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Abstract. Consider the measure space (X, A4, u). Let S : X —» X
be a nonsingular transformation on this space and assume that is the
FrobeniusPerron operator associated with s . Also we will assume
that U, is the Koopman operator corresponding to s. Properties of
these two operators, namely P; and Us have been considered by many
authors. For more details see [5], [7], [8] and [9]. In this paper we will
present some special aspects concerning the spectrum of Ps. Also it
is shown that the spectrum of is a cyclic subset of the unit disk D.
In connection with the Koopman operator Us it is shown that under
certain conditions, if y is a regular measure, then U, from L*(X) to
itself is an isometric.

1 Introduction

Let be a nonsingular transformation on a measure space (X, A, u). If f €
L'(X) and f > 0 then for A € A define

W= [ s

Clearly ~ defines an absolutely continuous measure with respect to u. As a
consequence of the Radon-Nikodym theorem there exists a unique nonnega-
tive L' function denoted by P, such that:

/A Py f(X)dp = /S o fn

In a very standard manner ([4], [3]), the above definition can be extended to
a complex- valued function in L!'(X) , and the resulting function P is the
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so-called Frobenius Perron Operator. The operator Us : L>®(X) — L>®(X)
defined by Us(f(z)) = f(s(z)) is called the Koopman operator. It is known
([2]), that the koopman operator is the adjoint of the FrobeniusPerron Oper-
ator. The singularity of s implies that Uy is well-defined. Also Uj is positively
bounded and generalized the notion of transition [1]. For a detailed account
of the properties of the FrobeniusPerron Operator see ([3], [6] and [10]).

In the remainder of this section, some basic properties of the Frobenius-
Perron operator and Koopman operators are presented.

Proposition 1. 1. (Properties of the FrobeniusPerron operator) P;
is linear, if f > 0 then Pyf > 0, [ Psf(x)du = [y f(x)dp and for any
positive n, Psn = (Ps)", where S™ and (Ps)"™ are respectively the nth iterates
of and P;.

Proposition 1. 2. (Properties of the Koopman operator) Ps is linear,
iff 2 0thenUsf >0 andif f € L*(X), then ||Us flloc 2 || flloo Let (X, A, p)

be a measure space and S : X — X be a nonsingular transformation. It is
well known that if f € LY(X) and g € L>®(X), then fg is integrable, and

hence we define the scalar product (adjoint) of two functions by

<fg>= /X F(@)g(@)dp.

By Cauchy-Holder inequality, we have | < f,g > | > || fll, ||9]loc- For opera-
tors Ps and Ug we can easily prove the following propositions.

Proposition 1.3. For f € L'(X) and g € L*>*(X), < Ps, f,g >=< f,Us, g).
Moreover if S : X = X and T : X — X are both nonsingular, then is non-
singular and

Pros = PrPs.

It is easy to prove that |[|Ps|| = ||Us|| = 1, and the FrobeniusPerron
operator is weakly continuous. The latter means precisely that for every se-
quence {f,}in L'(X) if {f,} is weakly converges to f, then {Psf,} is weakly
converges to Psf. The proof of the following Theorem can be found in any
standard linear operators book.

Theorem 1.4. Suppose P is an operator in a Banach space and suppose
{n=tP"} converges to zero in the weak operator topology asn goes to infinity.
Then the spectrum of P is a subset of the unit disk in the complex plane.
Moreover, any pole A of P with |A\| =1 has order one.

It follows that if P is quasi-compact, that is | P — K| < 1 for some positive
n and some compact operator K. Then there are at most a finite number of
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points A1, Ao, -+, Ax of unit modulus in the spectrum of P. Furthermore,
each A, is an eigenvalue of order one with corresponding finite dimensional
eigenspace. For a linear operator P on a Banach space X, A € C' is defined to
be an approximate point spectrum of P if there exists a sequence {z,} in X
with ||z,]] = 1 and lim,, o ||(P — AI)z,|| = 0 The set of approximate points
spectrum of P is denoted by ¢, (P). The result of the following theorem (see
[1]) will be needed in the following sections.

