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Abstract. In this note we review briefly some topics on hyper K-
algebras.

1 Introduction And Preliminaries

The notion of BC' K-algebra was formulated first in 1966 by K.Iseki, Japanese
Mathematician. This notion is originated from two different ways.

One of the motivations is based on set theory. In set theory, there are
three most elementary and fundamental operations introduced by L. Kan-
torovic and E. Livenson to make a new set from old sets. These fundamental
operations are union, intersection and the set difference. Then, as a gen-
eralization of those three operations and properties, we have the notion of
Boolean algebra. If we take both of the union and the intersection, then as a
general algebra, the notion of distributive lattice is obtained. Moreover, if we
consider the notion of union or intersection, we have the notion of an upper
semilattice or a lower semilattice. But the notion of set difference was not
considered systematically before K. Iseki.

Another Motivation is taken from classical and non-classical propositional
calcului. There are some systems which contain the only implication functor
among the logical functors. These examples are the systems of positive im-
plicational calculus, weak positive implicational calculus by A.Church, and
BCI, BC K-systems by C.AS.Meredith.

We know the following simple relations in set theory:

(A-B)—(A-C)CC-B
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A-(A-B)CB

In propositional calcului, these relations are denoted by
p—q—(g—r)—p—r)

p—((p—4q) —q)

From these relationships, K.Iseki introduced a new notion called a BOK-
algebra.

Definition 1.1. [33]. Let X be a set with a binary operation “*” and
a constant “0”. Then (X,x*,0) is called a BCK-algebra if it satisfies the
following conditions:

D) ((@xy)x(zx2))*(z%y) =0,

() (z*(zxy))*y =0,

(II) z*xz =0,

(IV) 0%z =0,

(V) zsy=0and yxz =0 imply z = y.

for all z,y,z € X.

For brevity we also call X a BC K-algebra. In X we can define a binary
relation “ <7 by z < y if and only if z *y = 0. Then (X, *,0) is a BCK-
algebra if and only if it satisfies that:

For all z,y € X;

(i) (@xy)x(z*z) <zxy,

(i) zx(zxy) <y,

(i) = < =,

(iv) 0< =,

(v) z<yandy<zimply z=y.

Theorem 1. 2. [33]. In a BCK -algebra (X, *,0), we have the following prop-
erties:

For all x,y,2z € H;

(i) x <y implies zxy < z *x,

(i) x <y and y < z implies z < z,

(iv) xxy < z implies © x z < y,

() (z*2)*(y*z) <zxy,

(vi) z <y implies T x z < y* z,

(vii) zxy < x,

(vii) x %0 = z.

Definition 1. 3. [33]. If there is an element 1 of a BC' K-algebra X satisfying
x < 1for all z € X, then the element 1 is called unit of X. A BC K-algebra
with unit is called to be bounded.
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Theorem 1.4. [33]. Let (X,*,0) be a BCK-algebra and 1 ¢ X. We define
the operation” *'” on X = X U {1} as follows

zxy ifz,yeX

{0} freX andy=1
1 ifr=1andy € X
0 ifr=y=1,

x*’y:

Then (X, ',0) is a bounded BC K -algebra with unit 1.

Definition 1. 5. [33]. Let (X1,%1,0) and (X»,*2,0) be two BCK-algebras
and X1 N X, = {0}. Suppose X = X; U X», define x on X as follows:

r*y if x and y belong to X3
Txy =4 x*xy if x and y belong to Xs
T if  and y do not belong to the same algebra

Next we will verify that (X, *,0) is a BC' K-algebra, this algebra is called
to be the union of (X1,%1,0) and (Xs, *2,0), written X; @ Xs.

Theorem 1.6. [33]. Let (X;,%;,0;),(i € I) be an indexed family of BCK -
algebras and let HXZ- be the set of all mappings f : I — U;e1X;, where

iel
fG) e X, foralli€ 1. For f,g € HXi’ we define fxg by (f=g)(i) = f(i) *
iel
g(i) for every i € I, and by 0 we mean 0(i) = 0;,Vi € I. Then (H X, *,0)

iel
is a BCK -algebra, which is called the direct product of X;(i € I).

Definition 1. 7. [33]. Let (X, %,0) be a BC K-algebra and S be a non-empty
subset of X. Then S is called to be a subalgebra of X if, for any =,y € S, xxy €
S, i.e., S is closed under the binary operation * of X.

Definition 1. 8. [33]. A non-empty subset I of a BCK-algebra X is called
an ideal of X if for all z,y € X:

(i)oer

(ii) zxy € I and y € I imply that x € 1.

Definition 1.9. [33]. Give a BCK-algebra (X, %,0), a non-empty subset I
of X is said to be a positive implicative ideal if it satisfies, for all z,y, z in X,
(i) 0 e I,
(ii) (rxy)*z € land y*2z € [ imply 2 € I.

Definition 1.10. [33]. A BCK-algebra (X, %,0) is called to be positive im-
plicative if it satisfies for all z,y and z in X,

(zx2)*(yxz)=(zxy)*2z.
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Definition 1.11. [33]. Give a BC K-algebra (X, *,0) and given elements a, b
of X, we define:

Ala,b)={z e X :zxa < b}
Obviously,0,a and b are in A(a,b). If for all z,y € X, A(z,y) has a greatest
element, written x + y, then the BC K-algebra is called to be with condition

(5)-

Theorem 1. 12. [33]. Any positive implicative ideal must be an ideal, but the
inverse 1§ not true.

Definition 1.13. [33]. A non-empty subset I of a BCK-algebra X is said
to be a wvarlet ideal if | for all z,y € X,

(i) z €I and y <z imply y € I,

(ii) z € I and y € I imply that there exists z € I such that z < z and
y <z

Definition 1.14. [33]. Let X be a BCK-algebra with condition (S) and I
be a non-empty subset of X. Then I is called to be an additive ideal if , for
all z,y € X,

(i)z €l andy <zimplyy € I,

(i) z €l andy € I imply z +y € I.

Definition 1.15. [41] A non-empty subset I of a BCK-algebra X is called
a commutative ideal of X if for all z,y € X:

(i) 0 eI,

(ii) (xxy) *2z € I and z € I imply that z * (y x (y xxz)) € I.

Theorem 1.16. Any positive implicative ideal (commutative ideal) must be
an ideal, but the inverse is not true.

The theory of hypercompositional Structure has been introduced by F.
Marty in 1934 during the 8t* congress of Scandinavian Mathematiciens, where
he presented his work [32]. Several references have also been made to H.S.Wall
who has presented his paper [41] in 1937. Unfortunately Marty himself did
not present more than 3 or 4 papers, because he died, very young during the
world war II. So F.Marty introduced the notion of the hypergroup. Today the
research in the field of hypercompositional structures is very vivid. In many
universities in the world are working teams on this theory.

Definition 1.17. Let H be a non-empty set and “o” be a function from
H x H to P*(H) = P(H) — {0}. Then “o” is called a hyperoperation on H.

Definition 1. 18. For two non-empty subsets A and B of H, denote by Ao B
the set
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Notation 1.19. Let “o” be a hyperopration on H and a € H,A € P*(H).
Then by ao A and A oa we mean {a} o A and A o {a} respectively.

2 On Hyper K-algebras

Definition 2.1. By a hyperK -algebra we mean a non-empty set H endowed
with a hyperoperation “o” and a constant 0 satisfying the following axioms:
(HK1) (zoz)o(yoz) <zoy,
(HK2) (zoy)oz=(xoz)oy,
(HK3) z < =z,
(HK4) z <y and y < z imply z = y,
(HK5) 0 <z forallz € H
for all z,y,z € H, where x < y is defined by 0 € z o y and for every
A,BC H, A< B is defined by 3a € A and 3b € B such that a < b.

Example 2.2. (1) Let (X,#,0) be a BCK-algebra and define a hyperop-
eration “o” on X by x oy = {x xy} for all z,y € X. Then (X,0,0) is a
hyper K -algebra.

