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Abstract 

Production planning and control (PPC) systems have to deal with rising complexity and 
dynamics. The complexity of planning tasks is due to some existing multiple variables and 
dynamic factors derived from uncertainties surrounding the PPC. Although literatures on 
exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in 
production planning, they seem to be inefficient because of daily fluctuations in real 
factories. Decision support systems can provide productive tools for production planners to 
offer a feasible and prompt decision in effective and robust production planning. In this 
paper, we propose a robust decision support tool for detailed production planning based on 
statistical multivariate method including principal component analysis and logistic regression. 
The proposed approach has been used in a real case in Iranian automotive industry. In the 
presence of existing multisource uncertainties, the results of applying the proposed method in 
the selected case show that the accuracy of daily production planning increases in comparison 
with the existing method. 

Keywords 

Principal component analysis, Logistic regression, Production planning control, Decision 
support system 

Introduction 

Effective planning and control of production processes are usually seen as key to the success 
of a manufacturing company. During the last 50 years, both academic institutes/universities 
and industries have put great effort into developing and designing successful approaches and 
methods for manufacturing planning and control. Indeed, the methods and approaches of how 
to plan and control production have been changed over time. This occurs in line with changes 
in customer requirements and technology improvements (Vollmann et al. 2005). 
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Detailed production scheduling is an extremely complex problem (Brucker 2007) wherein 
most cases are considered NP-hard (Günther and van Beek 2003). In order to deal with 
complexities and uncertainties, a detailed production scheduling system should be equipped 
with all the necessary decision support tools for rendering production problems visible within 
a planning period and shift dispatching control from the foremen to the planner (Sotiris et al. 
2008). According to Simchi-Levi et al. (2008), the decision support system (DSS) is an 
analytical tool to aid operations and production planning. The DSS can range from simple 
tools to expert systems. The DSS helps to solve the problems such as network planning to 
tactical planning all the way to daily operational problems. Thus, the effective DSS can help 
managers or production planners to manage uncertainties and achieve better results in daily 
fluctuations. 

The stimulus for this work has been to understand whether or not the historical daily shop 
floor data can be used for creating more robust daily production plan. Moreover, the paper 
studies the feasibility of using the multivariate statistical analysis of daily shop floor data as 
an appropriate solver tool for detailed production scheduling decision support system. In 
order to answer these, we represent an Iranian automotive case of detailed production 
planning in applied material requirement planning (MRP) system. The results may not be 
generalized to JIT and lean manufacturing principles which have a pull approach of planning 
and control of production. The rest of the paper has been organized as follows: in next 
section, the related literature has been reviewed, whilst the problem has been defined and the 
selected case has been presented in the ‘Case problem statement’ section. The ‘Methodology 
of problem analysis’ section has outlined the proposed multivariate DSS as subsequent 
specifications arising from the ‘Case problem statement’ section. The ‘Proposed multivariate 
DSS method’ section has demonstrated the implementation results, and finally, in the 
‘Conclusions’ section, the conclusions have been drawn and further research efforts have 
been mapped out. 

Literature review 

The production planning control models can be characterized in a variety of approaches, but 
most common categorizations are specific to the application areas (Brucker 2007). In this 
article, we have classified the production planning problem solving approaches in two groups 
in terms of their environment and condition: unconditional/deterministic analytic production 
planning and production planning under uncertainties (see Table 1). 
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Table 1 Classification of related literatures 
 Approach 
 Deterministic production 

planning 
Production planning under uncertainties 

 Exact 
methods 

Heuristic 
methods 

Simulation DSS 
developing 

Statistical 
analysis 

Hybrid/combinational 
methods 

Literatures Brucker 
(2007) 

Sotiris et al. 
(2008) 

Aytug et al. 
(2005) 

McKay and 
Wiers (2003) 

Mele et al. (2005) Cunha and Wiendahl 
(2005) 

 Maravelias 
and Sung 
(2009) 

Jourdan et al. 
(2009) 

Jahangirian et 
al. (2010) 

Sotiris et al. 
(2008) 

Hatzikonstantinou 
et al. (2012) 

Aytug et al. (2005) 

    Farrella and 
Maness 
(2005) 

  

 Framinan and 
Ruiz (2010) 

Ribas et al. 
(2010) 

Volling and 
Spengler 
(2011) 

Mok (2009) Peidroa et al. 
(2009) 

Volling and Spengler 
(2011) 

 Ribas et al. 
(2010) 

Jahangirian et 
al. (2010) 

Rolo and 
Martinez 
(2012) 

Caricato and 
Grieco 
(2009) 

