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Abstract. When spatial data are realizations of a Gaussian model
with parametric mean and covariance functions, then the function
of observations that minimizes mean square prediction error depends
on some unknown parameters. Usually, these parameters are replaced
by their estimates to obtain the plug-in predictor. But, this method
has some problems in estimation of the parameters and the optimal-
ity and mean square error of the spatial predictor. In this paper, the
problems related to plug-in method are discussed and to avoid them,
the Bayesian approach for spatial prediction is proposed. Then the
Bayesian spatial prediction for Gaussian and trans Gaussian mod-
els according to observations, that may contain noise, are derived.
Next, in a simulation study, the adequacy of Bayesian prediction is
compared with plug-in prediction. Finally, a numerical example il-
lustrates the Bayesian spatial prediction of rainfall in a region at the
north of Iran.

1 Introduction

Usually, the spatial data collected from some applied disciplines such as
petroleum engineering, civil engineering, geography, geology, meteorology and
epidemiology, are thought as realizations of a random field S(-) = {S(¢) , t €
D}, where D is an index set in R, d > 1. A common scientific purpose in
spatial data analysis is prediction of the random field S(-) in an unmeasured
site to, say S(to), based on measured data in some sampled sites t1,---,t,
in D. If the random field S(-) is a Gaussian model with parametric mean
and covariance functions, then the function of observations that minimizes
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mean square prediction error depends on parameters. In the classical spatial
prediction, the parameter estimates are replaced in this function to obtain
the plug-in predictor, [5] and [4]. In this paper, to avoid problems related
to plug-in method, the Bayesian approach is proposed to predict Gaussian
spatial models. Also, if, because of measurement error, S(-) is not directly
observable and instead of S = (S(t1),...,S(tn)), the noisy measurements
Z = (Z(t1), ..., Z(tn)) are taken at sample locations t1,- -, t,, the Bayesian
spatial prediction and variance prediction are determined.
In some applications such as rainfall and mining studies, data give evidence
of non-Gaussian features, a specific transformation (e.g. a logarithm transfor-
mation) may be successful in representing this type of data. [11] considered a
Noisy Log-Gaussian model for Bayesian spatial prediction. When a logarithm
transformation may not be appropriate, we would apply an estimate of the
normalizing transformation in a Bayesian framework. In this matter, the pos-
terior distributions and the Bayesian predictive distribution are analytically
determined by a discretisation method. Also, a Bayesian spatial predictor,
based on the absolute error loss function, and a measure of prediction uncer-
tainty is derived.

The plug in method for a Gaussian spatial model is described in section
2. Section 3 deals with the determination of Bayesian spatial prediction for
the Gaussian model and extension of the prediction problem of this model
to the noisy Gaussian and trans Gaussian spatial models. We perform some
simulation studies to compare two spatial prediction methods according to
cross validation mean square error criterion in section 4. A numerical exam-
ple, in section 5, illustrates the Bayesian spatial prediction of rainfall in a
north region of Iran. Finally, results and discussion are given in section 5.

2 The Spatial Model

Let {S(z),z € D} be a Gaussian random field with mean and covariance
functions

EIS@®)] = £ ()8 = T3,
Cou[S(u), S(t)] = o p(u t:6),

where 8 = (B1,...,0,)" € RP are unknown regression parameters, f(t) =
(fi(t),...f»(t))" are known location-dependent covariates, 0> = Var[S(t)] is
the fixed variance of S(-), p(u,t;6) is a spatial correlation function and 6 =
(01,...,04) € © C RY are parameters that control geometric aspects of the
transformed random field, such as the range and smoothness, as well as the
other aspects of the spatial data association structure. If the random vector
S = (S(t1), ..., S(tn)) represents the data measured at the sampling locations


www.sid.ir
www.sid.ir

Bayesian Prediction in Spatial Data Analysis 35

t1,...,tn € D, then we have
S~ Nn(X670220)

where X = (f;(t;)) is the known full rank n x p matrix, n > p, Yy =
(p(ti,t5;0)) is a positive definite n x n matrix. The likelihood function of the
model parameters ) = (3,02, 6) based on the observed data s = (s(t1), ..., 5(t))
is given by

L0 5) = (5g)"?1 50l 2 expl— 55 (s~ X' 5, s — X5))

Since the joint distribution of (S(to),S) is given by

f'(to)B 2 (1 1o
Nnﬂ(( Xp 7 ry Xg )
where 79 = (pg(ti,to)) is a n x 1 vector, it can be shown that S(to) given s
and 7 is normally distributed as

