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Abstract 

In many circumstances, the quality of a process or product is best characterized by a given 
mathematical function between a response variable and one or more explanatory variables 
that is typically referred to as profile. There are some investigations to monitor autocorrelated 
linear and nonlinear profiles in recent years. In the present paper, we use the linear mixed 
models to account autocorrelation within observations which is gathered on phase II of the 
monitoring process. We undertake that the structure of correlated linear profiles 
simultaneously has both random and fixed effects. The work enhanced a Hotelling’s T2 
statistic, a multivariate exponential weighted moving average (MEWMA), and a multivariate 
cumulative sum (MCUSUM) control charts to monitor process. We also compared their 
performances, in terms of average run length criterion, and designated that the proposed 
control charts schemes could effectively act in detecting shifts in process parameters. Finally, 
the results are applied on a real case study in an agricultural field. 
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Introduction 

Control charts are used to detect anomalies in the processes. They are most often used to 
monitor production-related processes. In many business-related processes, the quality of a 
process or product can be characterized by a relationship between a response variable and one 
or more explanatory variables which is referred to as profile. The purpose of the analyzing of 
profile in phase I is to determine the stability of the process and estimate parameters; 
however, in phase II, analyzers are interested in rapidly detecting the significant shifts in the 
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process parameters. Phase I analysis of simple linear profiles has been investigated by a 
number of authors such as Stover and Brill (1998), Kang and Albin (2000), Kim et al. (2003) 
and Mahmoud et al. (Mahmoud and Woodall 2004, 2007). Many authors including Kang and 
Albin (2000), Kim et al. (2003), Gupta et al. (2006), Zou et al. (2006), Saghaei et al. (2009), 
and Mahmoud et al. (2009) have investigated phase II monitoring of simple linear profiles. 
Noorossana et al. (2010a, b) investigated monitoring of multivariate simple linear profiles on 
phase II. Zou et al. (2007) and Kazemzadeh et al. (2009a, b) considered cases when the 
profiles can be characterized by multiple and polynomial regression models respectively. 
Mahmoud (2008) considered phase I monitoring of multiple linear profiles, and Kazemzadeh 
et al. (2008) proposed three methods for monitoring the kth-order polynomial profile in phase 
I. Ding et al. (2006), Moguerza et al. (2007), Williams et al. (2007), and Vaghefi et al. (2009) 
investigated nonlinear profiles. In these studies, it is implicitly assumed that the error terms 
within or between profiles is independently and identically normally distributed; however in 
some cases, these assumptions can be violated. Noorossana et al. (2010a, b) analyzed the 
effects of non-normality on the monitoring of simple linear profiles. Noorossana et al. (2008) 
and Kazemzadeh et al. (2009a, b) investigated autocorrelation between successive simple 
linear and polynomial profiles respectively. Soleimani et al. (2009) proposed a transformation 
to eliminate the autocorrelation between observations within a simple linear profile in phase 
II. Jensen et al. (2008) proposed two T2 control charts based on linear mixed model (LMM) to 
account for the autocorrelation within linear profiles in phase I. They concluded that the 
linear mixed model is superior to the least square approach for unbalanced or missing data, 
especially when the number of observation within a profile is small and the correlation is 
weak. Jensen and Birch (2009) used nonlinear mixed model to account correlation within 
nonlinear profiles. Qie et al. (2010) investigated nonparametric profile monitoring with 
arbitrary design using mixed models. They proposed a control chart that combines the 
exponentially weighted moving average control chart based on local linear kernel smoothing 
and a nonparametric regression test under the assumption that observations within and 
between individual profiles are independent of each other. 

The present study acts as an extension of the work of Jensen et al. (2008) in applying a linear 
mixed model on the presence of autocorrelation within linear profiles on phase I control chart 
applications; conversely, our focus is on phase II of profile monitoring in which one could 
use the proposed control charts to detect any departures from the given profile parameters. 

The remainder of the paper is organized as follows. In ‘Linear mixed model’ section, the 
LMM is mathematically presented. In the ‘Proposed methods’ section, our methods including 
three modified multivariate control charts namely Hotelling T2 (Hotelling 1947), multivariate 
exponential weighted moving average (MEWMA) and a multivariate cumulative sum control 
charts (MCUSUM) are illustrated. In ‘Simulation studies’section, the results of simulation 
study to evaluate the performance of the methods are presented. In addition, a case study 
from an agriculture field is investigated on the section ‘Case study.’ The final section closes 
with concluding remarks. 