Verderame and 
Floudas (2009) 

 Yao et al. 
(2012) 

Ross and 
Bernardo 
(2011) 

 Ko and 
Wang (2010) 

 This paper 
Comments Seldom 

applicable in 
actual shop 
floors since 
they may 
only solve 
small-scale 
problems 
with distinct 
parameters 
and scale of 
time 

Simulation 
needs a great 
deal of efforts 
to make a 
practical 
schedule by 
some expert 
and expensive 
production 
planners 

DSS tools are concerned 
with complementary 
applications to ERP/MRP 
software. They are practical 
with lack of ERP system 

Statistical and hybrid methods are useful to 
control uncertainties in real condition and 
improve the effectiveness of both evaluation 
and decision making; however, they are not 
independent and complete tools. They have 
to be designed for each case problem 

DSS, decision support system; MRP, material requirement planning; ERP, enterprise resource 
planning. 

In the case of unconditional analytic models, we are referring to models which are 
simplifications of a real system in terms of mathematical expressions and can be solved by 
exact or heuristic methods. The literature on the exact algorithms in scheduling and 
production planning problems is extensive. A thorough review of scheduling problems, 
modeling approaches, and solution methods can be found in Brucker (2007), Framinan and 
Ruiz (2010), and Ribas et al. (2010). Whereas fluctuations and uncertainties have key roles in 
real world, deterministic, or exact approaches, such that branch and bound (Yao et al. 2012) 
and mixed integer linear programming (Maravelias and Sung 2009) are seldom applicable in 
actual shop floors since they may only solve small-scale problems with distinct parameters 
and scale of time. 

Several heuristics and hybrid methods are recommended in the literature (Jourdan et al. 
2009). Ribas et al. (2010) have classified the approximate methods into constructive and 
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improvement heuristics. However, the application of heuristic algorithms is believed to be 
more applicable for real shop floors due to their lower computations, but they are still limited 
by the dimension of problems and uncertainties. Therefore, their implementation should be 
coupled with some decision support tools to aid the production planners (Ross and Bernardo 
2011; Sotiris et al. 2008). 

To cope with uncertainties in production control, it is worth to investigate a new customized 
framework for planning and scheduling under uncertainty. Another challenging issue is to 
investigate the ways of controlling a large number of uncertain parameters. Hence, 
scheduling under uncertainty has received a lot of attention in recent years (e.g., 
Hatzikonstantinou et al. 2012; Vargas and Metters 2011; Torabi et al. 2010; Verderame and 
Floudas 2009). Uncertainty can be derived from many aspects, such as demand or product 
orders, alternation or priority of orders, equipment failures, resource changes, and processing 
time variability. To adapt uncertainties during the manufacturing process, the proposed 
methods are divided into two main groups: reactive scheduling and preventive scheduling 
(Aytug et al. 2005). Simulation approach is able to analyze the behavior of the environment 
when it is characterized by several constraints and uncertainties (Rolo and Martinez 2012; 
Volling and Spengler 2011; Jahangirian et al. 2010). In these approaches, the outcomes of the 
simulation software can be used in preventive scheduling and decision support systems, but 
they need a great deal of efforts to make a practical schedule by some expert production 
planners. 

By the emersion of enterprise resource planning (ERP) systems, the utilization of data 
becomes more important in production planning and control (PPC). The incredible wealth of 
available data in SCM and PPC software raises the question of how to help decision makers 
in harnessing the organization. The answer to this question has defined the production 
activity control (PAC) subsystem at the lowest level of MRPII (Vollmann et al. 2005). By 
means of the PAC system, the sequence of the orders is defined with their release and due 
times. In fact, PAC cannot take into account the real state of the production environment, and 
it may produce unrealistic or impractical production plan. 

Whereas the MRP-based system cannot follow the large number of shop floor fluctuations, 
production managers bow to the inevitable complex task of scheduling/rescheduling at the 
shop floor control. Poor production control may cause serious problems to a firm's ability to 
meet production requirements and constraints. Many researches have focused on developing 
DSS tools to face this problem (e.g., Ko and Wang 2010; Caricato and Grieco 2009; Mok 
2009; Farrella and Maness 2005; McKay and Wiers 2003). These tools are concerned as 
complementary applications to the ERP/MRP software. 

Unfortunately, few success stories have been reported on creating production planning and 
logistics in a real factory, and there are still many challenges that remain (McKay and Black 
2007). In the absence of one sole issue for PPS success or failure (McKay and Wiers 2003, 
2004), one potential issue related to the failure of a planning system is the lack of information 
system and DSS tools for detailed production planning. This was the first insight obtained 
from this case study (see Table 1). 