(S(to)ls,m) ~ N(p1,0”p1)

where
p = f'(to) + réﬂgl(s - Xp), pr=(1+a" - TézngG)- (10)

If the parameters are known, the optimal predictor corresponding to the
squared error loss function and the prediction variance, are given by

N

Sy(to) = E(S(to)|s,m) =
Var(S(to)|s,n) = a°p1 (11)

When 7 is unknown, its maximum likelihood estimates is usually replaced
in 5’,7 (to) to obtain the plug-in predictor. There are some problems related
to this prediction method. First, [12], [14] and [16] have noted that the like-
lihood function is often multimodal, making the numerical identification of
the maximum a difficult numerical problem, and often the maximum is away
from the true value. Second, the MSPE of Sﬁ(to), namely E[S(to) — S’ﬁ(to)]?,
has no closed form. [17] proposed an estimate of MSPE, but [15] showed that
under some conditions, it underestimate the MSPE. This would result into
an overestimation of plug-in predictor precision, and in consequence the pre-
diction intervals of S(#p) tend to be too optimistic. Third, since a predictor
that uniformly for each 7, minimises mean square prediction error does not
exist, the plug-in predictor is not optimal. To avoid the mentioned problems
related to the plug-in method, the Bayesian approach is considered in the
next section.
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3 Bayesian Spatial Prediction

In Bayesian analysis, the parameters are thought as random variables, there-
fore we need to specify prior distributions for the unknown model parameters.
Here, we consider proper priors which assure proper posteriors. We, also, as-
sume that the vector 6 to be independent of the parameters 8 and o2, so that
the prior densities satisfy

n(n) = n(B,0%,8) = n(Blo*)m (o) (6)

Because of analytical convenience, we choose the following conjugate priors
for § and o2

w(Blo*) ~ Ny(Bo, Vo) (12)

7(0%) ~ XTno(a,b) (ie. — ~x*(a)) (13)

also w(#) is an arbitrary proper priors. Now we consider the prediction of
S(to) based on the Bayesian predictive distribution, defined by

ﬂm&=éf@mmw
=AfmmmMWMn (14)

where 2 = RP x (0, 00) x @ and 7(n)|s) is the joint posterior distribution of the
model parameters. Since the analytical solution of the (p+q+1) dimension
integration in (14) is very difficult, the Bayesian predictive distribution can
be written as

ﬂM&zLﬂ%MW@MW (15)

where @ is the parameter space of §. Khaledi and Mohammadzadeh (2004)
showed that (s,|s,f) has a t distribution with n+a degree of freedom denoted
by tntalpiz, SPpa), where

pa = (f'(to) —rp Ty ' X) (Vo ' + X' X) 7V Bo
+ (rp Tyt + (' (o) —rg Xy P X)(Zpt + X' Z X)X T s
ab +nS2 + ByVafa + ByVy * o — m'Vim
a+n

$? =

(1 — 1“,929711“9)

p2 =
+ (f'(to) =14 X5 X) (Vo + X' S X) T H(f (to) — 5 Ty ' X))
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with

S3 = i(s — XB)' S, (s — X )
Bo = (X' E;IX)*X s
Vo= (X'2,'X)!

m = (V5 ' B2 + V5 ' o)

and the posterior distribution is proportion to

f(s18,0%, 6)m(Blo*)m(0?)

m(6s) o w(B|s,02,0)n(02|s,0) m(6)
h(8; s)m(0) (16)
where
h(0;5) = V5! + X' S X |55, (57) 7 (17)

Some of the improper priors proposed in the literature for spatial correlation
structure, such as () = 1 which is used in [11] give rise to improper posterior
distributions [13]. For the vague proper priors proposed in [11] the spatial
analysis may be extremely sensitive to the hyper parameters chosen for the
vague prior. Therefore, we use a discretisation method by choosing a set of
values A = {6;},, with 6; € © and assigning a discrete joint prior on A,
say w(6;). Then we have

h(0:; 5)m(6;)

m(6ilz) = S h(B);5)m(6;)

Next, we obtain

f(50]5) Zf (508, 0i)m(0:]s)

Zz 1 f(50]8,0:)h(0:; 5)m(6:)
i1 h(0i; 5)m(6;)

Now, using (18), we can obtain the Bayesian spatial predictor S(to) = E(S(t0)|s)
and variance prediction Var(S(to)|s).

