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Abstract

In many circumstances, the quality of a process or product ichasicterized by a given
mathematical function between a response variable and one or xpdaeatory variable
that is typically referred to as profile. There are somesinyations to monitor autocorrelated
linear and nonlinear profiles in recent years. In the presegudrpae use the linear mixed
models to account autocorrelation within observations which is gatbergthase Il of th
monitoring process. We undertake that the structure of correlateshr | profiles
simultaneously has both random and fixed effects. The work enhanttdeling’s T
statistic, a multivariate exponential weighted moving averagé\WMA), and a multivariat
cumulative sum (MCUSUM) control charts to monitor process. We asopared thei
performances, in terms of average run length criterion, and desigtizat the proposed
control charts. schemes could effectively act in detectingsshifprocess parameters. Finally,
the results are applied on a real case study in an agricultural field.
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Introduction

Control charts are used to detect anomalies in the processesarEheyost often used to
monitor production-related processes. In many business-related ggectse quality of a
process or product can be characterized by a relationship between a respabkearat one

or more explanatory variables which is referred to as prditle purpose of the analyzing of
profile in phase | is to determine the stability of the procasd estimate parameters;
however, in phase Il, analyzers are interested in rapidly degabie significant shifts in the
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process parameters. Phase | analysis of simple linearegrdfds been investigated by a
number of authors such as Stover and Brill (1998), Kang and Albin (2000)etkal. (2003)
and Mahmoud et al. (Mahmoud and Woodall 2004, 2007). Many authors including Kang and
Albin (2000), Kim et al. (2003), Gupta et al. (2006), Zou et al. (2006), Saghaki(2009),
and Mahmoud et al. (2009) have investigated phase Il monitoring of simgée profiles.
Noorossana et al. (2010a, b) investigated monitoring of multivairafdeslinear profiles on
phase II. Zou et al. (2007) and Kazemzadeh et al. (2009a, b) considsesdvehen the
profiles can be characterized by multiple and polynomial reigresaodels respectively.
Mahmoud (2008) considered phase | monitoring of multiple linear profites Kazemzadeh
et al. (2008) proposed three methods for monitoringktin@rder polynomial profile in phase
l. Ding et al. (2006), Moguerza et al. (2007), Williams e{2007), and Vaghefi et al. (2009)
investigated nonlinear profiles. In these studies, it is implieissumed that the error terms
within or between profiles is independently and identically nogrdiitributed; however in
some cases, these assumptions can be violated. Noorossana et al. [{2@l@dyzed the
effects of non-normality on the monitoring of simple linear profidsorossana et al. (2008)
and Kazemzadeh et al. (2009a, b) investigated autocorrelation betusmssve simple
linear and polynomial profiles respectively. Soleimani et al. (2009) proposeatséotraation

to eliminate the autocorrelation between observations within aesilimglar profile in phase
II. Jensen et al. (2008) proposed tWacontrol charts based on linear mixed model (LMM) to
account for the autocorrelation within linear profiles in phase I. Tdwcluded that the
linear mixed model is superior to the least square approach folannbd or missing data,
especially when the number of observation within a profile iallsand the correlation is
weak. Jensen and Birch (2009) used nonlinear mixed model to accountticorreldhin
nonlinear profiles. Qie et al. (2010) investigated nonparametric @raifibnitoring with
arbitrary design using mixed models. They proposed a control digtrtcombines the
exponentially weighted moving average control chart based on locat keenel smoothing
and a nonparametric regression test under the assumption that obserwvéthin and
between individual profiles are independent of each other.

The present study acts as an extension of the work of Jense(R€08) in applying a linear
mixed model on the presence of autocorrelation within linear prafiigshase | control chart
applications; conversely, our focus is on phase Il of profile monitannghich one could

use the proposed control charts to detect any departures from the given prafiletpes.

The remainder of the paper is organized as follows. In ‘Lingaed model’ section, the
LMM is mathematically presented. In the ‘Proposed methodsioseaur methods including
three modified multivariate control charts namely HotelllidHotelling 1947), multivariate

exponential weighted moving average (MEWMA) and a multivariateuwative sum control

charts (MCUSUM) are illustrated. In ‘Simulation studies’sattithe results of simulation
study to evaluate the performance of the methods are presentaddition, a case study
from an agriculture field is investigated on the section ‘Gaisdy.” The final section closes
with concluding remarks.