Theorem 1.5. Suppose P is a linear operator on a Banach space X. Then
0o.(P) is a nonempty subset of the spectrum of P. namely o(P), and the
boundary of o(P) is contained in o,(P).

2 Ps With a Bounded Inverse

Through this section we assume that the FrobeniusPerron operator Ps has
a bounded inverse. Let S : X — X be a measurable transformation in a
measure space (X, A, i), p is said to be regular if u(S=1(A4)) > 0 whenever
w(A) > 0. If u(A) =0 implies S(A) € A and u(S(A)) = 0. Then p is said to
be normal.

Lemma 2. 1. Let (X, A, u) be a o—finite measure space and S : X — X be
nonsingular transformation. Then the Koopman operator associated with S
is injective if and only if u is reqular.

Lemma 2. 2. Let (X, A, u) be a o—finite measure space and S : X — X be a
nonsingular transformation. If u is reqular, then D°Ndo(Us) = 0, where DY
is the interior of the unit disk and 0o(Ug) is the boundary of the spectrum
Of Us.

Theorem 2. 3. Let (X, A, n) be a o—finite measure space and S : X — X
nonsingular transformation. Let Ps, the FrobeniusPerron perator associated
with S, have a bounded inverse. If the adjoint of Ps be injective, then o(Ps) C
oD.

Definition 2.4. Let (X, A, ) be a measure space and assume that the set
D(X, A, p) is defined by D(X, A, p) = {f € L (X, A, ) : f > 0 and || f]|s =
1}. Any function f € D(X, A, u) is called a density.

Definition 2. 5. Let (X, A, u) be a measure space and P : X — X be a
Markov operator, that is for any nonnegative f € L™ (X),Pf > 0 and
IPFllfll1- Any f € D(X, A, u) that satisfies Pf = f is called a stationary
density of P.
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Remark 2. 6. By the support of a function f we mean the closure o the set
of all such that f(x) # 0. Since this requires the topological notions which is
not used elsewhere, we simply define the support of f to be the set of all x
such that f(x) # 0, that is, Supp f = {x: f(z) # 0}.

Theorem 2.7. Let (X, A, u) be a o—finite measure space, S : X — X non-
singular transformation, and Ps the FrobeniusPerron operator associated with
S. Suppose u is normal and there is a unique positive stationary density f of
Ps. If Ps has a bounded inverse, then o(Ps) C d(D).

Definition 2. 8. Let (X, A, 1) be a measure space and let a nonsingular
transformation S : X — X be given. Then S is called ergodic if every invari-
ant set A € A is such that u(A) =0 or u(X — A) = 0. That is S is ergodic
if all invariant sets are trivial subset of X.

Lemma 2.9. Let (X, A, u) be a measure space and S : X — X a nonsingu-
lar transformation. If S is ergodic, then there exists at most one stationary
density for the corresponding FrobeniusPerron operator.

Proof. Let f; and f> be two different stationary densities of P. Then it is
clear that Pgt = g*, Pg~ = g~ where g = fi — fo. Definite A = supp g,
B = supp g—, then both A and B are sets of positive measure and ANB = ().
Let A =U% S~ "(A), and B = U2 ,S~"(B). One can show that AUB =),
S™1(A) = A and S'(B) = B. Both A and B have positive measure and are
invariant which contradicts the assumption.

Theorem 2.10. Let S : X — X be a nonsingular transformation in the
measure space . Let S be ergodic, p normal and suppose there is a unique
positive stationary density, if Ps has a bounded inverse. Then o(Ps) C 0D.

Proof. Conclusion follows directly from Lemma 9 and Theorem 7.

Theorem 2.11. Let (X, A, ) be a o— finite measure space and S : X — X a
nonsingular transformation. The p is reqular if and only if Us, the Koopman
operator associated with S is injective.