If instead of S = (S(t1), ..., S(tn)), the noisy measurements Z = (Z(t1), ..., Z(t,))
are taken at sample locations %y, - - -, %, such that

(18)

Z(t,) :S(ti)-{—z’:‘(ti) i=1,...,n

where (), representing the noise, is a zero mean Gaussian white noise ran-
dom field with Var[e(t)] = 0%a?, o®> > 0, and independent of S(-). In the
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conventional geostatistical terminology, the parameter 72 = o2a? is called

nugget effect in the transformed scale. By the stated assumptions, we have
Z ~ Nn(X6702V9)

where V, = Xy + o*I is a positive definite n x n matrix with ¢ = (6,a?)
and the identity matrix I. The likelihood function of the model parameters
n = (B,0%,¢) based on the positive observed data z = (2(t1),...,2(t,)) is
given by

L0 2) = (g2 Vel 2 expl— g (2 = XB)V; (2 — XB))

2702

If the parameters are known, the optimal predictor and the spatial variance
are respectively given by

S(to) = E(S(to)lz,n) = f'(to)B+ 1V, (2 — XB),
Var(S(to)|z,n) = o*(1 + a® — r'an)_lrg).

When 7 is unknown, we assume that the vector ¢ to be independent of the
parameters 8 and o2, and 6 to be independent of a2, i.e. the prior densities
satisfy

n(n) = n(8,0%,0,0%) = n(Blo*)n(0?)m(8)m(a?)
If we choose the conjugate priors for 8 and o2 and a discrete joint prior for
pon A= {¢}", €O x][0,00), say (i), in [11] has Showed that
h(gi; 2)m(0:)m(a3)
Yie h(gj; 2)m(05)7(aF)

m(dilz) =

i=1,--,n

where

atn

h(g;2) = |Vi|2[Ve|2(S3) 2

and (s,]z, ¢) has a t distribution with n + a degree of freedom denoted by
tnta(p2, S3p2). Then we obtain

f(s0]2) = Z F(80l2, 0i) (0] 2)

_ X7 f(sol2 00)h(gi; 2)m(8:)m(03)
221 h(¢i; Z)W(ei)ﬂ(a?)

Now, using (19), the Bayesian spatial predictor S(to) = E(S(to)|z) and vari-
ance prediction Var(S(to)|z), can be obtained.

When data give evidence of non-Gaussian features, let {S(z),z € D} be a
trans Gaussian random field of interest such that {Y,(¢t) = g(S(t)) , t € D}

(19)
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is a (nearly) Gaussian random field with parametric mean and covariance
functions, where transformation g(-) is monotone, differentiable and contin-
ues in R. Alternatively, it is assumed that the random field S(-) is not directly
observable. Instead, the random vector Z = (Z(t1), ..., Z(tn)) represents the
data measured at the sampling locations ¢4, ...,t, € D such that

g(Z(tl)) :g(S(ti))+E(ti)7 i = la'“an'

By the stated assumptions, we have

Y. =g(Z) = (9(Z(tr)), - 9(Z(tn))) ~ Nu(XB,0°Vy).

The likelihood function of the model parameters = (3,02, ¢) based on the
observed data z = (2(t1), ..., 2(t,)) is given by

L(n; z) = (

1
217 |=1/2 -1
o) Ve T exp (= 5 (=) — XB)'V,  (g() — X)),
where J = [[I_, |¢'(z;)| is the Jacobian of the transformation. Given the
transformation g and the parameters n are known, the predictor distribution
is a trans Normal distribution, TN (u1,0%p;) with density function

P2 exp- OB Z )y (o)

f(30|za77) = ( 20-2p1

2w py

where so belongs to the range of S(#p). Now, the optimal predictor corre-
sponding to the absolute error loss function, is given by

S(to) = Median of (S(to)|z,m) = g™" (m). (21)

To define a measure of uncertainty of S(to), let

L=g " (m —20/p1)
U=g '(m +20/p1)

where p; and p; are given in (1), then (L,U) is an approximately 95% con-
ditional prediction interval for S(tg). Therefore, we can use
U-L
7o) ==~
as a measure of prediction uncertainty at location tq. For example, if S(-) is
a log Gaussian random field, then

4
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Note that the measure of prediction uncertainty o(to) is large at any location
that the prediction S(to) is large. When the normalizing transformation g
is unknown, it is usually assumed that g belongs to a parametric family of
transformations G = {gx, A € A}. Then, n and X\ are unknown model pa-
rameters. In a special case, [4] determined the maximum likelihood estimates
of the model parameters, and proposed the plug-in approach for spatial pre-
diction, in which, the estimates of the parameters are replaced in (21). Due
to the fact that in the Bayesian approach, when a logarithm transformation
can be successful in representing this type of data, [11] considered a Bayesian
Log-Gaussian model for spatial prediction. While a logarithm transformation
may not be appropriate, we would propose an empirical Bayes approach by
estimating the normalizing transformation and then, treating this transfor-
mation as known for Bayesian spatial prediction. In this case, it can be shown
that

h(@i; 2)m (0:)m(a3)
Y1 W6y 2)m(05)m ()’

and (s,|z, ¢) has a trans t distribution with n + a degree of freedom denoted
by TTy1a(p2,S?p2), whose density function is given by

m(dilz) =

I(*5)1g'(s0)]

IEDETSEE

(9(s0) —u2)2]_#.