Meanwhile, combination use of statistical analysis with other methods to control the 
uncertainties in real condition decision making has been proposed by some literatures (Mele 
et al. 2005). Cunha and Wiendahl (2005) have proposed an evaluation method based on the 
use of multivariate techniques: principal component analysis (PCA) and cluster analysis (CA) 
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to improve the effectiveness of evaluation and decision making, monitoring and 
manufacturing control. The idea of using multivariate statistical analysis to develop existing 
DSS is the second and major contribution of this study. The proposed method in this paper is 
based on the use of multivariate techniques on shop floor data. We intend to improve the 
effectiveness of the decision-making tasks undertaken when dealing with detailed production 
plans in an uncertain condition. 

Case problem statement 

The case study of detailed production planning has been done in an Iranian automotive 
manufacturing company. SAIPA Corporation (Tehran, Iran) is a holding company that 
assembles several types of passenger cars, vans, minibuses, buses, and trucks. As with any 
other car manufacturing company, the production process followed has a high degree of 
complexity, coupling the complex bill of materials (BOMs) with equally complex routings 
that transgress the shop floor boundaries. 

The main problem of the selected case has been inferred from logistics staff answers to a set 
of questions and interviews. It is reported that the accuracy of daily production plans is 
directly affected by some alternate constraints and probable parameters. Hence, either the 
rescheduling or planning diversity and related extra material handling or extra/shortage parts 
and production line stop are enviable tasks every day. By their complaint about the alternate 
decisions to manage stochastic or abnormal events, we have made inferences about the lack 
of DSS tools to provide a practical detailed production planning. 

Methodology of problem analysis 

The following three aspects of the problem have been specified in the analysis of the current 
situation: 

• Layout and physical constraint. It focuses on the production flow and is concerned 
with constraints of layout and any physical limitation in the production lines. 

• Production planning and control system. It is concerned with the daily activities of 
the production planners during their detailed production planning in the shop floor 
control process. Shop floor data in a multi period range was gathered from this aspect 
of analysis. 

• Uncertainties and stochastic factors. It is concerned with the source of uncertainties 
and stochastic factors. 

To investigate the mentioned aspects, a mixture of interviews and observation has been 
applied. The major part of observation and a small part of the meetings were concerned with 
information about the production process and the production planning control. 

In the following two subsections, the basic results concerning the first two aspects of the case 
problem analysis have been presented. These results are normally used to design the system 
architecture and functionality as well as the shop floor model of the plant. The results of the 
third aspect, namely uncertainties, are used to construct a multivariate analysis tool of 
simplified real production. 
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Layout and physical constraints 

A trim shop is located at the end of the production process. Therefore, it has the highest level 
of complexity in comparison with subsequent production activity control processes. The main 
assembly production line is equipped with a conveyor. According to production rate and 
types of products (seven types), the length of production line is not quite enough for 
assigning individual locations to keep the minimum stock level of all parts according to the 
type of product BOM. The logistic area is not available near the line far distance from the 
main warehouses; thus, the order of completion lead time is long and is influenced by 
probable accidents. 

There is a painted body (PB) stock at the end of the paint shop process. The stock of PB is the 
same as a single line queue before the entrance of the trim shop, and each PB can be 
transferred to the trim shop by the sequence of its location. Incapability of selecting the 
desired PB from the PB stock constrains the production planner to make a daily plan 
according to the PB color and type sequence. Although the elimination of the layout and 
physical constraints have been investigated in recent years, due to outstanding required cost 
and time, the progress of development is not noticeable. 

Production planning and control system 

Although KANBAN cards and pull production control system have been tried to be applied 
by production planning and the logistic department, the production control system is still 
MRP-based. A hierarchical two-level planning framework is used prior to the detailed 
production scheduling. At the top level, aggregate production planning which controls 
demand management with a yearly time horizon, has been located. The second planning level 
which is called midterm planning incorporates a hybrid MRP-PBC approach. 

Master production schedule (MPS) outcomes are used to calculate components and material 
requirements. The final plan is made by revision on a weekly basis using the feedback from 
the detailed scheduling module. The weekly plan is released by PAC, and detailed production 
planning is issued as the daily schedule. The daily schedule is derived from a complicated 
decision-making process which uses shop floor data, inventory status data, BOM, and 
sequence of PB in stock. Figure 1 demonstrates this process. 

Figure 1 The current MRP-based PPC process. 