(2) Let n € N'U {0}. Define a hyperoperation “o” on H,, = [n,00) by

[n,z]if z<y
zoy:=< (nylif >y#n
{z} if y=n

for all z,y € H. Then (H,,,0,n) is a hyperK-algebra.
(3) Let H = {0, z,y}. Consider the following table:

0| 0 T Y

01{0} {0,z,y} {0,z,y}
z|{z} {0,7,y} {0,2,y}
y{y} {z,y} {0,2,9}

Then (H,o,0) is a hyper K-algebra which is not a hyper BC' K-algebra, since

zoy L {z}.
(4) Let H = {0,1,2}. Consider the following table:

o0 1 2

0[{0} {0,1,2} {0, 1,2}
1/{1} {0,1,2} {0,1,2}
212} {2} {0,1,2}

Then (H,o,0) is a hyperK-algebra.
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Proposition 2. 3. Let (H,o,0) be a hyperK -algebra. Then for all z,y,z € H
and for all non-empty subsets A, B and C of H the following hold:

(i) (AoB)oC =(Ao(C)oB,

(i) wo(zoy) <y,

(iti)) toy<zezoz<y,

(iv) AoB<(C & AoC < B,

(v) (ez)o(zoy) <yoz,

(vi) (AoC)o(Bo()< Ao B,

(vii) (AoC)o(AoB)<BoC(C,

(viii) Ao (Ao B) < B,

(ixr) A<A,

(z) A C B implies A < B.

(xi) zoy <z,

(1ii) AoB < A,

(ziti)) Ao A< A,

(ziv) 0 € zo(x00),

(zv) z €200,

(zvi) 0€zoy=>0€(xoy)ol
Theorem 2.4. Let (Hy,01,0) and (Hs,02,0) be hyperK -algebras such that
HyNHy, ={0} and H = HyUH,. Then (H,o,0) is a hyperK -algebra , where
the hyperoperation “o” on H is defined as follows:

ro1y Zf T,y € Hl:
Toy:= {xow if x,y€ Hs,
{z} otherwise,

for all x,y € H.

Notation 2.5. We use the notation Hy ® Ha for the union of two hyperK -
algebras Hy and H,.

Theorem 2.6. Let (Hy,01,01) and (Hs,02,05) be hyperK -algebras and H =

[

H, x Hy. We define a hyperopration “o” on H as follows,
(a1,b1) o (a2, b2) = (a1 o1 ag, by o3 ba)

for all (a1,b1), (az,b2) € H, where for A C Hy and B C Hy by (A, B) we
mean
(A,B) ={(a,b) :a€ A,be B}, 0=(04,02)

and
(al,bl) < (a2,b2) = a < CLQ,bl < by

Then (H,0,0) is a hyperK -algebra , and it is called the hyperK -product of
Hi and H>.
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Definition 2. 7. Let I be a non-empty subset of a hyper K-algebra (H, o,0).
Then I is called a weak hyperK -ideal of H if

(H1) 0€1,

(WHK) zoy CIandy € I imply that z € T for all z,y € H.

Definition 2. 8. Let I be a non-empty subset of a hyper K-algebra (H, o,0).
Then I is said to be a hyperK -ideal of H if

(H1) 0€1,

(HK) zoy < I and y € I imply that z € I, for all z,y € H.

Proposition 2.9. Let (H,o,0) be a hyperK -algebra and let I be a hyperK -
ideal of H. Then I is a weak hyperK -ideal of H.

Note that the converse of proposition 2.8 may not be true. To see this,
consider the following example:

Example 2.10. Let H = {0,1,2} . Consider the following table:

ol0 1 2
00} {0} {0}
1/{1} {0,1} {0,1}
2|{2} {1,2} {0,1,2}

Then (H,o0,0) is a hyper K-algebra.

Now it is easy to see that I := {0,2} is a weak hyperK-ideal which is not a
hyperK-ideal.

Lemma 2.11. Let H be a hyperK-algebra and I a hyperK -ideal of H. If
z<yandy€l, thenz € 1.

Proof. Since z < y, we have 0 € z oy. It follows from 0 € I and (HK3) that
zoy < I so from (HK) that z € I.

Theorem 2.12. Let (Hy,01,01) and (Haz,09,02) be hyperK -algebras and
consider the hyperK -algebra (H; x Hy,0,(01 005)). Then

(i) If I, and Iy are hyperK -ideals of Hy and Hs respectively, then I x I
is a hyperK -ideal of Hy X Hs.

(i) If I is a hyperK -ideal of Hy x Ho, then there are unique hyperK -ideals
I, and I, of Hy and Hs respectively such that I = I, x I.

Definition 2.13. Let (H,o,0) be a hyperK-algebra and let S be a subset of
H containing 0. If S is a hyper K-algebra with respect to the hyperoperation
“o” on H, we say that S is a hyperK -subalgebra of H.

Theorem 2.14. Let S be a non-empty subset of a hyperK -algebra (H,o,0).

Then S is a hyperK -subalgebra of H if and only if toy C S for all z,y € S.
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Proof. (=) Clear.
(<) Assume that zoy C Sfor all z,y € S and let a € S. Since aca < {a},

we have 0 € (aoca)oa= |J zoa CS. Now for any z,y,z € S, we have
x€aoa

z0zCS,yozC S and zoy CS. Hence

(woz)o(yoz)= |J aobC S

a€xoz
bEyoz

and so (HK1) holds in S. Similarly we can prove that the axioms (HK2),
(HK3), (HK4) and (HK5) are hold in S. Therefore S is a hyper K-subalgebra
of H.

Example 2.15. (1) Let (X, 0, 0) be the hyper K-algebra in Example 3.1.2(1)
and let S be a subalgebra of a BC K-algebra (X, *,0). Then S is a hyperK-
subalgebra of (X, o0,0).

(2) Let (Hy,,o,n) be the hyperK-algebra in Example 2.2(2) and let S =
[n,a] for every a € [n,o00). Then S is a hyperK-subalgebra of (Hj,o,n),
which is not a hyper BC' K-ideal.

(3) Let (H,0,0) be the hyperK-algebrain Example 2.9 and let S = {0,1}.
Then S is a hyper K-subalgebra and a weak hyperK-ideal of H, but S is not
a hyperK-ideal of H.

(4) Let Hy be the hyper K -algebra in Example 2.2(3) and let H = Hy X Hj.
Assume S = H; x {0}. Then S is a nontrivial hyperK-subalgebra of H.

Definition 2.16. Let (H,o,0) be a hyperK-algebra. If there exists an el-
ement e € H such that z < e for all x € H, then H is called a bounded
hyperK -algebra and e is said to be the unit of H.

Note that (HK4) implies that the unit of H is unique.

Example 2.17. (i) Let (X,%,0) be a bounded BCK-algebra. Define the

[P

hyper operation “o” on X as follows:
zoy={zrxy}, Vr,yeX.

Then (X, 0,0) is a bounded hyperK-algebra.

(ii) The hyperK-algebra (H,,o,n) in Example 2.2(2) is not bounded,
because if @ € H,, is unit, then (a +1)oa = (n,a]. Thusn &€ (a+ 1) o a, i.e.,
a+ 1« a. (iii) In Example 2.9, H is bounded and 2 € H is unit.

(iv) The hyperK-algebra (H, o,0) in Example 2.2(4) is bounded and 2 €
H is unit.

Proposition 2.18. Let Hi and Hy be two bounded hyperK -algebras. Then
the hyperK -product Hy x Hy of Hi and Hs is also bounded.
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Definition 2.19. Let H be a hyperK-algebra. If 0 o z = {0} for all x € H,
then we say that H satisfies the zero condition.

Example 2.20. Let H be a hyperK-algebra as in Example 3.1.2(2). Then
H satisfies the zero condition.

Theorem 2. 21. Let (Hy,01,0) be a hyperK -algebra, which satisfies the zero
condition. Then (Hy,01,0) can be extended to a bounded hyperK -algebra.

Proof. Let e ¢ H; and H = H; U {e}. Define the hyper operation “o” on H

as follows:
{e} ife=e,yeH

{0} ifr=e,y=e
{0,z} ifzeH,y=e
zory ifzye€ Hy,

.’Eoy:

for all z,y € H. Now we can show that (H, o,0) is a bounded hyper K -algebra
and e is its unit.

Definition 2.22. (i) A non-empty subset I of H is called s-reflexive, if for
any z,y € H which (xoy)(I # 0, implies z oy C I.

(ii) A non empty subset I of H is called reflexive, if for any =z € H,
rzox C 1.

(iii) If I is hyper K-ideal of H and it is s-reflexive (reflexive), then I is
called s-reflexive (reflexive) hyper K-ideal of H.

Example 2.23. Let H = {0, 1,2, 3}. Then the following table shows a hyper
K-algebra structure on H

o 1 2 3
{0} {0} {0} {0}
{1} {0} {0} {0}
{2} {2}{0} {0}
{3} {2+ {1} {0.1}

Then I ={0,1} is s-reflexive hyper K-ideal of H.

W N = O o

3 Homomorphism of HyperK-algebras

Definition 3.1. Let H; and Hy be two hyperK-algebras. A mapping f :
Hy{ — H> is said to be a homomorphism if

(i) f(0)=0

(i) f(zoy)=f(x)o fy), ¥,y e Hi.

