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Abstract Flow-shop scheduling problem (FSP) deals

with the scheduling of a set of n jobs that visit a set of

m machines in the same order. As the FSP is NP-hard, there

is no efficient algorithm to reach the optimal solution of the

problem. To minimize the holding, delay and setup costs of

large permutation flow-shop scheduling problems with

sequence-dependent setup times on each machine, this

paper develops a novel hybrid genetic algorithm (HGA)

with three genetic operators. Proposed HGA applies a

modified approach to generate a pool of initial solutions,

and also uses an improved heuristic called the iterated swap

procedure to improve the initial solutions. We consider the

make-to-order production approach that some sequences

between jobs are assumed as tabu based on maximum

allowable setup cost. In addition, the results are compared

to some recently developed heuristics and computational

experimental results show that the proposed HGA performs

very competitively with respect to accuracy and efficiency

of solution.

Keywords Hybrid genetic algorithm � Scheduling �
Permutation flow-shop � Sequence dependent

Introduction

It is almost seven decades that flow-shop scheduling

problems (FSP) have been studied as a major field of study

in manufacturing researches. In an m machine flow shop,

there are m stages in series with one or more machines at

each. Also, there are n jobs that each one has to be pro-

cessed in each of the m stages in the same order. In the

classical flow-shop problem, there is one machine at each

stage and this field attracts the most attendances. Two

major sub-problems of FSP are sequence-independent

setup time (SIST) and sequence-dependent setup time

(SDST). The SDST flow-shop problem is more compatible

with the real-world problem, but has attracted much less

attention, especially before 2000 (Allahverdi et al. 2008).

The objective in flow-shop scheduling problems is to

find a sequence for processing the jobs on the machines so

that a given criterion is optimized. This yields a total of n!

possible orderings of the operations on each machine, and a

total of (n!) 9 m possible processing sequences. Flow-shop

scheduling researches usually only attend permutation

sequences where the processing order of operations is the

same for all machines. Here, we also adopt this restriction.

Minimizing the maximum completion time across all

jobs (also called make-span and denoted by Cmax) is the

most well-known and applicable criterion in the literature.

Regarding the computational complexity, the SDST flow-

shop with the Cmax objective has been shown to be NP-hard

by Gupta and Darrow (1986), even when m = 1 and also

when m = 2 and setups are presented only on the first or

second machine. Therefore, solving the problem by an

exact algorithm is time consuming and computationally

intractable.

Pioneering work was due to Johnson (1954) who pro-

posed a simple rule to obtain optimal sequences for the
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permutation flow-shop problem (PFSP) with two machines.

This work was the starting point of several attempts for

solving the PFSP with more than two machines. Because of

NP completeness of the PFSP (Garey et al. 1976; Campbell

et al. 1970), researchers have mainly attempted to the

development of effective heuristics and meta-heuristics.

Some of the first heuristic methods in this field are the well-

known NEH heuristic by Nawaz et al. (1983) and the

genetic algorithm of Reeves (1995).

After 2000, there are wide range of heuristics, meta-

heuristics and hybrid meta-heuristics developed for flow-

shop and permutation flow-shop by researchers. Ruiz et al.

(2005) proposed two heuristics for the same problem, and

showed that their heuristics outperform previous ones. Ruiz

and Stutzle (2008) presented two simple local search-based

iterated greedy algorithms, and showed that their algo-

rithms perform better than those of Ruiz et al. (2005).

Tseng et al. (2005) developed a penalty-based heuristic

algorithm for the same problem and compared their heu-

ristic with an existing index heuristic algorithm. Among all

approaches, one of the most successful meta-heuristics to

solve PFSP from last until now is genetic algorithm. Like

one worked by Reeves (1995) and Sun and Hwang (2001).