Linear mixed model 

Linear mixed models (Laird and Ware 1982) are popular for analysis of longitudinal data. A 
linear mixed model contains fixed and random effects and is linear in these effects. This 
model allows us to account autocorrelation within profiles. In matrix notation, a mixed model 
can be represented as 
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 ,= + +y Xβ Zb ε   (1) 

where y is a vector of observations, with mean E(y) = Xβ, β is a vector of fixed effects, b is a 
vector of independent and identically distributed (IID) random effects with mean ( )E =b 0 

and variance-covariance matrix ( )Var =b D , ϵ is a vector of IID random error terms with 

mean ( )E = 0ε  and variance ( )Var = Rε , and X and Z are matrices of regressors relating the 

observations y to β and b. 

In the 1950s, Charles Roy Henderson provided the best linear unbiased estimate (BLUE) of 
fixed effects and best linear unbiased predictions (BLUP) of random effects. Subsequently, 
mixed modeling has become a major area of statistical research, including work on the 
computation of maximum likelihood estimates, nonlinear mixed effect models, missing data 
in mixed effects models, and Bayesian estimation of mixed effects models (West et al. 2007). 

Henderson’s ‘mixed model equations’ (MME) are (Robinson 1991) as follows: 

1 1 1

1 1 1 1
 

− − −

− − − −

 
     =    +     

 

βX R X X R Z X R y

Z R X Z R Z D Z R yb

�

�

' ' '

' ' '
  (2) 

The solutions to the MME, β
�

, and b
�

  are BLUEs and BLUPs for β and b, respectively. 

Mixed models require somewhat sophisticated computing algorithms to fit. Solutions to the 
MME are obtained by methods similar to those used for linear least squares. For complicated 
models and large datasets, iterative methods may be needed. 

In profile monitoring, one could suppose that the jth response follows a LMM; therefore, 

 ; 1, 2, ,  ,j j j j j j m= + + = …y X β Z b ε   (3) 

where Xi is a (nj × p) matrix of regressors, and Zj is a (nj × q) matrix associated with random 
effects. β is a (p × 1) vector of fixed effects, and yj is the (nj × 1) response vector for the jth 
profile. The coefficient vector of the random effect terms is bj ~ MN (0,D), and D is assumed 
to be a diagonal matrix; thus, the random effects are assumed not to be correlated with each 

other. In addition, it is assumed that ( )Cov , 0j j =ε b  and εj is (nj × 1) vector of errors where 

εj ~ MN (0,Rj). If the errors are assumed to be independent, 2
j σ=R I , but correlated, the 

functional structure for the error terms may be used. 

As noted before, it is considered that β
�

 is an estimator of β, and jb
�

 is a predictor of bj, then 

jj =y X β
� �

 is the population average, and jj jj +=y X β Z b
� � �

 is the profile specific prediction; 

so if D and Rj are known, then it can be shown as follows: 

( ) ( )1
' 1 ' 1

1 1
 ,

m m

j j j j j jj j

−
− −

= =
= ∑ ∑β X V X X V y

�

  (4) 
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and the BLUP of b is 

' 1  ,j j j j j
−  = − 
 

b DZ V y X β
� �

  (5) 

where '
j j j j= +V Z DZ R  is the overall estimated variance covariance matrix (Schabenberger 

and Pierce 2002). 

Proposed methods 

In this paper, we propose a linear mixed model approach for accounting the correlation 
within linear profiles in phase II. It is assumed that profiles are correlated based on first-order 
autoregressive (AR(1)) structure. 

If the errors follow an autocorrelated structure such as an AR(1) structure, then Rj by 
Schabenberger and Pierce (2002) is given as Equation 6. More details on the types of 
correlated errors structures could be acquired in this reference as 
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  (6) 

It is assumed that for the jth sample collected over time, our observations are (Xi,yij), i = 
1,2,…,n and j = 1,2,…,m. We considered the case that all the fixed effects have a 

corresponding random effect, ( ) j j=X Z . If the process is in control, the problem can be 

formulated as follows: 

( ) ( ) ( )0 0 1 1 1 1 1 1  ij j j i p p j p i ijy b b x b xβ β β ε− − −= + + + +…+ + +   (7) 

and 

1  ,ij ij ijaε ρε −= +   (8) 

where εij are the correlated error terms and aij are white noises as aij ~ N(0,σ2). The β0, 
β1,…,βp − 1 are fixed effects that are the same for all profiles. The b0j,b1j,…,bp − 1j are random 
effects for the jth profile and they are normal random variables with zero mean and variance 
of 2 2 2

0 1 1 , , , pσ σ σ −… , respectively, which are not to be correlated with each other and also not to 

be correlated with the errors. The x values are fixed and constant from profile to profile. In 
this article we especially focused on phase II of the monitoring process, so all profile’s 
parameters, process variance, and correlation coefficient are known in phase I. Accordingly, 
we utilized the modified Jensen et al. (2008) approach to monitor autocorrelation on phase II. 
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The Hotelling’s T2 statistic control chart 

As a first proposed control chart, we use T2 statistic to monitor the fixed effects for each 
sample. This statistic is given by 

'
12

0 0  ,j j jT
−   = − −   

   
∑β β β β

� �

  (9) 

where ( ) ( )11 1 1 1
j j j j j jj

−− − − −=β X V X X V y
�

 and β0 denote the in-control value of β. 