PPC suffers from several sources of inconsistencies as a consequence of incomplete ERP 
implementation. As a result of its complex production process and lack of information 
technology (IT) infrastructure, the presented case study during the last few years faced 
numerous problems concerning violated due dates, accumulated late orders, supernumerary 
production orders, excessive component inventory, poor releasing policies, and low shop 
floor visibility. The lack of online and integrated information may cause a misunderstanding 
of the real condition; thus, the production planner faces some unknown parameters in daily 
scheduling. In this situation, it is not weird if the daily schedule encounters some mistakes. 
Although the design and implementation of the ERP software is in progress, production 
planners cannot wait and do not get along with increasing complexity. They really need some 
practical tools to help them in perfect decision making. 
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Uncertainties and stochastic factors 

Since there are some line-side space constraints, mixed production suffers from lots of 
problems and obstacles and forces managers to act on the basis of batch production. 
Meanwhile, there are many sources of stochastic events and uncertainties that batch 
production such as demand, process, and supply uncertainties (Peidroa et al. 2009). One of 
the main sources of stochastic factors that have been identified in this study is derived from 
the paint shop process and PB stock constraint. Due to some small defects on bodies, some of 
the PBs are selected to go into a touch-up area, and after doing all necessary reworks, they 
are transferred to the PB stock line. Almost all of the procedures in the defect inspection 
process are performed manually through human vision and influenced by stochastic factors. 
On the other hand, the required rework process times depend on the type and the level of 
defects which are not really exact and deterministic. Hence, the sequence of painted bodies in 
the queue of stock line cannot be absolutely defined. Meanwhile, supply uncertainties have a 
key role in unreliability of the production schedule. Each type of products has special parts 
which are from different suppliers. The availability of all special parts related to the desired 
type of products is the other vital information for the production planner to make the daily 
production schedule. According to our observation, the stock levels of these items are not 
expected to follow exact patterns. 

Proposed multivariate DSS method 

The complexity of production planning and control process, stochastic factors, physical 
constraint, uncertainties, and the shortcomings of the underlying IT infrastructure would pose 
significant drawbacks to the current detailed production scheduling. In this light, to the 
aforementioned production planning process and fully interoperable, both with the PPC 
system and existing software package, the proposed approach has been developed on the 
basis of a custom-built DSS using statistical multivariate techniques. 

The integrated approach that will be presented introduces facilities to analyze data which are 
directly unavailable from the current planning system. This approach is introduced through 
the use of PCA to decrease the dimension of input-independent variables (Aguilera et al. 
2006) and the use of logistic regression (LR) to predict the first priority of available and 
suitable type of product which can be selected to make a practical and effective detailed 
production schedule. These are used at different steps as shown in Figure 2. 

Figure 2 Process of establishing a multivariate statistical tool for DSS development. 

Shop floor and production plan historical data acquisition 

The manner and logical behavior of the production planner to create a weekly plan or change 
daily detailed scheduling is an important factor through the practical decision-making process 
which can be used for finding an effective DSS tool. As answer to the main question of this 
research, the objective has been to find the statistical analysis appropriate for reducing this 
logical behavior. Hence, it has been required to collect daily shop floor data and historical 
data of the daily schedule issued by the production planner. The historical data of PB stock, 
existing PB quantity, and PB types in paint shop, sale online requests, inventory data, MRP 
weekly plan, released daily production schedule, and related orders with actual production 
were the main fields of data that have been collected for this analysis. 
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Reduction of inventory data by PCA 

In this study, the collected inventory data sets (warehouse and line side separately) have at 
least 40 fields related to each types of products. This high volume and dimension of data 
matrix increase the complexity of analysis. If a substantial amount of the total variance in 
these data is accounted for by a few (preferably far fewer) principal components or new 
variables, then these few principal components can be used for interpretational purposes or in 
further analysis of the data instead of the original variables. PCA can be viewed as a 
dimensional reduction technique (Sharma 1996), and it is the appropriate technique for 
achieving the mentioned objective. 

The core idea of PCA is to reduce the dimensionality of a data set comprising a large number 
of interrelated variables while retaining as much as possible the data set variance (Jolliffe 
2002). This is obtained by transforming original variables to a new set of variables or 
principal components (ξi) which are a linear combination of original (p) variables. Due to 
their properties, they are uncorrelated and are ordered such that the first (m ≤ p) that are 
retained contain most of the variation presented in the original data: 

{ }1 1 1 2 2PC =  ;  ,= + +…+m i i i ip pw x w x w xξ ξ ξ…  
 

where principal component (PC) = {ξ1… ξm} are the m principal components and wij is the 
weight of the jth variable for the ith principal component. 