If f is 1-1 (or onto) we say that f is a monomorphism (or epimorphism).
And if f is both 1-1 and onto, we say that f is an isomorphism.
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Example 3.2. Let Hy be as in Example 2.2(2) and t+ € R" be constant.
Define
f :Hy — Ho, f(ilf) = tx, Va € Hy.

Then f is an isomorphism of hyperK-algebras. To do this, let z,y € Hy and
x < y. Then tz < ty and thus f(zxoy) = f([0,2]) = [0,tx] = tx oty =
f@)o f(y). fz >y #0, then tz > ty and so

f(xoy) = f((0,9]) = (0,ty] =tz oty = f(z) o f(y).
If y = 0, then

f®o0)= f({z}) =tz =tz ot0 = f(x) o f(0).

Also f(0) = 0, consequently f is a homomorphism. Clearly f is onto and 1-1.
Thus f is an isomorphism.

Theorem 3.3. Let f : Hi — H> be a homomorphism of hyperK -algebras.
Then

(i) If S is a hyperK -subalgebra of Hy, then f(S) is a hyperK -subalgebra
of Hy,

(i) f(Hi) is a hyperK -subalgebra of Ho,

(i3) If Hy satisfies the zero condition, then so is f(Hy),

(iv) If S is a hyperK -subalgebra of Ho, then f=1(S) is a hyperK -subalgebra
of Hy,

(v) If I is a (weak) hyperK -ideal of Hs, then f~1(I) is a (weak) hyperK -
ideal of Hy,

(vi) Kerf := {z € Hy | f(z) = 0} is a hyperK -ideal and hence a weak
hyperK -ideal of H,,

(vit) If f is onto and I is a hyperK -ideal of Hy which contains Kerf,
then f(I) is a hyperK-ideal of Ho.

Theorem 3.4. Let f : Hi — Hy be an epimorphism of hyperK -algebras.
Then there is a one to ome correspondence between the set of all hyperK -
ideals of Hy containing Kerf and the set of all hyperK -ideals of H.

Lemma 3.5. Let f : H — Hy be a homomorphism of hyperK -algebras. If
x <y in Hy, then f(z) < f(y) in Hs.

Theorem 3.6. Let f : Hi — Hy be an epimorphism of hyperK -algebras. If
H, is bounded, then Hs s also bounded.

Proof. Let e be the unit of H; and y € Hs be an arbitrary element. Then
there exists € Hy such that f(z) = y. Since z < e, by Lemma 3.2.5, we
have y = f(z) < f(e). Thus f(e) is the unit of Hy and Hs is bounded.
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Theorem 3.7. Let f : HH — Hs and g : Hy — H3 be two homomorphisms
of hyperK -algebras such that f is onto and Kerf C Kerg. Then there exists
a homomorphism h : Hy — Hs such that ho f = g.

Proof. Let y € Hy be arbitrary. Since f is onto, there exists z € H; such
that y = f(x). Define h : Hy — Hj by h(y) = g(x), Yy € Hs. Now we show
that h is well-defined. Let y1,y2 € Ho and y; = y». Since f is onto, there are
z1,x2 € Hy such that y; = f(z1) and y2 = f(x2). Therefore f(z1) = f(z2)
and thus 0 € f(x1)o f(x2) = f(z1022). It follows that there exists ¢ € z1 0z
such that f(¢) = 0. Thus ¢t € Kerf C Kerg and so g(t) = 0. Since ¢ € x; o x4
we conclude that

0=g(t) € g(z1 0 x2) = g(z1) 0 g(z2)

which implies that g(z1) < g(22). On the other hand since 0 € f(z3)o f(z1) =
f(zg0my), similarly we can conclude that 0 € g(x2)og(x1), i.e., g(z2) < g(z1).
Thus g(z1) = g(z2), which shows that h is well-defined. Clearly ho f = g.
Finally we show that h is a homomorphism. Let y,,y> € Hs be arbitrary.
Since f is onto there are x1,z2 € H; such that y; = f(x1) and yo = f(z2).
Then

og(za) = (ho f)(x1) o (ho f)(z2)
) = h(y1) o h(y2).

Moreover since f(0) =0 and g(0) = 0, we conclude that

h(0) = h(f(0)) = (h o f)(0) = g(0) = 0.
Thus h is a homomorphism, ending the proof.

Theorem 3.8. Let f : Hi — Hs be a monomorphism of hyperK -algebras.
If Hy is bounded with unit element e and e € Imf, then H; is also bounded
and f~1(e) is its unit.

4 Positive Implicative Hyper K-ideals

Definition 4.1. Let I be a nonempty subset of H such that 0 € I. Then I
is said to be a positive implicative hyperK -ideal of

(i) type 1, if for all z,y,2 € H, (xoy)oz C I and y oz C I implies that
rozCl,

(ii) type 2, if for all z,y,2 € H, (roy)oz < I and y o z C I implies that
rzoz Cl,
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(iil) type 3, if for all z,y,z € H, (roy) oz < I and y o z < [ implies that
rozCl,
(iv) type 4, if for all z,y,z2 € H, (xoy) oz < I and y o z < [ implies that
roz<I.

Example 4. 2. (i) Let H be the hyperK-algebra of Example 3.1.2(1). If I
is a positive implicative ideal of BC K -algebra (H,*,0), then I is a positive
implicative hyperK-ideal of type 1,2,3 and 4 of hyperK-algebra H.

(ii) Let H = {0,1,2}. Then the following table shows a hyperK-algebra

structure on H.
ol0 1 2

0{0} {0,1,2} {0,1,2}
1{1}{0,2} {1,2}
21{2} {0,1} {0,1,2}
Clearly I, = {0,2} is a positive implicative hyper K-ideal of type 1. But
I, = {0,1} is not, since (201)o0 = {0,1} C I, 100 = {1} C I and
200={2} ¢ I
(iii) Let H = {0,1,2}. Then the following table shows a hyper K -algebra
structure on H.

of0 1 2
0|{0} {0,1,2} {0,1,2}
11{1} {0,2} {0,1,2}
2|{2} {2} {0,1,2}
It can be checked that I} = {0,1} is a positive implicative hyperK-ideal
of type 2. But I, = {0, 2} is not, since (102)00 < I3,200 C I and 100 € I.
(iv) Let H = {0,1,2}. Then the following table shows a hyper K -algebra
structure on H.

o0 1 2
0[{0} {0} {0}
{1y {o}y {1}
2|{2} {0,2} {0,2}
Now we can check that I, = {0,2} is a positive implicative hyper K-ideal
of type 3. But I; = {0, 1} is not, since (201)00 < I;,100 < I; and 200 € I;.
(v) Let H = {0,1,2}. Then the following table shows a hyperK-algebra
structure on H.

of0 1 2
0{0} {0,1,2} {0,1,2}
1|{1} {0, 1,2} {0,2}
21{2} {1,2} {0,1,2}
It is easy to see that I = {0,2} is a positive implicative hyperK-ideal of
type 4. But I = {0,1} is not, since (201)o0={1,2} < I1,100={1} <
and 200 = {2} ¢ I,.
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Theorem 4.3. Let 0 € H be a right scalar element. If I is a positive im-
plicative hyperK -ideal of type 1, then I is a weak hyperK -ideal of H.

Example 4.4. (i) Let H = {0,1,2}. Then the following table shows a
hyper K-algebra structure on H.

o] 0 12
0[{0,1} {0} {0,1}
11,2} {0,1} {0, 2}
2/{2} {1,2}{0,1,2}

We see that the 0 € H is not a right scalar element and I = {0,2} is a
positive implicative hyper K-ideal of type 1. But [ is not a weak hyper K-ideal,
since 1lo2CI,2€ Tand 1 ¢1.

(ii) Let H = {0,1,2}. Then the following table shows a hyper K -algebra
structure on H.

ol0 1 2
0{0} {0} {0}
{1} {0} {1}
2l{2} {0,1} {0,1,2}
Clearly that 0 € H is a right scalar element. Moreover I = {0, 2} is a weak

hyperK-ideal of H, but it is not a positive implicative hyper K-ideal of type
1.

Definition 4.5. H is called to be a positive implicative hyper K-algebra, if
it satisfies the following condition,

(zoz)o(yoz)=(zoy)oz
for all z,y,z € H.