Linear mixed model

Linear mixed models (Laird and Ware 1982) are popular for analysismgitudinal data. A
linear mixed model contains fixed and random effects and is linetirese effects. This
model allows us to account autocorrelation within profiles. In matvtation, a mixed model
can be represented as
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y=Xp+Zb+e, (1)

wherey is a vector of observations, with meafy) = X, p is a vector of fixed effectd is a
vector of independent and identically distributed (1ID) random effedth meanE(b) =0

and variance-covariance matrb(ar(b) =D e€is a vector of IID random error terms with

meanE (e) =0 and variancevar(e) =R, andX andzZ are matrices of regressors relating the
observationy to g andb.

In the 1950s, Charles Roy Henderson provided tisé Ieear unbiased estimaBLUE) of

fixed effects and best linear unbiased predicti@isUP) of random effects. Subsequently,
mixed modeling has become a major area of statlstiesearch, including work on the
computation of maximum likelihood estimates, noaéin mixed effect models, missing data
in mixed effects models, and Bayesian estimatiomigkd effects models (West et al. 2007).

Henderson’s ‘mixed model equations’ (MME) are (Rwdain 1991) as follows:

XR™X XRZ |3 _ XR 7y ?)
ZR™X ZRZ+D™ b ZRy

The solutions to the MMB} , andb are BLUEs and BLUPs f@r andb, respectively.

Mixed models require somewhat sophisticated comguigorithms to fit. Solutions to the
MME are obtained by methods similar to those usediriear least squares. For complicated
models and large datasets, iterative methods magéeed.

In profile monitoring, one could suppose thatjtieresponse follows a LMM; therefore,
y, =X B+Z b, +g ;j=12,.m 3)

whereX; is a @yx p) matrix of regressors, ardfj is a (; x g) matrix associated with random
effects.p is a @ x 1) vector of fixed effects, ang is the ¢ x 1) response vector for tli
profile. The coefficient vector of the random efféerms isb; ~MN (0,D), andD is assumed

to be a diagonal matrix; thus, the random effemtsagsumed not to be correlated with each

other. In addition, it is assumed tkﬁov(aj ,bj): 0 andg; is (0 x 1) vector of errors where

g ~ MN (OR)). If the errors are assumed to be independBnt= o’l , but correlated, the
functional structure for the error terms may beduse

As noted before, it is considered tifatis an estimator o, and b; is a predictor ob;, then

y,; =X, B is the population average, ayd =X, +Z,b; is the profile specific prediction;
so if D andR; are known, then it can be shown as follows:

-1

l;:( T=1X'1V1_1Xj) (ZLX vy j) ’ (4)
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and the BLUP ob is
bj = Dz'jvj'l(yj -X, p) , ()

whereV,; =Z DZ 'j +R ; is the overall estimated variance covariance mgBthabenberger
and Pierce 2002).

Proposed methods

In this paper, we propose a linear mixed model @ggr for accounting the correlation
within linear profiles in phase Il. It is assuméait profiles are correlated based on first-order
autoregressive (AR(1)) structure.

If the errors follow an autocorrelated structurersias an AR(1) structure, thd®y by
Schabenberger and Pierce (2002) is given as EquétioMore details on the types of
correlated errors structures could be acquiretisreference as

i 1 o, pz e pnj 1]
1 p pn] -2
Ri=c*| p* p 1 o3 . (6)
_pnj—l pnj—z pnj—3 . 1 J

It is assumed that for thieh sample collected over time, our observations(&rgij), | =
12,...n andj = 1,2,...m. We considered the case that all the fixed effdedse a

corresponding random effec(,)(j :Zj). If the process is in control, the problem can be
formulated as follows:

Vi = (B + by, )£ (Bi+by ) Xt # (Brit by ) %o 1 H g (7)
and
& = PELTY; (8)

whereg; are the correlated error terms amgdare white noises aa; ~ N(0,6°). The fo,
P1.....Bp -1 are fixed effects that are the same for all pesfilThebg;,byj,...,bp - ; are random
effects for thgth profile and they are normal random variabledhiro mean and variance

of 0;,07,...,0._,, respectively, which are not to be correlated \e#ish other and also not to

be correlated with the errors. TRevalues are fixed and constant from profile to feofin

this article we especially focused on phase Il i monitoring process, so all profile’s
parameters, process variance, and correlationicieeif are known in phase I. Accordingly,
we utilized the modified Jensen et al. (2008) apphao monitor autocorrelation on phase Il.
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The Hotelling’s T? statistic control chart

As a first proposed control chart, we UEestatistic to monitor the fixed effects for each
sample. This statistic is given by

T’ =(Bj—ﬁoj 2'1[&—50) , )
where[Asj = X7V j)_l (X;V ;¥ ;) andpo denote the in-control value pf

In Equation 9 the variance covariance matrix oédixeffects isZB= (x'ivj'lx i )_1.

The upper control limit, UCL, is chosen to achievepecified in control average run length
(ARL).

The MEWMA control chart

Our second proposed control chart is based on MEWbdtAMonitoring the vector off; .
Here the MEWMA statistics is as follows:

Z; :g(éi_ﬂoj-'-(l_g)zi—l ’ (10)

wherezy = 0 andé(0 < # < 1) is the smoothing parameter. Therefore, thartchtatistic
denotes by MEWMAiIs given by

' -1
MEWMA  =2,>" "z, (11)

(V) 6 o -1
whereZZ: 2—62": 2_5(xjvj1x j) .

This control chart gives a signal when EWMAUCL, where (UCL > 0) is chosen to achieve
a specified in control ARL.

The MCUSUM control chart

The third suggested method is based on the MCUSUOMral chart. In this method, the
statistic is given by

forcj <k

= ) 12
S (sj_1+ﬁj—ﬁoj(1—k/cj);forcj>k’ (12)
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where

c, = l:(sj—l +[;j —[soj' z_l (sj_lﬂ;j —poﬂm andsy = 0 andk is a selected constant.

The estimator of variance covariance matrix is

2= (xvix, )_1' (13)

The chart gives a signal (fs'jz_ls])l/2 >UCL where (UCL > 0) is chosen to achieve the

desired in-control ARL.

Simulation studies

To show the performance of the proposed methodscomsidered the underlying linear
profile as Equation 14:

yij=3+b0j+(2+b1j)>§ tg (14)
where
& = P& T Yy, (15)

and a; ~ N(0,1)bg; ~ N(0,.1)by; ~ N(O,.1) In our simulation investigation, we considered
three significant different autocorrelation coeffiits: ap = 0.1 to designate a weak type
autocorrelated process, intermediate autocorreldtyp = 0.5, and strong autocorrelation by
p = 0.9. The in-control’/ARL is roughly set equal td2&hd the ARL values were evaluated
through 10,000 simulation replications under défdrshifts in intercept, slope, and errors
(standard deviation). For MEWMA control chart, grmoothing parametér is chosen to be
0.2. As a general rule, to design MCUSUM contrarthvith thek approach, one choosks
to be half of the delta shift which is the amouhslaift in the process that we wish to detect,
expressed as a multiple of the standard deviatiadheodata points. Accordingly, we det
equal to 0.5. UCLs of control charts are desigreddhieve a specified in control ARL of
200. The simulated UCLs for each proposed contrattcare shown in Table 1.

Table 1 Simulated UCL for control charts

p Value UCL for control charts
T’ MEWMA MCUSUM
0.1 10.75 9.8 5.56
0.5 6.68 8.8 4.98
0.9 8.32 7.30 4.15

The three proposed control charts are comparedifteresht scenarios of the example in
terms of ARL, and the calculated amounts for thHidnt changes in the intercept is shown
in Table 2.
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Table 2 ARL comparisons under different Ao shift in intercept