Sun and Hwang (2001) addressed a related problem of F2/

STsd/Cmax where the setup times are present only on the

second machine, and the setup time of a job depends on

k (k [ 1) immediately preceding jobs. They proposed a

dynamic programming formulation and a genetic algorithm

for the problem. Chaari et al. (2011) considered a sched-

uling problem under uncertainty. They developed a genetic

algorithm for the case of hybrid flow-shop scheduling

problem that the processing time of each job for each

machine at each stage is the source of uncertainty. They

defined a robust bi-objective evaluation function to obtain a

robust, effective solution that is only slightly sensitive to

data uncertainty. Tseng and Lin (2010) proposed a hybrid

genetic algorithm to solve the no-wait flow-shop schedul-

ing problem with the make-span objective. The proposed

algorithm hybridized the genetic algorithm and a novel

local search scheme. The proposed local search scheme

combines two local search methods: the insertion search

and a novel local search method called the insertion search

with cut-and-repair. Jarboui et al. (2011) proposed a hybrid

genetic algorithm to minimize the make-span and the total

flow time in the no-wait flow-shop scheduling problem. In

their research, the variable neighborhood search was used

as an improvement procedure in the last step of the genetic

algorithm. Huang and Huang (2010) considered a flow-

shop scheduling problem with synchronous material

movement in an automated machine center consisting of a

loading/unloading (L/U) station, m processing machines,

and a rotary table. Furthermore, other useful and strong

approaches can be fined to solve PFSP. Li et al. (2004)

presented partial enumeration method (PEM) to minimize

the make-span performance of large flow-shop scheduling

problems. The PEM run in short time and could easily

combine with other algorithms or rules to improve per-

formance. In their research, two priority rules, variance

method and variance–mean method were developed. Laha

and Chakraborty (2007) developed an efficient stochastic

hybrid heuristic (H3) for flow-shop scheduling problem

and showed the superiority of their work against other

researches. Noori-Darvish and Tavakkoli-Moghaddam

(2012) proposed a novel bi-objective mathematical pro-

gramming for an open-shop scheduling problem with setup

and processing times separately such that not only the setup

times are dependent on the machines, but also they are

dependent on the sequence of jobs that should be processed

on a machine. They minimized the total tardiness and the

make-span. Maleki-Darounkolaei et al. (2012) considered a

three-stage assembly flow-shop scheduling problem with

sequence-dependent setup times at the first stage and

blocking times between each stage in such a way that the

weighted mean completion time and make-span are mini-

mized. Finally, Sheibani (2010) described a polynomial-

time heuristic (PH) for the permutation flow-shop sched-

uling problem with the make-span criterion. His method

consists of two phases: arranging the jobs in priority order

and then constructing a sequence. He employed a fuzzy

greedy evaluation function to prioritize the jobs for incor-

porating into the construction phase of the heuristic.

Successful applications of GA to solve NP-hard prob-

lems such as FSP stimulated us to develop one hybrid GA

(HGA) to deal with the problem efficiently and effectively.

As mentioned before in the classical flow-shop problem,

the make-span minimization criterion has always attracted

the attention of researchers. With a fast glance to the real-

world situations, we can see that due date and setup costs

are the most important criteria in production planning,

especially in the make-to-order situation. Various cus-

tomers offered their orders (jobs) and each order has its

own due date, holding cost and delay cost, and just focus

on the make-span is not an effective attempt. Almost all

real-world problems are multi-criteria and considering just

one criterion is too far from real situations (Mirabi 2010).

Allahverdi et al. (2008) implied that almost no multi-cri-

teria researches are available according to real situations.

He also suggested the due date-related criteria for more

consideration.

As mentioned before, SDST is more adaptable with real

situations. Furthermore, in wide cases there are some

infeasible sequences (Tabu sequences) based on setup cost.

For example, in the dyeing process of all kinds of fibers,

each basket filled by wet fiber (job) must be dyed by

several dyeing machines (stages). Dyeing completely the

bright color (cream, white) after completely the dark color
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(black, blue and red) caused high setup costs (after dark

color, each machine must be cleaned carefully for almost

2 days and also at least one batch of bright color waste for

the reason of remain dyes from dark color) and they are

considered as infeasible sequences. These are the same

conditions used in the cable industry for producing colored

wires.

In this research, we attend the permutation flow shop

that must process n jobs, each one received from specific

customer. Each job has specific due date and delay cost.