The reduction in complexity is achieved by performing PCA on collected inventory data. 
Thus, the original data of inventory can be substituted by PCs, and the new matching table of 
the shop floor data and corresponding production schedule is established as a contingency 
table. 

Logistic regression model fitting, validation, and review to improvement 

The fundamental question in this research motivated us to understand the logical behavior of 
the production planner in the decision-making process through daily production scheduling. 
As illustrated in Figure 2, the historical input/output of the decision process is analyzed and 
the relationship among them is discovered by logistic regression. In the remainder of this 
section, we briefly discuss about the basic concept and details of developing the logistic 
regression model and, finally, the validation procedure and review method for the 
improvement of this model. 

Definition of variables 

To simplify the discussion and interpretation of estimation model, the notation is introduced 
and variables are defined which can be recognized from collected data. Table 2 shows a code 
sheet for definition of preliminary selected variables from collected data. 
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Table 2 Description of variables 
Variable Description Code/values 
TYP Compressed natural gas equipped CNG 

CNG and hydraulic steering wheel CNG-H 

Hydraulic steering wheel HYD 

SABA simple injection system GLXi 

Reinforced new body X132 

Morvarid hatchback DM 

Other new models NEW 
CLR Color production plan W = white 

G = gray 
B = black 
R = red 
S = silver 

PBS Painted body stock 0-400 
SEQ Compatibility of PB sequence 1 = Low compatibility 

2 = Fair compatibility 
3 = Good compatibility 
4 = High compatibility 

INV1 Warehouse and line-side inventory PC 1 0 to 2,000 
INV2 Warehouse and line-side inventory PC 2 0 to 1,000 
SRT Scheduled receipt 0 to 1,000 
ACP Available colored parts 0 to 1,000 
RWP Remainder quantity of weekly plan 0 to 5,000 
ESD Emergency sales/demand 1 = Critical 

2 = Urgent 
3 = Normal 
4 = Non-emergency 

ADP Actual daily product 0 to 1,100 
DPP Daily production plan 0 to 1,100 
DPC Daily production plan capability 0 = No 

1 = Yes 

Basic theory on logistic regression 

There are two models of logistic regression to contain binomial/binary logistic regression and 
multinomial logistic regression. Binary logistic regression is typically utilized when the 
dependent variable is dichotomous and the independent variables are either categorical or 
continuous variables (Sharma 1996). Logistic regression is the best to use in this condition. 
The result of this type of regression can be expressed by a logit function as follows: 

( ) 0 1 1 2 2 0logit  = Ln  = + + + … +    ,
1 k k

p
p x x x X

p
β β β β β Β 

∗ ∗ ∗ = + 
 −

 (1) 
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where   
1

p

p

 
 
 −

 is the odds. 

The model can either be interpreted using the logit scale, or the log of odds (the relative 
probability) can be converted back to the probability such that 

)exp(1
exp

0

0

XB

XB
p

++
+=
β

β
 (2) 

In order to calculate the parameters β0, β1, β2,…, βk, the logistic regression transforms the 
dependent into a logit variable and then uses maximum likelihood estimation. In this paper, 
logistic regression is used to estimate the daily production planning capability (DPC) from 
the shop floor data. According to the variables summarized in Table 2, the logit can be 
defined for this case as follows: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21

logit = + + + + + + +

         + + + + + +  + +  

+ + – + – R

β β β β β β β β β
β β β β β β β β
β β β β β

+ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

TYP 1 TYP 2 TYP 3 TYP 4 TYP 5 TYP 6 INV1 INV2

CLR 1 CLR 2 CLR 2 CLR 3 CLR 4 DPP PBS SEQ 1

SEQ 2 SEQ 3 SRT ACP

( )

( ) ( ) 22 23 24WP – + –β *β β∗ ∗ESD 1 ESD 2 ESD( ) ( ) (3).

 
(3) 

To find out how effective the model expressed in Equation 3 is, the statistical significance of 
individual regression coefficients is tested using the Wald chi-square statistic. Goodness-of-
fit test assesses the fitness of a logistic model against actual outcomes. Hosmer-Lemeshow 
test is an inferential goodness-of-fit test which is utilized in this paper. Meanwhile, the 
consequent predicted probabilities can be revalidated with the actual outcome to determine if 
high probabilities are indeed associated with events and low probabilities with non-events. 
The readers are referred to Bewick et al. (2005) and Hosmer and Lemeshow (2000) for more 
information about the assessment of fitted model. 