In Equation 9 the variance covariance matrix of fixed effects is ( ) 11'
j j j

−−=∑β
X V X . 

The upper control limit, UCL, is chosen to achieve a specified in control average run length 
(ARL). 

The MEWMA control chart 

Our second proposed control chart is based on MEWMA for monitoring the vector of jβ
�

. 

Here the MEWMA statistics is as follows: 

( )0 11  ,j jjθ θ −
 = − + − 
 

z β β z
�

  (10) 

where z0 = 0 and θ(0 < θ < 1) is the smoothing parameter. Therefore, the chart statistic 
denotes by MEWMAj is given by 

1'
 MEWMA ,j j j

−= ∑Z
z z   (11) 

where ( ) 1' 1

2 2 j j j

θ θ
θ θ

−−= =
− −∑ ∑z β

X V X . 

This control chart gives a signal when EWMAj > UCL, where (UCL > 0) is chosen to achieve 
a specified in control ARL. 

The MCUSUM control chart 

The third suggested method is based on the MCUSUM control chart. In this method, the 
statistic is given by 

( )1 0

0  for 

,
1 / ; for 

j

j
j j jj

c k

k c c k−

≤
=  + − − >  

s
s β β

�   (12) 
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where 

1/2'
1

1 0 1 0j j jj j

−
− −

    = + − + −    
     

∑c s β β s β β
� �

 and s0 = 0 and k is a selected constant. 

The estimator of variance covariance matrix is 

( ) 1' 1 .j j j

−−=∑β
X V X   (13) 

The chart gives a signal if ( )1/21' UCLj j

− >∑s s  where (UCL > 0) is chosen to achieve the 

desired in-control ARL. 

Simulation studies 

To show the performance of the proposed methods, we considered the underlying linear 
profile as Equation 14: 

( )0 13 2  ,ij j j i ijy b b x ε= + + + +   (14) 

where 

1 ,ij i j ijaε ρε −= +   (15) 

and aij ~ N(0,1),b0j ~ N(0,.1),b1j ~ N(0,.1). In our simulation investigation, we considered 
three significant different autocorrelation coefficients: a ρ = 0.1 to designate a weak type 
autocorrelated process, intermediate autocorrelation by ρ = 0.5, and strong autocorrelation by 
ρ = 0.9. The in-control ARL is roughly set equal to 200 and the ARL values were evaluated 
through 10,000 simulation replications under different shifts in intercept, slope, and errors 
(standard deviation). For MEWMA control chart, the smoothing parameter θ is chosen to be 
0.2. As a general rule, to design MCUSUM control chart with the k approach, one chooses k 
to be half of the delta shift which is the amount of shift in the process that we wish to detect, 
expressed as a multiple of the standard deviation of the data points. Accordingly, we set k 
equal to 0.5. UCLs of control charts are designed to achieve a specified in control ARL of 
200. The simulated UCLs for each proposed control chart are shown in Table 1. 

Table 1 Simulated UCL for control charts 
ρ Value UCL for control charts  

T2 MEWMA  MCUSUM  

0.1 10.75 9.8 5.56 
0.5 6.68 8.8 4.98 
0.9 8.32 7.30 4.15 

The three proposed control charts are compared on different scenarios of the example in 
terms of ARL, and the calculated amounts for the different changes in the intercept is shown 
in Table 2. 
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Table 2 ARL comparisons under different λσ shift in intercept 
Method λ 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

T2 ρ = 0.1 184.1 147.3 109.3 78 52.6 36.4 25.5 18.1 13.2 9.7 
MEWMA  129.2 60.3 31.2 18.2 12.2 9.2 7.1 5.8 4.9 4.3 
MCUSUM  126.4 57 29.4 17.1 11.1 9 7.1 6.1 5.3 4.7 
T2 ρ = 0.5 192 168.2 135.2 99.4 73.2 53.4 38.8 27.4 20.2 14.7 
MEWMA  152.4 79 40.5 23.7 15.4 11.2 8.6 6.9 5.8 5 
MCUSUM  133 63.5 33.1 20.4 13.8 10.5 8.2 6.4 5.7 5 
T2 ρ = 0.9 198.5 196 192.1 185.4 173.7 162.5 150 135.5 121.1 107.2 
MEWMA  189.5 162.8 128.8 93.2 65.2 44.4 29.1 20.9 15.3 11.9 
MCUSUM  186.5 158.9 118.9 77.5 45.8 28.4 19.7 14.8 11.9 9.7 