Setup time and setup cost are sequence dependent and also

objective function constructs by three criteria as delay,

holding and setup costs. Also, some sequences known as

Tabu based on yielded setup costs. This situation is com-

patible with the large category of the real-world problems,

and is completely missed in the literature. We develop one

HGA to solve the problem.

The paper is organized as follows: Section 2 discusses

the principles of the algorithms used to solve the permu-

tation FSP. Section 3 compares the performance of the

algorithms. Finally, Sect. 4 concludes the paper.

Hybrid genetic algorithm

In this research, genetic algorithm (GA) is applied to solve

permutation flow-shop scheduling problem. John Holland

proposed GA in the 1960s for the first time. GA categorizes

as a class of evolutionary algorithms (EA), which generate

solutions to optimization and heuristic problems by tech-

niques inspired by natural evolution, such as mutation,

selection, and crossover. The main concept of GA is to

evolve a population of candidate solutions (called indi-

viduals, creatures, or phenotypes) to an optimization

problem toward better solutions. Today, GA has wide and

successful applications to solve hard optimization prob-

lems. The success is mainly due to its easy to understand

and operation and great flexibility. These reasons stimulate

us to use this strong approach to solve the presented

problem.

Initially, many individual solutions (called chromo-

somes) are (usually) randomly generated to generate an

initial population. The population size depends on the

nature of the problem, but generally contains several

hundreds or thousands of possible solutions. The chro-

mosomes evolve through successive iterations, called

generations. During each generation, the chromosomes

are evaluated through a fitness-based process where fitter

solutions (as measured by a fitness function) are typically

more likely to be selected. The next step is to generate a

second-generation population of solutions from those

selected through genetic operators: crossover and

mutation.

For each new solution to be produced, a pair of ‘‘parent’’

solutions is selected for breeding from the pool selected

previously. By producing a ‘‘child’’ solution using the

above methods of crossover and mutation, a new solution is

created which typically shares many of the characteristics

of its ‘‘parents’’. New parents are selected for each new

child, and the process continues until a new population of

solutions of appropriate size is generated.

After a fixed number of generations, the algorithm

converges to the best chromosome, which probably is the

optimal solution or may be a near-optimal solution of the

problem.

Flow-shop scheduling problem can be regarded as a

hard optimization problem and to enrich the capability of

the proposed GA in this paper it is hybridized with some

other approaches. The GA developed in this paper is

hybridized with several heuristics to improve the solution

further.

Figure 1 shows the flowchart of HGA for the FSP. HGA

hybridized with an improved heuristic called the iterated

swap procedure (ISP). Besides the ISP, it also hybridized

the heuristic method to construct a pool of initial solutions.

Also, the author uses three genetic operators to make a

good new offspring.

The procedure of the HGA is described as follows: After

the GA parameters, such as the iteration number, the

population size (Psize), the crossover rate, and the mutation

rate, have been set, the HGA generates the initial chro-

mosomes of the problem. After the predetermined number

of initial chromosomes is generated, the ISP is adopted to

improve all chromosomes. Each chromosome is then

measured by an evaluation function. The roulette wheel

selection operation is adopted to select some chromosomes

for the genetic operations, including the order crossover,

the heuristic mutation, and the inversion mutation. After a

new chromosome or offspring is produced, its links are

improved by the ISP. The fitness of the offspring is mea-

sured and the offspring may become a member of the

population if it possesses a relatively good quality. These

steps form iteration, and then the roulette wheel selection is

performed again to start the next iteration. The HGA will

not stop unless the predetermined number of iterations is

conducted.

Initialization

The initial solution for HGA is ideally generated by a high

performance construction heuristic. In the initialization

phase, we need one pool of initial solutions and based on

our experience, construction heuristic works better that

random approach. Before all, we construct a list of Tabu

sequences based on earned information about setup costs.

After that, we classify all orders (jobs) in four levels based
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on their importance. Importance of each job is determined

by its customer importance and ranking (based on ISO

standard list), job delay cost, job holding cost and other

factors based on the management viewpoint. Levels names

are low, medium, high and very high. Jobs in very high

level have the most importance and jobs in low level have

the least.