Method A 0.2 0.4 0.6 0.8 1 12 14 16 1.8 2

T p=01 1841 147.3 109.3 78 526 364 255 18.1 213.9.7
MEWMA 129.2 603 31.2 182 122 9.2 7.1 5.8 49 3 4.
MCUSUM 126.4 57 294 171 111 9 7.1 6.1 53 4.7
T p=05 192 168.2 1352 994 732 534 388 274 220.14.7
MEWMA 152.4 79 405 237 154 112 8.6 6.9 5.8 5
MCUSUM 133 635 331 204 138 105 8.2 6.4 5.7 5
T p=09 1985 196 1921 1854 173.7 1625 150 135121.1 107.2
MEWMA 189.5 162.8 1288 932 652 444 291 209531 119
MCUSUM 186.5 1589 1189 775 458 284 19.7 14.819 9.7

According to the Table 2, undérs shift in the intercept, when autocorrelation isakég =
0.1), the MEWMA method performs relatively simitar MCUSUM control chart, and they
also have better performance for detecting the Ismalderate, and large shifts than fffe
control chart. In the intermediate and strong aut@tation circumstance (= 0.5) and£ =
0.9), MCUSUM performs uniformly better than the eattwo methods. Moreover, MEWMA
uniformly performs better thaff control chart. Figure 1 presented the derivati®_Ainder
different shifts in intercept when autocorrelatisrifferent in three levels. Table 3 shows the
simulation results under different shifts in slope.

Figure 1 ARL comparisons underie shift in intercept with p = 0.1, 0.5, and 0.9.

Table 3ARL comparisons under different o shift in slope

Method B 0.025 0.05 0.075 01 0125 0.15 0.175 0.2 0.225 0.25
T p=01 1963 1942 1783 164 146.6 128 109.8 96.2.18 68.3
MEWMA 184.2 1443 106.3 78.1 56.6 415 325 25.10.22 17.2
MCUSUM 180.4 136.5 953 66.6 475 332 26.2 21.56.71 14.9
T p=05 198.3 1952 1814 163.3 143.7 126.5 108.6.4 9378.5 66.8
MEWMA 188 =« 1423 1073 764 561 414 317 245 819.16.6
MCUSUM 178 1334 929 655 47.2 35.4 28.2 22 17.83.3
T p=09 19711936 179.2 1621 1417 1256 107.1.991795 675
MEWMA 185.9.© 1439 105.3 78.2 574  43.1 33.6 26.61.32 17.9
MCUSUM 184.1 143.6 104.3 75.8 572 421 323 252312 173

From Table 3, undeps shift in slope, while the autocorrelation is we@k= 0.1), the
proposed MCUSUM method uniformly performs betteathMEWMA method. Also,
MEWMA performs consistently better thalf method. In addition, similar results are
obtained when the autocorrelation is intermedigie =( 0.5). Once the amount of
autocorrelation coefficient is high, MCUSUM and MBAX methods perform uniformly
better than theT> method and also, MCUSUM method performs relativsimilar to
MEWMA method. Figure 2 illustrates ARL under diféet shifts in slope once
autocorrelation be changed in the aforementionezlde

Figure 2 ARL comparisons under e shift in slope withp = 0.1, 0.5, and 0.9.

Next comparisons of the proposed three controltsharterms of ARL undefo shift in the

standard deviation followed. Table 4 shows thatpttposedr? chart performs significantly
better than MEWMA and MCUSUM charts in different@mt of correlation coefficients. In
addition for strong and intermediate autocorretatamndition, MEWMA and MCUSUM
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have similar manners and when the autocorrelasowdak, MEWMA relatively achieves
better performance. Derivative ARL under differshifts of standard deviation is presented
in Figure 3 when autocorrelation is different.

Table 4 ARL comparisons underde shift in standard deviation

Method o 1.2 1.4 1.6 1.8 2 2.2 2.4 26 28 3

T p=0.1 71.3 323 176 109 7.8 59 4.8 42 35 33
MEWMA 87.3 46.3 294 201 146 118 9.6 8.3 6.895.
MCUSUM 95.2 53.3 337 25 184 145 117 102 8.53 7
T p=0.5 83.2 369 201 124 85 6.3 4.9 4 35 31
MEWMA 95.1 515 315 219 159 123 10 81 68 6
MCUSUM 95.3 522 326 233 174 134 113 9.3 81 7.
T p=0.9 89.2 58.2 343 203 143 105 7.9 6.3 552 4.
MEWMA 1177 712 481 331 237 182 144 118 0982
MCUSUM 117.5 71 468 324 234 176 141 117 982

Figure 3 ARL comparisons underde shift of standard deviation withp = 0.1, 0.5, and
0.9.

