1Xo 14.73 12.30 13.29
X1Xa 2.29 2.02 2.06
X1Xa -0.32 -0.32 -0.32
XoX3 -2.66 4,73 3.59
XoX4 2.47 2.47 2.46
XaXa -1.44 -1.44 -1.44
X1° -5.4 -3.89 -4.13
Xo° -7.71 =9.55 -9.32
X3 1.11 -0:19 -0.19
Xa? -3.48 -0.92 -1.47
Block 1 -1.99 -1.65 -1.36
Block 2 3.03 1.18 1.28
Conclusions

A robust estimation of the response surface igtheary goal of this paper. To this end, the
proposed method is defined, .instead of the commainary least squares method of
estimating coefficients of the response surfaceletmease the effects of two main causes of
the imprecise estimation of coefficients, outlieasd trends in residuals. As the effect of
trends in residuals should be taken into accoum, groposed method simultaneously
modifies the effects of trends and outliers. Fochederation, an equality test of residual
variances is performed, and after this hypothassaiisfied, the outliers are modified. A goal
for future research may be to examine the weightmgiead of computing the distance of the
residuals from base line after plotting the respsna a normal probability plot (NPP), the
weighting function may be proportional to the dmsta of the response from the NPP
regression line.
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Probability Plot of Residuals
Normal

Mean 1.146357E-14
StDev 5.177
N 27
AD 0.364
P-Value 0.414

Figure 3 Residuals
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Residuals Versus the Order of the Data
(response is Y)
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Figure 4 Observation Order
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Bartlett's test

Bartlett's Test

Test Statistic 9.09
P-Value 0.011

Levene's Test

Test Statistic 2.37
P-Value 0.115
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Figure ©5% Bonferroni Confidence Intervals for StDevs



www.SID.ir

Figure 6
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Residuals after applying proposed method

Figure 7
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Bartlett's test

Bartlett's Test

Test Statistic 4.82
P-Value 0.090

Levene's Test

Test Statistic 0.36
P-Value 0.698
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