Each job has its own due date and by delivering before

and after due date, holding and delay cost per unit of period

must be paid, respectively. For example, assumed delivery

time of job numbered 1 is period 4, and the process time is

two periods. Also assumed holding cost and delay cost per

period is 4 and 8, and planning horizon has 10 time periods.

For job 1, we can construct a string like Fig. 2.

It means produce job 1 in period 1 costs 8 and so on. For

n jobs we have n strings like this. For initialization the

following algorithm is used:

1) Input T (number of time period) n (number of Job)

and Psize (population size)

2) Numbered jobs from 1 to n and time periods from 1

to T

3) For t = 1 to T

4) t = 1

5) Select a job with the least cost in period t and put it

as soon as possible in the list of sequence. If two jobs

have the same cost, select a job with more impor-

tance and with the same conditions select one in

random

6) Eliminate the string related to selected job

7) If there is free capacity in period t go to 4

8) If not t = t ? 1

9) End for

10) Extract final sequence (initial solution 1)

11) For k = 1 to Psize

12) Interchange the position of two jobs in the same

level (by random)

13) If there is no Tabu sequence, finalize the result as

one initial solution

14) End for

15) Extract all Psize initial solutions

Of course in the initialization phase, we do not consider

the setup cost and just care about Tabu sequences.

Improvement

The 2-opt local search heuristic is generally used to

improve the solutions of the hard optimization problems.

However, it increases the computational time because

every two swaps are examined. If a new solution generated

is better than the original one, or parent, in terms of quality,

it will replace and become the parent. All two swaps are

examined again until there is no further improvement in the

parent. To increase efficiency, the ISP (Ho and Ji 2003,

2004) shown in Fig. 3, is used to improve the links of each

initial solution and each offspring generated by the three

genetic operators. The principle of the ISP is similar to that

of the 2-opt local search heuristic, except that some instead

of all two swaps are examined. The procedure of the ISP is

as follows:

Input GA parameters

Initialization

Improvement: Iterated swamp procedure

Evaluation: Minimization of 3 criteria

Selection: Roulette wheel method

Genetic operations:
1. Order crossover

2. Heuristic mutation
3. Inversion mutation

Improve new chromosomes (offspring) 
using iterated swap procedure

Measure fitness of offspring and 
compare with that of parents

Retain the best population of 
chromosomes

Terminate?

Output the best solution

11

Fig. 1 The flowchart of the

HGA

8 4 0 8 16 24 32 40 48 56

Fig. 2 String related to job 1
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Step 1: Select two genes randomly from a link of a

parent.

Step 2: Exchange the positions of the two genes to form

an offspring.

Step 3: Swap the neighbors of the two genes to form four

more offspring.

Step 4: Evaluate all offspring and find the best one.

Step 5: If the best offspring is better than the parent,

replace the parent with the best offspring and go back to

Step 1; otherwise, stop.

Evaluation

As mentioned before, the fitness function is minimizing the

tardiness, holding, and setup costs (Mirabi 2010). For

example, consider one solution from pool of solutions

(called solution h). Fitness function of this selected solution

is:

Z hð Þ ¼
Xn

j¼0

Xn

i¼1

SCij

Xn

j¼0

Xjit

 !

þ
Xn

i¼1

Xn

t¼DDiþ1

Xn

j¼0

Xjit � ðt � DDiÞ � DCi

 !

þ
Xn

j¼1

XDDi

t¼minfRTi;DDig

Xn

j¼0

Xjit � ðDDi � tÞ � HCi

 !

where indices i and j = 1,…,n index set of all jobs,

t = 1,…,T index set of all periods. All periods are assumed

to be of equal length; parameters: PTi is processing time of

job i, DDi due date of job i, ST0i initial setup time of job

i (when job i is the first job in sequence), STji is setup time

of job i when it is processed after job j, SC0i is initial setup

cost of job i (when job i is the first job in sequence), SCji is

setup cost of job i when it process after job j, HCi is

holding cost of job i per each time period, DCi is delay cost

of job i per each time period, RTi is release time of job i;

variables: Xjit 1, if sequence ji (job i is processed after job

j) appears in period t; 0, otherwise; X0i1 1, if job i is the first

job in sequence (obviously it produce in period 1); 0,

otherwise.