Proof. Let u be regular measure and f € L>®°(X) be a nonzero function. For
a given positive ¢ define A = {z € X : |f(z)| < ||flloo — €}- Since p(A) > 0,

{z € X |lUsP@)|| > [[flloc — €} = {2 I f(S(x))| > [|flloc — €}
=lly € STHA) : [If W] > lIfllec — €}
c 574

and p is regular, we see that

p{zr € X : [UsP(z)| > ||f]loc — €} > 0.
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Hence ||Usf|| > |flloo — € for any € > 0.
Now Proposition 2 implies Ug is an isometric, that is Ug is injective.
Let U)s be injective and p(A) > 0. Then X4 € L*°(X) is a nonzero func-

tion. Since Ug is injective Xg-1(4) = UsAa is a nonzero function. Hence
u(S™H(A4)) > 0.

Definition 2.12. A transformation S : X — X is called measure-preserving
in the space (X, A, u1) if and only if for any A € A, u(A) = u(S~1(A)).,

The concepts of ergodicity with the aid of two types of transformation
(namely mixing and exactness), classify various degrees of irregular behaviors
in terms of the behaviors of sequences of sets. These three types of transfor-
mations exhibit strong chaotic properties. It should be noted that, this is not
a complete list of possible behaviors, however, these are probably the most
important types of transformations, see [4].

Definition 2.13. Let (X, A, i) be a normalized measure space and S : X —
X a measure preserving transformation:
a) S is called mixing if for all A, B € A, limy,_,oc p(ANp~"(B)) = p(A)u(B).
b) S is called exact if S(A) € A for each A € A and for any A € A with
u(A) > 0.

It is clear that if S is measure preserving then p is regular, and hence Ug
is injective. By these observations the proof of the following proposition is
clear.

Proposition 2.14. Let (X, A, u) be a normalized measure space, S : X — X
be a nonsingular transformation and the FrobeniusPerron operator Ps has a
bounded inverse. Then if S is mizing or exact then o(Ps) C 0D.

3 Ps Without a Bounded Inverse

In the contrary to the previous section, in this section we assume that the
FrobeniusPerron operator does not have a bounded inverse. In this case we
will show that under similar assumptions, the spectrum of FrobeniusPerron
operator equals the closed unit disk in the complex place.

Note that the conclusion of Lemma ?7? is applicable in this section, namely
under general setting the regularity of the measure p implies that if [A| > 1,
then A ¢ 9(Ps).

Theorem 3. 1. Let (X, A, u) be a o—finite measure space and S : X — X a
nonsingular transformation. Suppose Ps does not have a bounded inverse. If
Us is injective, then o(Ps) = D
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Proof. Suppose that |A| < 11is such that A ¢ o(Ps). Since Ps does not have
a bounded inverse, namely 0 € o(Ps), it follows that there exist A\; € do(Ps)
such that |A;| < 1which contradicts Lemma 2. Thus o(Ps) C D. Since o(Ps)
is closed in the complex plane, we see that o(Ps) = D.

Theorem 3. 2. Let (X, A, u) be a o—finite measure space, S : X — X be a
nonsingular transformation and Ps the FrobeniusPerron operator associated

with S. Suppose p is normal and there is a unique positive stationary density
f of Ps. if 0 € 6(Ps) then o(PpS) = D.

Proof. Similar to Theorem 7 we show that y is regular. The conclusion then
follows from Lemma 1 and Theorem 1.
Now it is not hard to prove the following propositions.

Proposition 3.3. Let S : X — X be ergodic in the o— finite measure space
(X, A, i), where i is normal. If there exists a unique positive stationary den-
sity and 0 € o(Ps), then o(Ps) = D.

Proposition 3.4. Let (X, A, 1) be a normalized measure space, S : X — X
a nonsingular transformation, and 0 € o(Ps). Then if S is mizing , then
o0(Ps) = D. Also if S is exact, then o(Ps) = D.
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