Predicting capability of daily production planning 

The fitted model, which has successfully passed the goodness-of-fit tests, can be used to 
calculate the predicted Logit (probability) of DPC for a given value of shop floor data. For 
example, assume that at the end of the working day, the production planner wants to make a 
decision about tomorrow's production plan and would like to predict the capability of a given 
production schedule. At first, using the PCA method (‘Reduction of inventory data by PCA’ 
section), the inventory level of line-side and related warehouses can be estimated by two 
principal components (INV1 and INV2), and then, according to the shop floor data, the 
amount of other independent variables (TYP, PBS, RWP, ESD, and DPP) are defined. 
Therefore, the probably of response variable (DPC) can be calculated by Equation 4: 

0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 2

TYP(1) TYP(2) TYP(3) TYP(4) TYP(5) TYP(6) INV1 INV 2 CLR(1) CLR(2) CLR(3)
CLR(4) DPP PBS SEQ(1) SEQ(2) SEQ(3) SRT ACP RWPe

p

β β β β β β β β β β β β
β β β β β β β β β β
+ ∗ + ∗ + ∗ + ∗ + ∗ + ∗ + ∗ + ∗ + ∗ + ∗ + ∗

+ ∗ + ∗ + ∗ + ∗ + ∗ + ∗ + ∗ + ∗ + ∗ +

=
1 22 23

0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16

ESD(1) ESD(2) ESD(3)

TYP(1) TYP(2) TYP(3) TYP(4) TYP(5) TYP(6) INV1 INV2 CLR(1) CLR(2) CLR(3)
CLR(4) DPP PBS SEQ(1) SEQ(2)1 e

β β

β β β β β β β β β β β β
β β β β β β

 
 ∗ + ∗ + ∗ 

+ ∗ + ∗ + ∗ + ∗ + ∗ + ∗ + ∗ + ∗ + ∗ + ∗ + ∗
+ ∗ + ∗ + ∗ + ∗ + ∗ ++ 17 18 19 20 21 22 23SEQ(3) SRT ACP RWP ESD(1) ESD(2) ESD(3)

,
β β β β β β

 
 ∗ + ∗ + ∗ + ∗ + ∗ + ∗ + ∗ 

 (4) 

or 
( )

( )
exp logit

.
1 exp logit

p =
+
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Customized DSS to facilitate detailed production scheduling 

Predicting the capability of daily production planning facilitates the decision making of the 
PPC system, and as a result, the customized DSS can be defined and applied. The new 
hierarchical planning framework is depicted in Figure 3. The main procedural sequence does 
not exhibit any remarkable change in comparison with the current PPC process (Figure 1). 
The MPS calculates long-term end item needs and feeds the PPC system which creates the 
production order backlog according to MRP procedures. The weekly production plans are 
issued by the MRP module and feeds detailed scheduling. 

Figure 3 Role of the proposed method in the production planning control framework. 

The proposed multivariate method contributes in the DSS module which is denoted in Figure 
3 in the dashed box. As we have described in the previous sections, the online shop floor data 
is used by this customized DSS tool and the predicted amount of DPC index is calculated. 
This production planning capability index can facilitate the decision-making process of 
detailed scheduling. The production planner can typically run this customized DSS at the 
beginning of each planning period (commonly one working day), and after making the 
decision about final changes on the detailed schedule, data of production order is extracted. 
When detailed scheduling is finalized, the production orders are handed down to the foremen 
for beginning of production. If dynamic events take place (e.g., a machine breaks down, a 
rush order arrives, or a subcontractor violates due dates), the planner reschedules to 
accommodate them. 

Numerical experiment and results 

According to the defined variables, the 42-week shop floor and inventory data have been 
collected. Every day, the line-side inventory level of special and important parts as well as 
warehouse inventory level have been recorded. Table 3 illustrates the sample data which were 
recorded on the first and second days in the warehouse. Data were collected over a period of 
8 months and included PB stock, sale online requests, inventory data, MRP weekly plan, 
inventory status data schedule, and actual production. 

Table 3 Sample data format of warehouse and line-side inventory levels 
Date TYP ENGN AXLE  PIPE CONT BODY DASH ECUT STWL  EXST TRIM  WIRE  SNSR DMPR CNGK  HYDK  SUB 