The first term of the fitness function calculates the sum

of all setup costs for each ji (ij) sequence in the production

line. Second term shows that if each job i is produced after

due date (), for each delay period, the penalty in accor-

dance to DCi should be paid. Finally, the last term mention

producing after due date impose the delay cost.

In this research, we just work with the fitness function,

but there are some constraints for the problem that we refer

readers to Mirabi (2010).

Selection

The commonly used genetic operator is the roulette wheel

selection operation (Goldberg 1989). It is the proportionate

reproduction operator where a string is selected for the

mating pool with a probability proportional to its fitness.

Thus, the ith string in the population is selected with a

probability proportional. The fitter is the chromosome, the

higher is the probability of being selected. Although one

chromosome has the highest fitness, there is no guarantee it

will be selected. Since the population size is usually kept

fixed in a simple GA, the sum of the probability of each

string being selected for the mating pools must be 1.

Suppose the population size is Psize, then the selection

procedure is as follows:

Step 1: Calculate the total fitness of the population:

F ¼
XPsize

h¼1

ZðhÞ

Step 2: Calculate the selection probability Ph for each

chromosome Xh:

Ph ¼
F � ZðhÞ

F � Psize � 1ð Þ h ¼ 1; 2; . . .;Psize

Step 3: Calculate the cumulative probability Qh for each

chromosome Xh:

Qh ¼
Xh

j¼1

Pj h ¼ 1; 2; . . .;Psize

Step 4: Generate a random number r in the range (0, 1].

Step 5: If Qh�1\r�Qh, then chromosome Xh is

selected.

Genetic operation

The genetic search progress is obtained by two essential

genetic operations, including exploitation and exploration.

Generally, the crossover operator exploits a better solution

Select two genes randomly
Parent 1 4 5 2 3

Offspring 1 1 2 5 4 3
Offspring 2 2 1 5 4 3
Offspring 3 1 5 2 4 3
Offspring 4 1 2 5 3 4
Offspring 5 1 2 4 5 3
Offspring 1 1 2 5 4 3

Fig. 3 The iterated swap procedure
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The genetic operators used in the algorithms for the flow-

shop problem are one crossover and two mutations, which

are called the heuristic mutation and the inversion muta-

tion, respectively.

The order crossover

The crossover operator adopted in the HGA is the classical

order crossover (Gen and Cheng 1997), and two offsprings

will be generated at each time. The procedure of the order

crossover operation is:

Step 1: Select a substring from the first parent randomly.

Step 2: Produce an offspring by copying the substring

into the corresponding positions in the offspring.

Step 3: Delete those genes in the substring from the

second parent. The resulting genes form a sequence.

Step 4: Place the genes into the unfilled positions of the

offspring from left to right according to the resulting

sequence of genes in Step 3 to produce an offspring,

shown in Fig. 4.

Step 5: Repeat Steps 1–4 to produce another offspring by

exchanging the two parents.

The heuristic mutation

A heuristic mutation (Gen and Cheng 1997) is designed

with the neighborhood technique to produce a better off-

spring. A set of chromosomes transformed from a parent by

exchanging some genes is regarded as the neighborhood.

Only the best one in the neighborhood is used as the off-

spring produced by the mutation. However, the purpose of

the mutation operation is to promote diversity of the

population. Therefore, it is necessary to change the original

heuristic mutation for the FSP. The modification is that all

neighbors generated are used as the offspring. The proce-

dure of the heuristic mutation operation, shown in Fig. 5, is

taken as follows:

Step 1: Pick up three genes in a parent at random.

Step 2: Generate neighbors for all possible permutations

of the selected genes, and all neighbors generated are

regarded as the offspring.

The inversion mutation

The inversion operator (Gen and Cheng 1997), shown in

Fig. 6, selects a substring from a parent and flips it to form

an offspring. However, the inversion operator works with

one chromosome only. It is similar to the heuristic muta-

tion and thus lacks the interchange of characteristics

between chromosomes. Therefore, the inversion operator is

a mutation operation, which is used to increase the diver-

sity of the population rather than to enhance the quality of

the population.