According to the Table 2, under � σ shift in the intercept, when autocorrelation is weak (ρ = 
0.1), the MEWMA method performs relatively similar to MCUSUM control chart, and they 
also have better performance for detecting the small, moderate, and large shifts than the T2 
control chart. In the intermediate and strong autocorrelation circumstance (ρ = 0.5) and (ρ = 
0.9), MCUSUM performs uniformly better than the other two methods. Moreover, MEWMA 
uniformly performs better than T2 control chart. Figure 1 presented the derivative ARL under 
different shifts in intercept when autocorrelation is different in three levels. Table 3 shows the 
simulation results under different shifts in slope. 

Figure 1 ARL comparisons under λσ shift in intercept with  ρ = 0.1, 0.5, and 0.9. 

Table 3 ARL comparisons under different βσ shift in slope 
Method β 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 
T2 ρ = 0.1 196.3 194.2 178.3 164 146.6 128 109.8 96.6 82.1 68.3 
MEWMA  184.2 144.3 106.3 78.1 56.6 41.5 32.5 25.1 20.2 17.2 
MCUSUM  180.4 136.5 95.3 66.6 47.5 33.2 26.2 21.5 16.7 14.9 
T2 ρ = 0.5 198.3 195.2 181.4 163.3 143.7 126.5 108.6 93.4 78.5 66.8 
MEWMA  188 142.3 107.3 76.4 56.1 41.4 31.7 24.5 19.8 16.6 
MCUSUM  178 133.4 92.9 65.5 47.2 35.4 28.2 22 17.8 13.3 
T2 ρ = 0.9 197.1 193.6 179.2 162.1 141.7 125.6 107.1 91.9 79.5 67.5 
MEWMA  185.9 143.9 105.3 78.2 57.4 43.1 33.6 26.6 21.3 17.9 
MCUSUM  184.1 143.6 104.3 75.8 57.2 42.1 32.3 25.4 21.2 17.3 

From Table 3, under βσ shift in slope, while the autocorrelation is weak (ρ = 0.1), the 
proposed MCUSUM method uniformly performs better than MEWMA method. Also, 
MEWMA performs consistently better than T2 method. In addition, similar results are 
obtained when the autocorrelation is intermediate (ρ = 0.5). Once the amount of 
autocorrelation coefficient is high, MCUSUM and MEWMA methods perform uniformly 
better than the T2 method and also, MCUSUM method performs relatively similar to 
MEWMA method. Figure 2 illustrates ARL under different shifts in slope once 
autocorrelation be changed in the aforementioned levels. 

Figure 2 ARL comparisons under βσ shift in slope with ρ = 0.1, 0.5, and 0.9. 

Next comparisons of the proposed three control charts in terms of ARL under δσ shift in the 
standard deviation followed. Table 4 shows that the proposed T2 chart performs significantly 
better than MEWMA and MCUSUM charts in different amount of correlation coefficients. In 
addition for strong and intermediate autocorrelation condition, MEWMA and MCUSUM 
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have similar manners and when the autocorrelation is weak, MEWMA relatively achieves 
better performance. Derivative ARL under different shifts of standard deviation is presented 
in Figure 3 when autocorrelation is different. 

Table 4 ARL comparisons under δσ shift in standard deviation 
Method δ 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 

T2 ρ = 0.1 71.3 32.3 17.6 10.9 7.8 5.9 4.8 4.2 3.5 3.3 
MEWMA  87.3 46.3 29.4 20.1 14.6 11.8 9.6 8.3 6.8 5.9 
MCUSUM  95.2 53.3 33.7 25 18.4 14.5 11.7 10.2 8.5 7.3 
T2 ρ = 0.5 83.2 36.9 20.1 12.4 8.5 6.3 4.9 4 3.5 3.1 
MEWMA  95.1 51.5 31.5 21.9 15.9 12.3 10 8.1 6.8 6 
MCUSUM  95.3 52.2 32.6 23.3 17.4 13.4 11.3 9.3 8 7.1 
T2 ρ = 0.9 89.2 58.2 34.3 20.3 14.3 10.5 7.9 6.3 5.5 4.2 
MEWMA  117.7 71.2 48.1 33.1 23.7 18.2 14.4 11.8 9.8 8.2 
MCUSUM  117.5 71 46.8 32.4 23.4 17.6 14.1 11.7 9.8 8.2 

Figure 3 ARL comparisons under δσ shift of standard deviation with ρ = 0.1, 0.5, and 
0.9. 