1+
Sipo

f(s0lz, ¢)

Next, based on the discretisation method, the Bayesian predictive distribu-
tion can be obtained as

f(s0]2) = Z F(s0l2, 0i)m (0] 2)

S F(sl2, @i)h(di; 2)m(Bi)m(a2)
ST (6 2)n(6:)m(0?)

Since the exponential of a log t distribution does not have finite moment,
the minimum square error predictor does not exist. To circumvent this, we
consider the absolute error loss function. Now, using (22), the Bayesian pre-
dictive distribution, we can obtain the Bayesian spatial predictor of S(tg)
as

(22)

S(to) = Median of (S(to)|2) (23)

Because the second moment of the Bayesian predictive distribution may be
infinite, we can use

u0.975(t0) — u0.025(t0)

o(to) = 1

(24)
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as a measure of prediction uncertainty at location tg, where u,(to) is the
100ath percentile of the predictive distribution and the numerator of (24) is
the length of a 95% conditional prediction interval for S(to).

The choice of a correlation function family for the transformed random field is
often rather arbitrary. Sometimes, the cross-validation criterion is used. But,
this method is not applicable for noisy spatial data because there is no exact
observation of S(-). Therefore, we address this problem using a model selec-
tion procedure based on observations. For the considered discrete prior, the
marginal density of observations for an arbitrary model M™*, corresponding
to a correlation function p*, is proportion to

m®(z) = Zf(2|¢iaM*)7T(¢i)
o Zh(*)(¢iaz)ﬂ-(¢i)

The comparison of r different model My, k =1, -, r, typically can be done
via computing the posterior probabilities given by

my(2)

> =11 (2)

_ > h*) (¢, 2)m(d4)
E;?:l 2 h9) (i, 2)m (i)

PT(Mk|Z) =

Now, a model with the largest posterior probabilities would be chosen as the
best model in terms of posterior probability criterion.

Table 1. Simulated data for three spatial models.

i ti s1(ti) 21 (t:) za(ti)
1 (0.5,0.5) -1.24 -1.37 0.254
2 (0.5,1) -1.17 -1.02 0.361
3 (0.5,1.5) -0.78 -0.69 0.502
4| (1,05 | -0.62 | -0.67 | 0.512
5 1 (1,1) -0.12 0.02 1.02
6 (1,2) -0.06 -0.09 0.914
7 | (1.505) | 0.04 0.15 1.161
8 (1.5,1) 0.24 0.21 1.234
9 | (1515 | -027 | -0.35 | 0.705
10 | (2,0 0.1 0.06 | 0.942
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Table 2. Cross validated MSE for three spatial model in two spatial prediction
methods.

Method |Gaussian|Noisy Gaussian|Noisy Trans Gaussian
Plug-in | 0.28465 .041762 0.48632
Bayesian| 0.09339 0.1721 0.22359

4 Simulation Study

In order to check the adequacy of Bayesian spatial prediction, we perform
a simulation study. For p =1, 8 = 0, 02 = 1 and p(h,6) = (%)'h‘, a Gaus-
sian, a noisy Gaussian with 72 = 0.05 and a log Gaussian random field are
generated at n = 10 locations in the region D = [0, 2] x [0, 2]. Table 1 shows
the simulated data, where the third column denotes locations, the second
column denotes the Gaussian simulated data, the forth column denotes the
noisy Gaussian simulated data and the fifth column denotes the noisy log-
Gaussian simulated data. To compare the accuracy of two spatial prediction
methods, a cross-validation criterion is used based on single point deletion
predictive distributions as described by Gelfand et.al (1992). For each enter-
tained model, the mean square error of Bayesian and plug-in predictor are
computed and presented in table 2. For all the cases, the cross validated MSE
of the Bayesian predictor are clearly lower than those of plug-in predictor,
the Bayesian method is more accurate than plug-in prediction.