Result analysis

In this section, a computational study is carried out to

compare the HGA with three best recently developed

heuristics. We mean PEM presented by Li et al. (2004); H3

developed by Laha and Chakraborty (2007) and PH

described by Sheibani (2010). Four methods are compared

using different problem sizes (n = 10, 20, 30, 40, 50, 100

and m = 5, 10, 15, 20). For each class of the problem

defined by given (n, m), ten instances of problem are ran-

domly generated. Thus, we obtain a total of 280 problem

instances. Processing time and setup time are given from

uniform random U(1, 99) and U(1, 9) discrete distributions,

respectively. The numerical results are averaged through

each ten instances.

The parameters of the HGA for the problems are pop-

ulation size 20, crossover rate 0.5 and mutation rate 0.2.

Therefore, five pairs of chromosome are selected to

perform the order crossover operation, whereas four chro-

mosomes perform the heuristic mutation operation and the

inversion mutation operation. The total number of off-

spring produced per iteration will be 34 (10 from the order

Selected substring
Parent 1 1 2 5 4 3
Parent 2 1 4 3 2 5

Offspring 1 1 2 5 4 3

Fig. 4 The order crossover operator

Select three genes randomly
Parent 1 2 5 4 3

Offspring 1 1 2 3 4 5
Offspring 2 3 2 1 4 5
Offspring 3 3 2 5 4 1
Offspring 4 5 2 1 4 3
Offspring 5 5 2 3 4 1
Offspring 1 1 2 3 4 5

Fig. 5 The heuristic mutation operator

Selected substring
Parent 1 1 2 5 4 3

Offspring 1 1 4 5 2 3

Fig. 6 The inversion mutation operator
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crossover operation, 20 from the heuristic mutation oper-

ation, and 4 from the inversion mutation operation). The

platform of the experiments is a personal computer with a

Pentium-III 1.2 Hz CPU and 512 MB RAM. The programs

are coded in MATLAB. Also to have equal condition

between four methods all algorithms are run by the same

iteration.

For evaluating the different algorithms, we used the

performance measure (PM) for each class of problem sta-

ted as:

PMi ¼
Solutioni � Bestsol

Bestsol

ð1Þ

where Solutioni is the fitness value obtained by algorithm i,

and Bestsol is the best fitness value between all algorithms.

The average, minimum, and maximum PM values for all

algorithms are shown in Table 1. The columns labeled

‘‘Min’’ show, in subscript, the number of instances

(between ten instances) for which the algorithm solution

was equal to the corresponding Bestsol. In the ‘‘average’’

column, we showed two subcolumns including the average

of ten PM values related to ten instances and also the

average of ten solution times to reach all ten results. With

respect to the solutions gained, Table 1 demonstrates that

the algorithms have the rank of 1 for HGA, 2 for PH, 3 for

H3, and 4 for PEM.

Now, for more detailed comparison, two algorithms of

HGA and PH are considered. In this step, it is desired to

stop both algorithms at the same CPU time. The value of

this CPU time has taken the minimum CPU time between

the two algorithms in Table 1. For example, the common

CPU time for the first class of problem (n = 10, m = 5) is

min (1.05, 1.83) = 1.05.

The author now tests the hypothesis that the population

corresponding to the differences has mean l zero; specif-

ically, test the (null) hypothesis l against the alternative

l[ 0. It is assumed that the make-span difference is a

normal variable, and choose the significance level

Table 2 Detailed comparison

between HGA and PH

Ave. average, MS make-span,

SD standard deviation, Sig.

significant

Each class contains ten

independent instances

Class of

problem

n M Ave. MS or (X) Ave. SD or (S) T t t Sig.