Example 4. 6. (i) Let H = {0,1,2}. Consider the following table:

ol0 1 2
0[{0} {0} {0}
1{1} 10,1} {0}
2l{2b{2} {0,2}

Then (H,o,0) is a positive implicative hyper K-algebra.
(if) Consider Example 4.4(i). Since,

(200)0(100) ={0,1,2} #{1,2} = (20 1) 00

then H is not a positive implicative hyper K-algebra.
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Theorem 4.7. Let H be a positive implicative hyperK -algebra. Then any
weak hyperK -ideal of H is a positive implicative hyperK -ideal of type 1.

Proof. Let I be a weak hyperK-ideal of H and let (zoy)oz C I and yoz C I
for z,y,z € H. Since (zoz)o(yoz)=(xoy)ozCIl,yozClandisa
weak hyperK-ideal of H, then we get that 2oz C I. Therefore [ is a positive
implicative hyperK-ideal of type 1.

Corollary 4.8. Let H be a positive implicative hyperK -algebra, such that
0 € H is a right scalar element and I is a nonempty subset of H. Then I is
a positive implicative hyperK -ideal of type 1 iff I is a weak hyperK - ideal of
H.

Theorem 4.9. Let I be a nonempty subset of H. Then the following state-
ments hold:

(i) If I is a positive implicative hyperK -ideal of type 2, then I is a positive
implicative hyperK -ideal of type 1.

(i) If I is a positive implicative hyperK -ideal of type 3, then I is a positive
implicative hyperK -ideal of type 2 and 4.

Proof. (i) Let (zoy)oz CTandyoz C I for z,y,z € I. Then (zoy)oz < I
and yoz C I. So by hypothesis we get that zoz C I. Therefore I is a positive
implicative hyperK-ideal of type 1.

(ii) The proof is similar to the proof of (i).

Example 4.10. (i) Consider Example 4.4(i). Then I = {0, 1} is a positive
implicative hyper K-ideal of type 1. But it is not of type 2, since (100) o0 =
{1,2} <{0,1} =1,000={0,1} CTand 100 ={1,2} Z I.

(ii) The following table shows a hyperK-algebra structure on H.

0| 0 1 2
0[{0,1} {0,1}  {0,1,2}
{1} {0,1} {1,2}
2|{1,2} {0,1,2} {0,1,2}

Then I = {0,2} is a positive implicative hyperK-ideal of type 2. But it is
not a positive implicative hyperK-ideal of type 3, since (202)00 = {0,1,2} <
I,200={1,2} <Tand200={1,2} ¢ I.

(iii) Consider Example 4.2(v). Then I = {0,2} is a positive implicative
hyper K-ideal of type 4, but it is not a positive implicative hyperK-ideal of
type 3, since (201)o1< I, 1ol <Tand201¢ 1T

Theorem 4.11. Let I be a nonempty subset of H and 0 € H is a right
scalar element. If I is a positive implicative hyperK -ideal of type 2 or 3, then
I is a hyperK -ideal of H.
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Example 4.12. (i) Let H = {0,1,2}. Then the following table shows a
hyper K-algebra structure on H.

ol0 1 2
0110} {0} {0}
1{1} {0} {1}
2|{2} {0} {0,1,2}

We see that 0 € H is a right scalar element and I = {0,2} is a hyperK-
ideal of H. But [ is not a positive implicative hyper K-ideal of type 2, since
(200)02={0,1,2} <I,002={0} CTand 202={0,1,2} Z I.

(ii) The following table shows a hyperK-algebra structure on H.

0| 0 1 2
0[{0,1} {0,1}  {0,1,2}
{1} {0,1} {1,2}
2|{1,2} {0,1,2} {0,1,2}

Clearly 0 € H is not a right scalar element and I = {0,2} is a positive
implicative hyperK-ideal of type 2. But I is not a hyperK-ideal of H, since
lo2={1,2}<I,2€land1¢1.

(iii) Consider the following table which shows that a hyperK-algebra
structure on H.

ol0 1 2
0{0} {0,1,2} {0,1,2}
1|11} {0,1,2} {0}
22} {21 {0,1.2}

Then 0 € H is a right scalar element and I = {0,1} is a hyperK-ideal of
H. But it is not a positive implicative hyperK-ideal of type 3.

(iv) Consider the following table which shows that a hyperK-algebra
structure on H.

0| 0 1 2
0[{0,1} {0,1,2} {0,1,2}
1{1} {0,1} {1,2}
2|{1,2} {0,1,2} {0,1,2}

Then 0 € H is not a right scalar element and I = {0,2} is a positive
implicative hyper K-ideal of type 2. But it is not a hyperK-ideal, since 102 < I
,2€Tand 1¢1.

Definition 4.13. Let I be a nonempty subset of H. Then we say that I
satisfies the additive condition, if x < y and y € I implies that x € I, for all
T,y € H.
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Example 4. 14. Consider Example 4.2(iii). Then I; = {0,1} satisfies the
additive condition. But I, = {0,2} does not satisfy the additive condition,
since 1<2,2€l,and 1¢ Is.

Theorem 4.15. Let I be a positive implicative hyperK -ideal of type 4 and
satisfies the additive condition. Then I is a hyperK -ideal of H.

Proof. Let zoy < I and y € I for z,y € H. By Theorem 2.3(xv), (zoy)o0 <
I and yo0 < I. Since [ is a positive implicative hyper K-ideal of type 4, then
200 < I. Thus there is b € I such that 2 o0 < b. By Theorem 3.1.3(iii),
2 0b < 0 and so there is a € x o b such that a < 0. By (HK5) and (HK4) we
have a = 0. Therefore 0 € z0b and hence x < b. Since I satisfies the additive
condition and b € I, we get that = € I. So I is a hyperK-ideal of H.

Example 4.16. (i) Consider Example 4.2(v). Then I = {0} is a hyperK-
ideal of H and it satisfies the additive condition. But [ is not a positive
implicative hyperK-ideal of type 4, since (201)01 < {0},101 < {0} and
201 ¢ {0}.

(ii) Consider Example 4.6(i). Then I = {0,1} is a positive implicative
hyperK-ideal of type 4 and dose not satisfies the additive condition and it is
not a hyperK-ideal of H, since 102 = {0} <I,2¢€ I and 1 ¢ I. Therefore
the additive condition in theorem 4.15 is a necessary.

Corollary 4.17. If H be a positive implicative hyperK -algebra, which 0 € H
is a right scalar element. If I is a positive implicative hyperK -ideal of type
4 such that it satisfies the additive condition then, I is a positive implicative
hyperK -ideal of type 1.

Proof. By Theorem 4.15, I is a hyperK-ideal of H. By Theorem 2.8, I is
a weak hyperK-ideal of H. Thus by Theorem 4.7, I is positive implicative
hyperK-ideal of type 1.

Theorem 4.18. Let f : Hi — Hy be a homomorphism of hyperK -algebras.
Then
(i) If J is a positive implicative hyperK -ideal of type 1(resp 2,3,4) of Ha,
then f~1(J) is also a positive implicative hyperK -ideal of type 1(resp 2,3,4)
Of H1 .
(ii) Let f be onto and kerf C I. Then
(a) If I is a positive implicative hyperK -ideal of type 1 of Hy and I
be a hyperK -ideal of Hy, then f(I) is a positive implicative hyperK -ideal of
type 1 of Hs.
(b) If 0 € Hy is a right scalar element and I is a positive implica-
tive hyperK -ideal of type 2(type 3) of Hy, then f(I) is a positive implicative
hyperK -ideal of type 2(type 3) of Hs.
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(c) If I is a positive implicative hyperK -ideal of type 4 of Hy and I
satisfies the additive condition, then f(I) is a positive implicative hyperK -
ideal of type 4 of Hs.

Example 4.19. (i) Let H; = {0,1,2} and H, = H3 = {0, 1,2, 3}. Consider
the following tables:

IR 002|{8} {(1)} {(2)} {0?3
(1) ?ﬁ % % {1} {0} {1} {1}
21{2} {2} {0} 2({2} {0} {o} {0}

31{3} {0,1} {3} {0,1,3}

o3 0 1 2 3
01{0y {0} {0} {0}
{1}y {0} {0} {0}
2142} {23 {0} {2}
3143} {1,2} {0,1} {0, 2}

Then (Hy,01,0), (Ha,09,0) and (Hs,03,0) are hyper K-algebras. Let f; :
H, = H5 and f5 : Hy — Hj are defined as follows:

1 ifz=2
fiz)={2 ifz=1
0 ifz=0

fQ(iE):.T,' y Vl’GHl

Then f; and f, are homomorphism, but are not onto. Moreover, I = {0,1}
is a positive implicative hyperK-ideal of type 1,2,3.4 of H; and kerf; =
kerfo C I. But fi(I) is not a positive implicative hyperK-ideal of type 1,2,3
and fo(I) is not a positive implicative hyperK-ideal of type 4.