09/01 CNG 138 154 129 102 158 96 404 251 157 259 250 451 253 320 - 306 
09/01 DM 63 66 67 - 94 41 80 83 46 91 42 88 93 - 49 73 
09/01 GLXi 189 159 156 - 150 103 153 - 123 229 266 157 126 - - 100 
09/01 HYD 46 60 72 - 104 48 117 98 69 108 185 205 170 - 27 139 
09/01 NEW 27 112 122 - 180 43 174 - 119 164 185 285 219 - - 142 
09/01 X132 127 310 128 - 137 246 256 220 181 250 255 263 268 - 267 302 
09/02 CNG 106 153 129 95 152 96 403 250 154 259 259 457 255 300 - 314 
09/02 CNG-H 65 62 65 57 75 50 124 126 156 81 167 182 130 236 219 110 
09/02 DM 63 64 64 - 139 39 73 81 52 176 49 87 85 - 91 77 
09/02 GLXi 171 151 159 - 155 102 158 - 129 266 253 155 126 - - 104 
09/02 NEW 23 117 124 - 184 53 168 - 124 163 182 285 222 - - 142 
09/02 X132 120 243 121 - 139 246 255 223 181 258 259 266 268 - 271 300 

ENGN, engine; AXLE, rear axle; PIPE, fuel pipe set; CONT, compressed net gas container; BODY special parts of 
body; DASH, dashboard or instrument panel; ECUT, electronic central unit; STWL, steering wheel; EXST, exhaust; 
TRIM, trim parts; WIRE, wiring set; SNSR sensors set; DMPR, dampers set; SNGK, compressed net gas kit; HYDK, 
hydraulic kit; SUB, sub assembly required parts. 
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According to the data reduction method described in the ‘Reduction of inventory data by 
PCA’ section, the following PC scores can be derived by applying PCA. In this study, the 
result of PCA shows that the first two principal component variables account for about 90% 
of the total variance of data, and the screen plot shows that the appropriate number of PCs is 
two. Using these PCA scores, the PC formulas are defined, and then the amount of PCs by 
the exact amount of each variable every morning can be calculated. 

By the results of data reduction, we can make a new shop floor control (SFC) data which can 
be used for calculating logit more easily and practically. Table 4 shows the sample format of 
SFC data table which must be created for logistic regression analysis. Using Equation 4, the 
probable response variable (DPC) can be calculated by the coefficients derived from logistic 
regression analysis. 

Table 4 SFC table data format: -input of LR analysis 
Week Working 

day 
TYP PCs Daily 

plan 
PBS SEQ SRT ACP RWP ESD ADP DPC 

INV1  INV2  CLR  DPP 
1 1 CNG 316 166 W 450 180 3 400 385 968 3 446 1 

1 DM 157 44 R 50 50 4 100 86 300 1 51 1 
1 GLXi 127 255 S 100 80 4 100 85 500 3 98 1 
1 HYD 171 36 G 100 80 3 100 65 200 3 105 1 
1 NEW 79 195 S 150 100 1 100 0 430 4 131 0 
1 X132 417 192 W 250 200 2 300 85 1,400 4 212 0 

1 2 CNG 293 136 B 200 50 1 100 20 522 2 154 0 
2 CNG-H 208 67 S 150 100 2 150 150 350 3 132 0 
2 DM 253 56 B 250 131 3 130 100 252 3 248 1 
2 GLXi 185 262 W 150 100 4 100 100 395 4 153 1 
2 NEW 66 195 W 100 55 3 100 83 330 4 82 0 
2 X132 409 199 G 250 250 4 400 186 1,105 2 253 1 

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

( ) ( ) ( ) ( ) (logit  0.93153 0.39432 0.56284 0.7653 0.56226 2.28933

1.43129 0.00502 0.00157 2 0.21325 0.29959 1.13775

0.44392 0.01

)

( ) ( ) ( ) ( )

( ) 631

= − ∗ − ∗ − ∗ − ∗ − ∗ −
∗ − ∗ − ∗ + ∗ + ∗ − ∗ −

∗ + ∗

TYP 1 TYP 2 TYP 3 TYP 4 TYP 5

TYP 6 INV1 INV CLR 1 CLR 2 CLR 3

CLR 4 0.00162 0.2752 1 0.23753 0.20142*

0.00016 0.00042 0.00047 RWP 0.01292 0.48281 0.0258

( ) ( ) ( )

( ) ( ) ( )9

− ∗ + ∗ + ∗ + −
∗ + ∗ − ∗ − ∗ + ∗ − ∗

DPP PBS SEQ SEQ 2 SEQ 3

SRT ACP ESD 1 ESD 2 ESD 3

 
 

( )
( )

exp logit
.