HGA PH HGA PH

1 10 5 759.38 766.46 2.88 2.55 5.81 18 1.73 Yes

2 10 10 1,105.13 1,111.11 2.53 1.28 6.66 13 1.77 Yes

3 10 15 1,287.82 1,290.31 2.87 4.18 1.56 16 1.75 No

4 10 20 1,605.76 1,615.15 4.61 3.65 5.05 17 1.74 Yes

5 20 5 1,326.39 1,331.05 3.2 3.31 3.20 18 1.73 Yes

6 20 10 1,584.28 1,590.6 4.56 5.5 2.80 17 1.74 Yes

7 20 15 1,875.41 1,879.35 2.62 2.34 3.55 18 1.73 Yes

8 20 20 2,150.99 2,144.26 4.53 4.16 -3.46 18 1.73 Yes

9 30 5 1,856.52 1,853.47 5.16 2.81 -1.64 14 1.76 No

10 30 10 2,160 2,163.15 4.84 4.36 1.52 18 1.73 No

11 30 15 2,453.33 2,448.04 4.58 1.79 -3.40 12 1.78 Yes

12 30 20 2,705.48 2,710.08 5.48 4.93 1.97 18 1.73 Yes

13 40 5 2,431.57 2,434.38 5.07 4.44 1.32 18 1.73 Yes

14 40 10 2,686.62 2,692.25 3.76 7.13 2.21 14 1.76 Yes

15 40 15 2,971.97 2,975.92 3.58 2.39 2.90 16 1.75 Yes

16 40 20 3,250.92 3,244.74 6.96 3.71 -2.48 14 1.76 Yes

17 50 5 2,958.28 2,963.57 6.12 5.94 1.96 18 1.73 Yes

18 50 10 3,258.9 3,261.99 7.53 5.96 1.02 17 1.74 Yes

19 50 15 3,519.04 3,511.88 8.42 7.19 -2.05 18 1.73 Yes

20 50 20 3,790.77 3,803.47 7.83 6.75 3.89 18 1.73 Yes

21 100 5 5,734.8 5,741.41 7.94 5.08 2.22 15 1.75 Yes

22 100 10 6,008.96 6,015.08 8.25 6.21 1.87 17 1.74 Yes

23 100 15 6,251.23 6,261.23 11.29 12.29 1.90 18 1.73 Yes

24 100 20 6,613.9 6,602.89 11.45 9.58 -2.33 17 1.74 Yes

25 200 5 11,229.39 11,241.2 14.29 14.16 1.86 18 1.73 Yes

26 200 10 11,651.74 11,657.97 23.74 22.78 0.60 18 1.73 No

27 200 15 11,846.48 11,847.81 19.51 22.93 0.14 18 1.73 No

28 200 20 12,297.14 12,306.81 22.54 21.5 0.98 18 1.73 No
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a = 0.05. If the hypothesis is true, the random variable

T ¼ ðX1 � X2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS2

1=n1Þ þ ðS2
2=n2Þ

p
has a t distribution

with: t ¼ ðS2
1=n1 þ S2

2=n2Þ2=ððS
2
1
=n1Þ2

n1�1
þ ðS

2
2
=n2Þ2

n2�1
Þ degrees of

freedom (Mirabi 2010). The critical value of c is obtained

from the relation ProbðT [ cÞ ¼ a ¼ 0:05. For example,

the first entry in Table 1 corresponds to the

sample size ¼ n1 ¼ n2 ¼ 10, l0 = 0, sample means for

HGA and H3 are X1 ¼ 759:38 and X2 ¼ 766:46, respec-

tively. Sample standard deviations for HGA and H3 are

S1 ¼ 2:88 and S2 ¼ 2:55, respectively. Since

t ¼ 1:73\T ¼ 5:81, we conclude that the difference is

statistically significant. Table 2 displays that HGA out-

performs H3 in all class of problems except six (76 %

superiority). More than 77 % of these superiorities are

statistically significant.

Conclusions

In this paper, we studied the permutation flow-shop

scheduling problem in sequence-dependent condition to

challenge a large number of real-world problems in make-

to-order production strategy. FSP is a hard optimization

problem, and we develop one meta-heuristic approach

based on genetic algorithm called HGA to solve it. Genetic

algorithm hybridized with an improved heuristic called the

iterated swap procedure (ISP). Besides the ISP, it hybrid-

ized the heuristic approach to construct a pool of initial

solutions. Also, we use three genetic operators to make a

good new offspring. Computational results demonstrate the

performance of presented method compared to some of the

strong methods recently developed. It is noticeable when

we see the most differences between HGA and the best

method among considered approaches are also significant

in the level of a = 0.05.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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