Theorem 4. 20. Let I be a nonempty subset of H. Then

(i) I is a positive implicative hyperK -ideal of type 1 if and only if, for all
a€ H I,={x€ H:x0aCI} is a weak hyperK -ideal of H.

(i) Let I be a positive implicative hyperK -ideal of type 2, then for all
a€e HI,={x€ H:x0aC I} is a hyperK-ideal of H.

Proof. (i) Let z,y,a € Hyxz oy C I, and y € I,. Thus (zoy)oa C I and
yoa C I. Since I is of type 1, then z oa C I and so z € I,. Therefore I, is
a weak hyperK-ideal of H.

Conversely, let (zoy)oz C I and yoz C I for z,y,2z € H. Then zoy C I, and
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y € I,. Since I, is a weak hyperK-ideal of H, then = € I, and so x 0z C I.
Thus I is a positive implicative hyper K-ideal of type 1.

(i) Let x,y,2 € Hyx oy < I, and y € I,. Then, there are z € z o y and
w € I, such that 0 € z ow. Since w oa C I, then

0€0oaC(zow)oaC ((xoy)ow)oa

This implies that ((z o y) o w) o a < I. Thus there is d € x o y such that
(dow)oa < I.Since woa C I and I is a positive implicative hyper K-ideal
of type 2, then doa C I. Thus (z oy) oa < I. Now since y oa C I we get
that x oa C I and so x € I,. Therefore I, is a hyperK-ideal of H.

Theorem 4.21. Let I be a nonempty subset of H. Then I is a positive
implicative hyperK -ideal of type 4 if and only if, for all a € H, I= = {z €
H : zoa < I} is a least hyperK-ideal of H containing I U {a}, that is
I =<IU{a}>.

Definition 4.22. Let a € H. We define the subset (a] of H as follows:
(a]={x€H : z<a}
Note that it is clear that {0,a} C (a).

Theorem 4. 23. The following conditions on H are equivalent:
(i) {0} is a positive implicative hyperK -ideal of type 4,
(i) (a] is a hyperK -ideal of H, for all a € H.

Proof. (i) = (ii) Let {0} be a positive implicative hyperK-ideal of type 4.
Then by Theorem 3.3.22, for all a € H, {0} is a hyperK-ideal of H . But,

{0}s={2 : zoa<{0}}={z : z<a}=(a] , (1)

Therefore for all a € H, (a] is a hyperK-ideal of H.

(i1) = (i) Let for all a € H, (a] is a hyperK-ideal of H. By (1), {0} = (al.
Then for all a € H, {0} is a hyperK-ideal of H contain {a}. So by the proof
of (<) in Theorem 4.21, {0} is a positive implicative hyperK-ideal of type 4.

Theorem 4.24. Let A be a nonempty subset of H and let x € H be such
that (--+((x ca1) o az) o--+)oa, < {0}, for some ay,as,---,a, € A. Then
€S A>, e,

<A>D{zeH:(-((xoaj)oay)o---)oa, < {0}
for some ay,as,---,a, € A}.

In particular, if {0} is a positive implicative hyperK -ideal of type 4 and
a € H, then
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<a>={r€H:(---((zoa)oa)o---)oa< {0} for some n € N}.

n times

5 Commutative Hyper K-ideals And
Quasi-commutative Hyper K-algebra

Definition 5. 1. Let I be a nonempty subset of a hyper K-algebra H such
that 0 € I. Then I is called a commutative hyper K-ideal of

(i) type 1, if for all z,y,z € H, (xoy)oz C I and z € I imply that z o (y o
(youx)) C I,

(ii) type 2, if for all z,y,z2 € H, (roy)oz C I and z € I imply that
zo(yo(yox)) <I,

(iii) type 3, if for all z,y,2 € H, (xoy)oz < I and z € I imply that
zo(yo(yox)) CI,

(iv) type 4, if for all z,y,z2 € H, (x oy) oz < I and z € I imply that
zo(yo(yow)) <I.

Example 5.2. (i) Let H = {0,1,2}. Then the following table shows a hyper
K-algebra structure on H.

o 1 2
10} {0} {0}
{1} {0,2} {1}
{2} {0,2} {0,2}

N = OO0

We can check that I = {0,2} is a commutative hyper K-ideal of any types
of 1,2,3 and 4. Also .J = {0,1} is a commutative hyper K-ideal of any types
of 1,2 and 4 while it is not of type 3, since (1c1)o0=1{0,2} < Jand 0 € J
but 1o(1o(101))=4{0,2} £ J.

(ii) Let H = {0,1,2}. Then the following table shows a hyper K-algebra
structure on H.

o0 1 2
0 {0} {0} {0}
11y {0} {1}
2 {2} {0,1}{0,1,2}

We see that I = {0} is a commutative hyper K-ideal of type 1, but J = {0,1}
is not, since (201)o0 = {0,1} C J and 0 € .J, while 20(10(102)) = {2} £ J.
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(iii) Let H = {0, 1,2}. Consider the following hyper K-algebra structure on
H.

o0 1 2
0 {0} {0} {0}
1 {13 {0} {1}
2 {2} {0} {0,1,2}

Then I = {0, 1} is a commutative hyper K-ideal of type 2(4), but J = {0} is
not, since (201)o0= {0} C J and 0 € J, while 20 (10 (102)) = {2} £ J.

Theorem 5.3. Let I be a nonempty subset of H. Then the following state-
ments hold:

(i) if T is a commutative hyper K-ideal of type 1, then I is a commutative
hyper K-ideal of type 2,

(i) if I is a commutative hyper K-ideal of type 3, then I is a commutative
hyper K-ideal of any types of 1,2 and 4,

(iii) if I is a commutative hyper K-ideal of type 4, then I is a commutative
hyper K-ideal of type 2.

Example 5.4. (i) In Example 5.2(ii), I = {0,1} is a commutative hyper
K-ideal of type 2, while it is not of type 1.

(ii) In Example 5.2(i), I = {0,1} is a commutative hyper K-ideal of type
1(2,4), while it is not of type 3.

(iii) The following table shows a hyper K-algebra structure on H = {0,1,2}.

o 1 2
10} {0} {0}
11} {0} {1}
{2} {0,2} {0}

Then I = {0} is a commutative hyper K-ideal of type 2, but it is not of type
4, since (201)00=1{0,2} < I, while 20 (10 (102)) ={2} £ I.

N = O 0

Theorem 5.5. If I is a commutative hyper K -ideal of type 3, then I is a
hyper K -ideal.

Example 5. 6. The following table shows a hyper K-algebra structure on
{0,1,2}.

o | 0 1 2
0 |{0,1,2} {0,1,2} {0,1,2}
1] {1} {o,1,2} {1}
2 | {2} {2} {0,1,2}
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Then I = {0,1} is a hyper K-ideal, but it is not a commutative hyper K-ideal
of type 3, since (102) o0 = {1} < I, while 10(20(201)) ={0,1,2} Z I.
The following diagram shows the relationships between commutative hyper
K-ideals of types 1,2,3 and 4 and hyper K-ideals.

N
/

l

hyper K-ideal

S
AN

Theorem 5.7. Let 0 € H be a left scalar and I be closed. If I is a commu-
tative hyper K -ideal of type 4, then I is a hyper K-ideal.

The following example shows that each of the hypotheses of the above
theorem is necessary.

Example 5. 8. (i) Let H be the hyper K-algebra of Example 5.2(i). Then
0 € H is a left scalar. Also I = {0,1} is a commutative hyper K-ideal of type
4, while it is not a hyper K-ideal and I is not closed.

(ii) Consider the following hyper K-algebra structure on H.

o 0 1 2

0 |{0,1,2}{0,1,2} {0,1,2}
11 {1} {0,1,2} {1,2}
2 | {2} {1,2} {0,1,2}

Then I = {0,1} is a closed commutative hyper K-ideal of type 4, while 0 € H
is not a left scalar and I is not a hyper K-ideal, because 201 < I, 1 € I and
2¢&1.

(iii) Let H = {0,1,2}. Then the following table shows a hyper K-algebra
structure on H.

0o 1 2
{0,2} {0} {0}
{13 {02} {1}
{2} {0,2}{0,2}

N = OO0
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We can check that I = {0,1} is a commutative hyper K-ideal of type 4, while
it is not a hyper K-ideal. Here 0 € H is not a left scalar and I is not closed.
The following example shows that the converse of Theorem 5.7 is not true in
general.