Based on the simulation results, it is evident that proposed MEWMA and MCUSUM
methods act relatively better than fifechart in detecting shift in the parameters of ijepf
conversely, the proposetf chart performs better than the MEWMA and MCUSUM in
detecting shift in the variation.

Case study

Consider the case study carried out by SchabenbangePierce (2002). It was a real data set
from ten apple trees which 25 apples are randoimbgen on each tree. Their focus was on
the analysis of the apples in the largest sizéh witial diameters exceeded 2.75 in. Totally
there were 80 apples in _aspiration size. Diameaiéithe apples were recorded in every 2
weeks during 12 weeks. Figure 4 shows 16 diametdrsf 80 apples in the time domain. In
their investigation, [functional profile between @nmand diameter considered as quality
characteristic that needs to be monitored over.tBobabenberger and Pierce (2002) and also
later Soleimani et al. (2009) modeled such coriglabetween observations by a first-order
autoregressive model of AR(1). Based on the pregednalysis, the following statements
hold a linear mixed model equation for the declarase study:

Figure 4 Measured diameters of apples during a period of 1&eeks.(Schabenberger and
Pierce 2002).

y, =2.832% by, +( 0.02875b, )x +¢,, (16)
& =.385¢,; +a,

whereby ~ N(0,0.008653)b;; ~ N(0,0.00005), andg; ~ N(0,0.000365).

The estimator of variance-covariance matrix of divedfects gives by
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1.4244 - .303
3- (17)

Z{—.3034 0.087

Consequences of simulation run in the previousi@edeads us to use MEWMA and
MCUSUM which have relatively similar performance aetecting shift in the profile
parameters rather than tAé@ method. Hence, the proposed MEWMA control chars wa
applied in monitoring the linear profile. The sntuog constantd) is set equal to 0.2. In
order to achieve an in control ARL of 200, the uppentrol limit is set equal to 7 based on
10,000 simulation runs. In order to examine pergomoe of the control chart, six random
samples from the in control simple linear profile anitially generated. Formerly, three
random samples are generated to show an out-ofet@undition under the intercept shift
coefficient of 0.6. Figure 5 illustrates sensitvidf the MEWMA control chart based on our
proposed method which temperately depicts quiakasig

Figure 5 MEWMA control chart under intercept shift coefficie nt of 0.6.

Concluding remarks

We have studied the sensitivity of three multivi@iaontrol charts to detect one-step
permanent shift in any parameters of a mixed mbédebr profile. Our specially designed
MCUSUM, MEWMA, andT? control charts were also studied as competitoesaoh other to
depict shifts in intercept and slope parameters aad process variation while first-order
autoregressive model describes correlations wahservations.

The performances of the methods were comparedrinstef average run length criteria.
Table 5 shows the summarized results.

Table 5Comparisons on the performance of control charts uder different shifts and
autocorrelation status

Process circumstance Shift on Priority to use
Weakly autocorrelated Intercept MEWMAMCUSUM > T2
Slope MCUSUM> MEWMA > T?
Standard deviation T°> MEWMA > MCUSUM
Intermediately autocorrelated Intercept MCUSBMIEWMA > T?
Slope MCUSUM> MEWMA > T?
Standard deviation T?> MCUSUM =~ MEWMA
Strongly autocorrelated Intercept MCUSUMMEWMA > T?
Slope MEWMA= MCUSUM > T?
Standard deviation T2 > MCUSUM~ MEWMA

The following summary recommendations are made:

1 The proposed approach has good performance abhessnge of possible shifts and it
can be used in phase Il of linear profile monitgram the presence of autocorrelation within
observations.

2 The anticipated MEWMA and MCUSUM methods almasfarmly perform better
efficiency than th@? Hotelling control chart under different step shift the intercept and
slope parameters of linear profile.


www.SID.ir

3 The HotellingT? control chart has better performance in compansitinthe MEWMA
and MCUSUM methods under shifts in the procesddstahdeviation.

4 The process circumstance in terms of correlata@ificient has no significant effects on
selecting the best choice for monitoring method.
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