Based on the simulation results, it is evident that the proposed MEWMA and MCUSUM 
methods act relatively better than the T2 chart in detecting shift in the parameters of profile; 
conversely, the proposed T2 chart performs better than the MEWMA and MCUSUM in 
detecting shift in the variation. 

Case study 

Consider the case study carried out by Schabenberger and Pierce (2002). It was a real data set 
from ten apple trees which 25 apples are randomly chosen on each tree. Their focus was on 
the analysis of the apples in the largest size, with initial diameters exceeded 2.75 in. Totally 
there were 80 apples in aspiration size. Diameters of the apples were recorded in every 2 
weeks during 12 weeks. Figure 4 shows 16 diameters out of 80 apples in the time domain. In 
their investigation, functional profile between time and diameter considered as quality 
characteristic that needs to be monitored over time. Schabenberger and Pierce (2002) and also 
later Soleimani et al. (2009) modeled such correlation between observations by a first-order 
autoregressive model of AR(1). Based on the preceding analysis, the following statements 
hold a linear mixed model equation for the declared case study: 

Figure 4 Measured diameters of apples during a period of 12 weeks. (Schabenberger and 
Pierce 2002). 

( )0 12.8321 0.02875 ,ij j j i ijy b b x ε= + + + +   (16) 

1.382 ,5ij i j ijaε ε −= +   

where b0j ~ N(0,0.008653), b1j ~ N(0,0.00005), and a0j ~ N(0,0.000365). 

The estimator of variance-covariance matrix of fixed effects gives by 
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1.4244 .3034
.

.3034 0.0870

− 
 − 

∑   (17) 

Consequences of simulation run in the previous section leads us to use MEWMA and 
MCUSUM which have relatively similar performance on detecting shift in the profile 
parameters rather than the T2 method. Hence, the proposed MEWMA control chart was 
applied in monitoring the linear profile. The smoothing constant (θ) is set equal to 0.2. In 
order to achieve an in control ARL of 200, the upper control limit is set equal to 7 based on 
10,000 simulation runs. In order to examine performance of the control chart, six random 
samples from the in control simple linear profile are initially generated. Formerly, three 
random samples are generated to show an out-of-control condition under the intercept shift 
coefficient of 0.6. Figure 5 illustrates sensitivity of the MEWMA control chart based on our 
proposed method which temperately depicts quick signal. 

Figure 5 MEWMA control chart under intercept shift coefficie nt of 0.6. 

Concluding remarks 

We have studied the sensitivity of three multivariate control charts to detect one-step 
permanent shift in any parameters of a mixed model linear profile. Our specially designed 
MCUSUM, MEWMA, and T2 control charts were also studied as competitors of each other to 
depict shifts in intercept and slope parameters and also process variation while first-order 
autoregressive model describes correlations within observations. 

The performances of the methods were compared in terms of average run length criteria. 
Table 5 shows the summarized results. 

Table 5 Comparisons on the performance of control charts under different shifts and 
autocorrelation status 
Process circumstance Shift on Priority to use 

Weakly autocorrelated Intercept MEWMA ≈ MCUSUM > T2 
 Slope MCUSUM > MEWMA > T2 
 Standard deviation T2 > MEWMA > MCUSUM 
Intermediately autocorrelated Intercept MCUSUM > MEWMA > T2 
 Slope MCUSUM > MEWMA > T2 
 Standard deviation T2 > MCUSUM ≈ MEWMA 
Strongly autocorrelated Intercept MCUSUM > MEWMA > T2 
 Slope MEWMA ≈ MCUSUM > T2 
 Standard deviation T2 > MCUSUM ≈ MEWMA 

The following summary recommendations are made: 

1 The proposed approach has good performance across the range of possible shifts and it 
can be used in phase II of linear profile monitoring on the presence of autocorrelation within 
observations. 
2 The anticipated MEWMA and MCUSUM methods almost uniformly perform better 
efficiency than the T2 Hotelling control chart under different step shifts in the intercept and 
slope parameters of linear profile. 
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3 The Hotelling T2 control chart has better performance in comparison with the MEWMA 
and MCUSUM methods under shifts in the process standard deviation. 
4 The process circumstance in terms of correlation coefficient has no significant effects on 
selecting the best choice for monitoring method. 
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