Example 5.9. The following table shows a hyper K-algebra structure on
H ={0,1,2}.

o0 1 2
0 {0} {0} {0}
11} {0} {1}
2 [{2} {0} {0, 1}
Then I = {0} is a closed hyper K-ideal and 0 € H is a left scalar, while it

is not a commutative hyper K-ideal of type 4, because (201)00 = {0} < I,
while 20 (10 (102))=2 £ 1.

Theorem 5.10. Let 0 € H be a scalar and I be closed. If I is a commutative
hyper K-ideal of type 2, then I is a weak hyper K -ideal.

The following example shows that each of the hypotheses of the above
theorem is necessary.

Example 5.11. (i) Let H be the hyper K-algebra of Example 5.2(ii). Then
I ={0,1} is a commutative hyper K-ideal of type 2 and 0 is a scalar, while
I is not a weak hyper K-ideal and is not closed too.

(if) The following table shows a hyper K-algebra structure on {0, 1,2}.

o| 0 1 2
0 [{0} {0,1,2} {o0,1}
{1 {0} {2}
2 {2} {01} {0}

Then I = {0,2} is a closed commutative hyper K-ideal of type 2, while it is
not a weak hyper K-ideal and 0 € H is not a scalar.

Theorem 5.12. Let 0 € H be a right scalar. If I is a commutative hyper
K-ideal of type 1, then I is a weak hyper K -ideal.

Example 5. 13. The following table shows a hyper K-algebra structure on
{0,1,2}.

0 1 2
{0} {0,1,2}{0,1,2}
{1} {0,1,2} {0,2}
{2} {1,2} {0,1,2}

N = OO0
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Then 0 € H is a right scalar and I = {0, 1} is a weak hyper K-ideal, while it
is not a commutative hyper K-ideal of type 1, because (100) o0 = {1} C I,
0cTand1o(00(001))={0,1,2} Z I.

Theorem 5.14. Let I be a weak hyper K-ideal. Then the following state-
ments hold:

(i) if 0 € H is a right scalar and I is a commutative hyper K -ideal of type 1,
then for all x,y € H, x oy C I implies that x o (yo (yox)) C I,

(i) if x oy C I implies that zo(yo (yox)) C I, where z,y € H, then I is a
commautative hyper K -ideal of type 1,

(iii) if 0 € H is a right scalar and I is a commutative hyper K -ideal of type
2, then for all z,y € H, x oy C I implies that zo (yo (yox)) < I,

() if zoy C I implies that zo(yo (yox)) < I, where x,y € H, then I is a
commutative hyper K -ideal of type 2.

Theorem 5.15. Let I be a hyper K-ideal. Then the following statements
hold:

(i) I is a commutative hyper K-ideal of type 3 if and only if for all x,y € H,
zoy < I implies that x o (yo (youx)) C I,

(i) I is a commutative hyper K-ideal of type 4 if and only if for all x,y € H,
xoy < I implies that x o (yo (yox)) < I.

Proof. (i) Let z oy < I. Then (zoy)o0 < I. Since 0 € I and [ is a
commutative hyper K-ideal of type 3 we conclude that z o (yo (yoz)) C I.
Conversely, let (xoy)oz < I and z € I. Then there exists ¢t € z oy such that
toz < I. Since I is a hyper K-ideal we get that t € I, so z oy < I. Therefore
by hypothesis we conclude that zo (yo(yox)) C I. Thus I is a commutative
hyper K-ideal of type 3.

The proof of (ii) is the same as (i).

Example 5. 16. The following table shows a hyper K-algebra structure on
H =1{0,1,2}.

o0 1 2
0 110} {0} {0}
1 {1y {0} {1}
2 |{2} {0} {0,2}

Then Iy = {0,1} and I, = {0,2} are commutative hyper K-ideals of type
2(4), but I (I = {0} is not a commutative hyper K-ideal of type 2(4),
because (201)o0 = {0} and 20 (10 (102)) = {2} £ {0}.
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Definition 5.17. A hyper K-algebra H is said to be quasi-commutative, if
for all z,y € H, z < y implies that € y o (y o z).

Example 5.18. Let H be the hyper K-algebra of Example 5.11(ii). Then
H is a quasi-commutative hyper K-algebra.

Theorem 5.19. If H is a quasi-commutative hyper K -algebra, then the hy-
per K-ideal {0} is a commutative hyper K -ideal of type 4(2).

Example 5.20. Let H be the hyper K-algebra of Example 5.2(ii). Then
{0} is a commutative hyper K-ideal of types 2 and 4, but H is not a quasi-
commutative, because 2 < 1 and 2 € 10 (10 2) = {0}. Thus the converse of
the above theorem is not true in general.

Theorem 5.21. If {0} is a commutative hyper K -ideal of type 3, then H is
a quasi-commutative hyper K-algebra.

Proof. Let x < y. Then0 € z 0y C (zoy)o0,s0 (xoy) o0 < {0}. Since
{0} is a commutative hyper K-ideal of type 3, then z o (y o (y o z)) C {0}.
By Theorem 1.2.3(iii) we have y o (y o ) < z, thus there exists t € y o (yox)
such that ¢ < z. Therefore we get that z ot C z o (yo(yox)) C {0}. Hence
zot=0,ie 2 <t 502 =t Therefore z € yo(youz).

Example 5.22. Let H be the hyper K-algebra of Example 5.2(i). Then H
is a quasi-commutative, but {0} is not a commutative hyper K-ideal of type
3, because (101)o0 = {0,2} < {0} and 1o (1o (101)) = {0,2} € {0}.
Therefore the converse of the above theorem is not true in general.

The following theorem shows that if we restrict ourselves to a hyper K-
algebra of order 3, then the condition 0 € H be a right scalar” is superfluous
in Theorem 5.12.

Theorem 5.23. Let H be a hyper K-algebra of order 3. Then any commu-
tative hyper K -ideal of type 1 is a weak hyper K -ideal.

Proof. We consider three cases: (i) 200 = {1,2} (ii) 100 = {1,2}, (iii)
200={2}and 100 = {1}.

(i) Let 200 = {1,2}. We prove that if I = {0,1}(I> = {0,2}) is a commu-
tative hyper K-ideal of type 1, then I, (I3) is a weak hyper K-ideal. On the
contrary, let I; be a commutative hyper K-ideal of type 1, while it is not a
weak hyper K-ideal. Thus we must have 201 C {0,1}. Also 200 = {1,2}
implies that 100 # {1,2}, because if 100 = {1, 2}, then by (HK2) we have
0€202C(1o0)o2=(102)00,500¢€ 102ie 1 < 2 and similarly,
200 = {1,2} implies that 0 € 201, hence 2 < 1. So 1 = 2, which is a
contradiction. Thus we have
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1lo0={1}, 200={1,2}, 0€201, 0¢g1lo2.

(1)
Now we consider two cases: (a) 000 C {0,1} (b)2€000
(a) Let 000 C {0,1}. Then (201) 00 C I. Since I; is a commutative hyper
K-ideal of type 1,80 20(10(102)) C I, hence 1 ¢ 102, therefore 102 = {2}.
Now by (1) we have (1e0)e2=102= {2} and (102)0o0=200={1,2},
which contradicts (HK2).
(b) Let 2 € 000. Since (100)0o0 C I; and I; is a commutative hyper K-ideal
of type 1, then 102 C 10(00(001)) CI;. Hence 2 ¢ 102, thus 102 = {1}.
Also we have

(1o2)o0=100={1}C I
2)
By (HK2) we get that

2€000C(1ol)o0=(100)ol=101
3)
Since I is a commutative hyper K-ideal of type 1, then by (2) and (3) we
conclude that 2 € 101 C 10(200) C 10(20(201)) C I, which is a
contradiction.
Now let I be a commutative hyper K-ideal of type 1, we prove that I5 is a
weak hyper K-ideal. On the contrary, let Is do not be a weak hyper K-ideal.
Then we must have 102 C {0, 2}, so by (1) we have 102 = {2}. Thus similar
to the proof of case (i-a) we obtain a contradiction.
(ii) The proof is the same as the proof of (i).
(iii) Let 200 = {2} and 100 = {1}. Then we prove that if I = {0,1}(I5 =
{0,2}) is a commutative hyper K-ideal of type 1, then I (1) is a weak hyper
K-ideal. On the contrary, let I; do not be a weak hyper K-ideal. Then we
must have 201 C I;. Since 2 € 20 (00 (002)), then 20 (00 (002))  I;. On
the other hand (200)o1 =201 C I;. Now since I; is a commutative hyper
K-ideal of type 1, we must have 20 (00 (002)) C I;, which is a contradiction.
Similarly, 1 0 0 = {1} implies that if o = {0,2} is a commutative hyper
K-ideal of type 1, then I is a weak hyper K-ideal.