5 Numerical Example

To illustrate the proposed spatial prediction method in section 3, we applied
it on a rainfall data set. Table 3 shows the rainfall at 22 sites in a region with
192x160 squared kilometers in north of Iran on the last month of winter
2002. The histogram of the observations shows the skewness of the data
distribution. So, we assume that the normalizing transformation g belongs to
the Box-Cox family given by

() = log(u) ifA =0

{ o1 A0

which offers a great deal of flexibility in normalizing positive data. The value
of A, using trial and error method, can be chosen such that the skewness
and kurtosis of the transformed data be near 0 and 3, respectively. For the
obtained value A\ = —0.3 using this method, the Bayesian spatial prediction
of rainfall at any given site ¢g is considered. We assume that the data are
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Table 3. Rainfall at 20 stations in north of Iran.

t,‘ Z(t,) t,‘ Z(tl) t,‘ Z(tl) ti Z(t,)
(1,1.5)18.24| (2,6) 29.95 (4,8) 32.08|( )
(1,5) 21.17 17.72| (11, 1) 46.06((8 , 6) 33.98

(9,3)
(10 .6)

(3, 1)
(1,7.5) 33.1| (3.,9) 35.27 (6,1)
(2 ,2.5) 19.31| (4,2) 24.74] (6,5) 38.24
(2.,5) 22.82|(4,7.5)31.14| (7, 9)
(11 ,5) 26.83| (6.5,7) 26.76(5 , 3.5) 24.35

Table 4. The posterior probability for three models.

M1 (l/=0.5) M2 (1/:1) M3 (1/:2)
P.(M;|z) 0.5271 0.1894 0.2835

*

realizations of a noisy g-Gaussian model with fixed mean E[Y;(¢)] = f* and

the Matérn isotropic correlation function (Matérn, 1986)
pu;0,v) = {2 ' ()} 1 (u/0)"K,(u/), 6>0

where K, (-) denotes the modified Bessel function of order v. The parameter
v controls the mean square differentiability of the transformed random field.
For v = 0.5, the Matérn family reduces to the exponential model

_u
6

p(u;8) = exp

For further details on the Matérn family, Stein (1999) is a desire reference.
Three families corresponding to Matérn correlation function v = 0.5, v = 1
and v = 2 are considered. Since the hyper parameters g, Vo, a and b of
the prior distributions (12) and (13) are unknown, we use the limit prior
distributions (as V; ! and a tend to zero in (3) and (4))

(Blz,0%,¢) ~ Np(B2,0°V%)
(0712, ) ~ Xny(n = 1,53)
where V5 = 1‘}? Ba = Va(1'V; " g(2)) and S3 = 1:(g(2) —21)'V; (9(2) -
B=21). For this case (17) becomes
h(6:2) = ValE[Vy| 2(83) "
Now, we generate m = 1500 independent random values for ¢ = (6, a?) in
i=

(0,100) x [0,0.5). For Uniform prior distributions 7(8;) = w(a?) =

3
1
(3 m’
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Fig. 1. The map of the Bayesian spatial predictor

1,...,m, the posterior probability of each entertained model is determined
and presented in table 4. The data clearly support exponential covariance
function. Based on this model, f(s,|z, ¢) is a trans t distribution

n
TTn-1(ps, ﬁg%)

where
(1 —rpV, 1Vt
v,
(1- 1“'0V¢_11)2
v,

ps = (réVJl + 9(z

p3 = (1 — T’€V717'0) +

Now the Bayesian predictive distribution is simplified as

_ Z;zl f(sol2, ¢i)h(i; 2)
f(50|2)_ Z:n:l h(qﬁi;z) .

Figure 1 shows the map of the Bayesian spatial predictor, derived by com-
puting S(to) given by (23). According to figure 1, the rainfall predictions are
high in the south east region, low in the south west and north east regions,
and moderate in other regions.

WWW.SID.ir
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Fig. 2. Map of the measure of prediction uncertainty

Figure 2 shows the measure of prediction uncertainty measure, obtained by
computing of o(tg), in (24). It is observable that the measure of prediction
uncertainty o (to) is high at locations with big S(¢o). This can be a consequent
of using the trans Gaussian model, as described in section 3.

6 Discussion

When a normalizing transformation is desirable in representing the spatial
data that may contain noise, this work provides a Bayesian model for spatial
prediction. Furthermore, this approach is avoided about problems related
to the plug in method. As simulation study shows, the Bayesian approach
provides a more accurate spatial prediction than plug-in method. In addition,
it can be used to determine the Bayesian predictive distribution, deriving the
predictive uncertainty measure of predictor at any given site based on the
absolute error loss function.
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