1 exp logit
p⇒ =

+
 (5) 

Table 5 summarizes the test results of null hypothesis in which all the coefficients associated 
with predictors equal 0. The test statistic G = 230.037 with a p-value of 0.000 implies that 
there is at least one estimated coefficient that is different from 0. The results of Pearson, 
deviance, and Hosmer-Lemeshow goodness-of-fit tests have been also summarized in Table 
5. 
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Table 5 Goodness-of-fit tests 
Test  df P value 
All slopes are zero (G) 230.037 23 0.000 
Pearson (χ2) 514.679 584 0.982 
Deviance (χ2) 631.625 584 0.947 
Hosmer-Lemeshow (χ2) 3. 474 8 0.901 

In this study, there is insufficient evidence to claim that the LR model does not fit the data 
adequately because the P-values for all tests are larger than the significance level of 0.05. 
Therefore, the LR model shown in Equation 5 is appropriate in explaining the DPC 
prediction. 

The association between the response variable and predicted probabilities has been evaluated 
by some measures such as Somers' D, Goodman-Kruskal's gamma, and Kendall's tau-a in our 
case; the summary of results is listed in Table 6. The measures indicate that there is a close 
correspondence between DPC and its predicted probabilities. 

Table 6 Measures of association 
Pairs Number Percent Summary measures P value 
Concordant 67,781 84.6 Somers' D 0.69 
Discordant ties 12,163 15.2 Goodman-Kruskal's gamma 0.70 

151 0.2 Kendall’s tau-a 0.30 
Total 80,095 100   

The accuracy of the proposed method 

Utilizing the discussed PCA and LR model, 42 working weeks of shop floor data (including 
1,256 records) were used to evaluate its prediction quality. In addition to real data, Monte 
Carlo-based simulated data were generated to extend our samples to 100 weeks. The 
simulation was run under a variety of conditions such as production line, seasonal demand, 
and probable disruption in production line. Every 4 weeks (1 month), the outcomes of 
classical detailed planning were compared with the corresponding outcomes of the proposed 
method. These results have been reported in Table 7, including 10 instances which have been 
selected from the worst to the best states. 
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Table 7 The comparison of DSS method accuracy 
Applied methods Total 

observations 
Actual daily 
production 
capability 

Predicted daily production 
capability 

Daily 
planning 

accuracy (%) 
DPC = 1 DPC = 0 DPC = 1 DPC = 0 Error  

Instance 
1 

Classic DSS 
method 

124 81 43 124 0 43 65 

Revised 
proposed 
method 

124 117 7 7 94 

Instance 
2 

Classic DSS 
method 

136 88 48 136 0 48 65 

Revised 
proposed 
method 

136 127 9 9 93 

Instance 
3 

Classic DSS 
method 

110 81 32 110 0 32 74 

Revised 
proposed 
method 

110 105 5 5 95 

Instance 
4 

Classic DSS 
method 

116 93 23 116 0 23 80 

Revised 
proposed 
method 

116 109 7 7 94 

Instance 
5 

Classic DSS 
method 

84 62 22 64 0 25 74 

Revised 
proposed 
method 

84 76 8 8 90 

Instance 
6 

Classic DSS 
method 

64 39 25 64 0 25 61 

Revised 
proposed 
method 

64 55 9 9 86 

Instance 
7 

Classic DSS 
method 

88 75 13 88 0 13 74 

Revised 
proposed 
method 

88 86 2 2 98 

Instance 
8 

Classic DSS 
method 

101 66 35 101 0 66 74 

Revised 
proposed 
method 

101 95 6 6 94 

Instance 
9 

Classic DSS 
method 

76 33 43 76 0 43 43 
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Revised 
proposed 
method 

76 69 7 7 91 

Instance 
10 

Classic DSS 
method 

121 80 41 121 0 41 66 

Revised 
proposed 
method 

121 120 1 1 99 

From the perspective of daily planning accuracy, the logistic regression model correctly 
identified 109 of 124 observations (refer to instance 1). The accuracy of each method can be 
simply calculated by dividing the number of observed actual productions, which are 
respondents of production plans (DPC = 1), to the total number of production plans. As 
shown in Table 7, by the proposed DSS method, more reliable detailed production plans can 
be submitted than by the classic method. 

Conclusions 

This study presents an application of statistical multivariate method together with the solver 
module in production activity control of an Iranian automotive manufacturer and introduces a 
revised decision support system which can provide a productive tool for knowledge workers 
to offer more reliable detailed production plans. 

The proposed method is based on the use of principal component analysis to reduce the 
extensive dimension of shop floor data and logistic regression analysis to make a predictive 
tool and pre-check of daily production plan capability to improve the effectiveness of 
decision making. In this case study, it is shown that the revised DSS works more reliably and 
more accurately. 

For future studies, either prediction accuracy or data reduction techniques may be improved 
by applying other specialized models of logistic regression. Manufacturers can also further 
adjust the proposed prediction models to accord with their production environments and data 
availability. 
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