6 Quotient Hyper K-algebras

Definition 6.1. Let ~ be an equivalence relation on H and A, B C H. Then
(i) A ~ B if and only if there exist @ € A and b € B such that a ~ b,
(ii) A ~ B if and only if for all a € A there exists b € B such that a ~ b,
and for all b € B there exists a € A such that a ~ b,
(ili) A ~ B if and only if for all a € A and for all b € B we have a ~ b,
(iv) ~ is called regular to the right if a ~ b implies that aoc & bo ¢, for
any a,b,c € H,
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(v) ~ is called strongly regular to the right if @ ~ b implies that aoc ~ boc,
for any a,b,c € H,

(vi) ~ is called good, if aob ~ {0} and boa ~ {0} implies that a ~ b, for
all a,b € H.

Analogously we define the regularity (strong regularity) of an equivalence
to the left. A regular equivalence (strongly regular) to the right and to the
left is called regular (strongly regular).

Lemma 6. 2. Let ~ be an equivalence relation on H and A,BC H. I[fA~ B
and B =~ C, then A ~ C.

From now on ~ is a good regular relation. For any = in H by C, we mean
that equivalence class of z under ~, and I = Cj.

Proposition 6. 3. If ~ be a good reqular relation on H, then I = Cy is a
hyper K -ideal of H.

Proof. Let zoy < I and y € I, we must show that z € I. Since xoy < [
then There exists a a € x oy and b € I such that a < b, then 0 € a o b, thus
aob~ {0}. Since b € I then b ~ 0 and ~ is a regular relation then we get
that b oa = 0o a, then we have b oa = {0}. Since ~ is a good relation we
get that a ~ b, which means that z oy ~ {0}. Since y € I implies that y ~ 0
and ~ is a regular relation then we get that y o x &~ 0 o . Thus we get that
x ~y, and y ~ {0} implies that 2 ~ {0} therefore z € I.

Denote H/I = {C, : © € H} where I = Cy and define
st H/Ix HII — H/I

(Cp,Cy) » {Cy |t €z 0y}

Now we show that x is well-defined. Let C, = Cy/ and Cy = Cy we must
show that C, * Cy = Cyp % Cy. Since C = Cp and Cy = Cy then z ~ 2
andy ~y'.Soxoy~x'oyand 2’ oy ~ x' 0y’, since ~ is a regular relation,
by Lemma 3.2.2 we have zoy = 2’ oy'. Now let C; € C xCy. Then Cy = C
where s € xoy, from zoy ~ 2’0oy’ we get that s ~ u for some u € x'oy’, hence
Cy = Cy. Therefore C, x Cy C Cy * Cy, and similarly Cy * Cyy C Cy x Cy.
Hence * is well-defined.

Now we define the relation < on H/I by C, < C, if and only if Cy €
C, * Cy. Hence we have

<y 0czoy=0C€C,xCy & C, <,
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Theorem 6.4. Let I = Cy. Then (H/I,,Cy) is a hyper K -algebra.

Theorem 6.5. Suppose H is a bounded hyper K -algebra with the greatest
element 1 and I = Cy. Then (H/I,*,Cy) is also a bounded hyper K -algebra
with the greatest element C1 .

The converse of the above theorem does not hold.

Example 6.6. Let H = {0,1,2}. Then the following table shows a hyper
K-algebra structure on H

o0 1 2
0 {0} {0} {0}
1 {1p {0} {1}
2 [{2b {2} {02}

we can easily check that ~= {(0,0), (0,1),(1,0),(1,1),(2,2)} is a good regu-
lar relation on H. Now consider the quotient hyper K-algebra H/I. We can
see that

Co={0,1} =C1 ={y |y ~1},Co ={y |y ~2} = {2}. So H/I =
{Co,Cy = {2}} and the following table shows the hyper K-algebra structure
on H/I

* | CO CQ
Co| Co Co
Cy| Gy {Co,C2}

We can check that this hyper K-algebra is bounded with the greatest element
C>. But H is not bounded, because 2 £ 1 and 1 £ 2.
Furthermore C; < Cs but 1 £ 2.

Theorem 6.7. Let ~ be an equivalence relation on H and I = Cy. Then:
(i) If ~ is a good and strongly regular relation on H, then H/I is a BCK -
algebra.
(i) If ~= AH, then H/I = H
(iii) If ~= H x H, then H/I = C.

Remark 6. 8. If ~= AH, then we have C, < Cy if and only if x < y.

Theorem 6.9. Let ~ be a good regqular relation on H. If I = Cy and J be
a hyper K-ideal of H and I C J, then quotient hyper K -algebra J/I = {C} |
t € J} is a hyper K-ideal of H/I.

Theorem 6.10. If L is a hyper K-ideal of H/I, then J = {xz | C, € L} is
a hyper K-ideal of H and I C J. Moreover L = J/I.
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Proof. Since I = Cy € L, then 0 € J. Let z oy < J and y € J. Then there
exist t € x oy and s € J such that ¢t < s. Hence C; < U5, which implies that
CyxCy < L. Since y € J, we get that C,, € L, thus C, € L. Therefore z € J,
hence J is a hyper K-ideal of H. Let € I = Cy. Then z ~ 0, thus C, = Cy
and hence C, € L. Therefore x € J, that is I C J.

Theorem 6.11. If I is a hyper K -ideal of H, then there is a bijection from
Z(H,I), the set of all hyper K -ideals of H containing I, to Z(H/I), the set
of all hyper K -ideals of H/I.

Theorem 6.12. Let I be a hyper K -ideal of H. Then there exists a canonical
surjective homomorphism ¢ : H — H/I by p(x) = C,, and ker(p) = I.

Proof. It is clear that ¢ is well-defined. Let z,y € H. Then ¢(x oy) =
{o(t) | t € zoy} = {Ci |t € moy} = Cp+Cy = p(x) * ply). Hence g is
homomorphism. Clearly ¢ is onto, and we have ker(p) = {z € H | ¢(z) =
Coy={zeH|C,=Cy=I}={ze€H|xzel}=1.

Theorem 6.13. Let f : Hy — H> be a homomorphism of hyper K -algebras,
and let I be a hyper K-ideal of Hy such that I C ker(f). Then there exists
a unique homomorphism f : Hi/I — Hy such that f(C;) = f(x) for all
x € Hy, Im(f) = Im(f) and ker(f) = ker(f)/I. Moreover f is an isomor-
phism if and only if f is surjective and I = ker(f).

Proof. Let C, = Cp. Then & ~ z', which implies that z o 2’ ~ 2z’ o 2/,
since ~ is a regular relation. Thus there exists a ¢ € (2 o 2’)()I. Then
0= f(t) € f(zox') = f(z)of(z'), hence f(z) < f(a'). Similarly f(z') < f(x),
therefore f is well-defined.

Consider £(C, + C,) = F({Cy |t € oy}) = {F(C) |t €may} = {f()
tezoyt= f(zoy) = f(x)o fy) = f(Ca) * f(Cy).

Cr € ker(f) <= f(C,) =0 <= f(z) =0 < 1z € ker(f)

Note that f is unique, since it is completely determined by f. Finally it is
clear that f is surjective if and only if f is surjective.

Theorem 6. 14. ( First isomorphism theorem) Let f: H; — H be a
homomorphism of hyper K -algebras. Then H, [ ker f = Im(f).

Theorem 6.15. Let I, J be hyper K-ideals of H. Then there is a (natural)
homomorphism of hyper K -algebras between I/(I(J) and < IJJ > /J,
where by < I|JJ > we mean that the hyper K -ideal generated by I'|JJ.
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Proof. Define ¢ : I — (IlJJ)/J by ¢(z) = C. If 2, = x5, then it is clear
that C;/, = C., which means that ¢ is well-defined. Also we have

T2

p@oy) ={pt)|texoy}={C/ |t ez oy} =C]«C] =p(z)*p(y).
So that ¢ is a homomorphism. Moreover

kero={zecl|p@)=C}={zecl|Cl=Cf}y={zel|zect}=INJ

Thus by Theorem 6.14 the proof is completed.
Open Problem Under what suitable conditions the defined homomorphism
in Theorem 6.15, is an isomorphism? In other word does the second isomor-
phism theorem hold?.

Theorem 6.16. (Third isomorphism theorem) Let I,.J be hyper K-
ideals of H such that I C J. Then (H/I)/(J/I)= H/J.

Proof. It is clear that J/I C H/I. Define f : H/I — H/J by CI — C{,
where CI € H/T and C/ € H/J.

If C] = C, then x ~ y which implies that 2 oy < I. Since I C .J hence
zoy < .J. Thus z ~; y then Cj = C; which means that f is well-defined.

F(Cr+Cy) = fHC] [t exoy})
={C/ |texoy}
=C]+C = f(C]) = £(Cy).

Clearly f is onto.

ker f = {C; € H/T| f(C;) = Cy}
={C, e H/I|C] = CJ}
={ClecH/I|zec T}
= J/I.

Now by Theorem 6.14 the proof is completed.

7 Uniform Topology On Hyper K-algebras

In this section I is an s-reflexive hyper K-ideal of H.
Definition 7.1. We define the relation ~; on H as follows:
x~yy ifandonly if zoy < I and yoz < I.

If A, B are subsets of H, then we define A ~; Bif and only if 3a € A, 3b € B
such that a ~g b.
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Proposition 7. 2. The relation ~j is an equivalence relation on H.

Proof. (i) Since 0 € z oz, then z oz < I. Hence = ~ x.

(ii) Clearly ~ is symmetric.

(iii) Let # ~y y and y ~7 2. Then z oy < I, yox < I, yoz < I and
zoy < I. Since I is an s-reflexive hyper K-ideal of H we get that zoy C I,
yox CI,yoz CIand zoy CI. We have (zoz)o(zoy) <yozandyoz C I,
(zoz)o(zoy) < I. Thus from (zoz)o(zoy) < I, zoy C I and Proposition
2.1.1 we conclude that x o z < I. Similarly z o x < I, therefore z ~ z.

Let X be a non-empty set and U and V be subsets of X x X. We let
UoV ={(z,y) € X x X |3z € X, such that (z,y) € U and (z,z2) € V},
U'l={(z,y) e X x X | (y,2) € U},

A={(z,z) e X x X |z € X}.

Definition 7. 3. [25] By a uniformity on X we shall mean a non empty
collection K of subsets of X x X which satisfies the following conditions:
(Uy) ACU for any U € K,
(U) if U € K, then U™! € S,
(Us) if U € K, then there exist a V' € K, such that VoV C U,
(Uy) f U,V eK, thenUNV € K,
(Us)fUe,andU CV C X x X, thenV € K.

The pair (X,K) is called a uniform structure (uniform space).

Theorem 7.4. Let I be an s-reflexive hyper K-ideal of H and Uy = {(z,y) €
XxX|z~ry}. If

K* ={Ur | I is an s-reflexive hyper K -ideal of H }
then K* satisfies the conditions (Uy) — (Us).

Proof. (U;): Since 0 € zoz, hence zox < I for any s-reflexive hyper K-ideal
I of H. Thus z ~; z for any z in H, hence A C Uy for all Uy € K*.
(Us): For any Uy € K*, we have

(l‘,y) € (UI)_I — (y,l‘) € UI<:>yNI$<:>xNIy<:> (may) € UI-

Hence (U7)~! = U; € K*.
(Us): For any Uy € K*, the transitivity of ~; implies that Uy o Uy C Uj.
(Uy): For any Ur, Uy € K*, we claim that Uy N Uy = Urny. Let (z,y) €
UrnNUyjy. Then x ~r y and ¢ ~5 y. So we have zoy < I, yox < I,
zoy < Jand yox < J. Since [ is an s-reflexive hyper K-ideal of H then
we get that oy C I, yox C I, zoyCJandyox CJ. Sozxzoy CINJ.
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Similarly yox C INJ, therefore © ~jns y. Thus (z,y) € Usny. Conversely, let
(z,y) € Urny. Then z ~jny y, hence zoy < INJ and yox < INJ. Therefore
zoyCINJandyox CINJ. Wehave INJ CI,J.Sozxoy <I,yox <I,
zoy < J and yox < J. Thus z ~; y and z ~; y, therefore (z,y) € (UrNUy).
So UrNUy = Ujny. Since I, J are s-reflexive hyper K-ideals of H then I N.J
is an s-reflexive hyper K-ideal of H, thus Uy NU; € K*.

Theorem 7.5. Let K = {U C X x X | Uy C U for some Uy € K*}. Then
K satisfies a uniformity on H and the pair (H,K) is a uniform structure.

Proof. By applying Theorem 7.4 we can show that K satisfies the conditions
(U1)—(Uy).Let U € Kand U CV € X x X. Then there existsaU; CU C V,
which means that V' € K. This proves the theorem.

Consider x € H and U € K, we define
Ulz] :=={y € H | (z,y) € U}.

Theorem 7.6. Let H be a hyperK algebra, and

U={GCH|VzeG,3IU e K,Ulz] CG}.
Then U is a topology on H.
Proof. It is clear that § and H are in U, and U is closed under arbitrary
union. To show that U is closed under finite intersection, let G,J € U and
suppose £ € G N J. Then there exist U,V € K such that Ulz] C G and
Vig] CJ. Let W =UNV. Then W € K by (Uy). Also it is easy to show

that Wz] C U[z] N V[z] and hence W[z] CGN.J. So GNJ € U. Thus U is
a topology on H.

Note that for any z in H, U[z] is an open neighborhood of z.

Definition 7. 7. Let (X,K) be a uniform space. Then the topology U is called
the uniform topology on X induced by XK.

Theorem 7. 8. [25] If (X, T) is a uniform space then the corresponding topo-
logical space is completely reqular.

Proposition 7.9. The topological space (H,U) is completely regular.

Proposition 7.10. Every hyper K-ideal I of H is a clopen set in (H,U).
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Proof. Let I be a hyper K-ideal of H. To prove that I is closed we shall show
that I¢ = U Uj[z]. Indeed, assume y € I¢, then from y € Uj[y] it follows

z gl
that y € U Ur[z]. Hence I¢ C U Ur[z]. Conversely, let y € U Ur|z]. Then
z¢l z¢l z¢I

there is z € I such that y € Uy[z]. Hence we get yoz < I and zoy < I. In this
case, assume that y € I we easily get z € I, which is a contradiction. Hence
y € I°, and then U Ur[z] C I¢. Thus I¢ = U Ur[z], that is I¢ is an open set
zg¢l zg¢l
and I a closed set. To prove that I is open we shall show that I = U Uilz].
zel
If y € I then we get y € Urly], so y € U Urlz]. Hence I C U Ur[z]. On
zel zel
the other hand, let y € U Ur[z], then there is z € I such that y € Ur[z].

zel
Thus zoy < I and y oz < I. From these facts we easily obtain y € I. Hence

U Ur[z] C I, and the I = U Ur[z]. Then I is open.
zel zel

Proposition 7.11. Let I be a hyper K -ideal of H, and A,B C H. If AoB <
I and BCI, then A<I.

Theorem 7.12. Each Ur[x] is a clopen set for any s-reflexive hyper K -ideal
I of H.

Proof. Let I be an arbitrary hyper K-ideal of H and z an element of H. We
want to show that Ur[z] is a closed subset of H. Let y € (Ur[z])¢. We claim
that for the given element y we have that Ur[y] C (Ur[z])¢. Let z € Urly],
then z ~ry,s0 zoy C T and yoz C I. If we have x ~y 2z, then z oz C I
and z oz C I. Now consider (zoy)o (zoz) < zoy since zoy C I then we
get that (z oy) o (zoz) < I. From z oz C I and Proposition 7.11 we have
zoy < I. Similarly from (yox)o (z0x) < (yoz)and yoz C I we get that
yox < I. Therefore z ~r y, a contradiction. Hence it must be z € (Ur[z])¢,
so Urly] C (Ur[z])¢. Hence (Ur[z])¢ is open , that is Ur[z] is closed.

Proposition 7.13. If the hyper K-ideal < 0 > 1is an s-reflexive hyper K-
ideal, then K is a discrete topology.

Proof. It is clear that

Ucos[z] ={y € H |z ~c0> ¥y}
={yeH|zoy<<0>yoxr<<0>}

={yeH|z=y}={z}
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therefore each {z} is clopen set. Thus the topology is discrete.
In the forthcoming sections we let H to be a bounded hyper K-algebra
with unit 1, so Nax means that 1o x.

8 Dual Positive Implicative Hyper K-ideals of
type 3

Definition 8.1. A non-empty subset D of H is called a dual positive im-
plicative hyper K-ideal of type 3 (DPIHKI-T3) if it satisfies:

()1eD

(ii) N((NzoNy)oNz) < D and N(NyoNz) < D imply N(NzoNz) C D,
Vr,y,z € H.

Example 8.2. Let H = {0,1,2}. Then the following table shows a hyper
K-algebra structure on H with unit 1.

o 1 2
{0} {0} {0}
{1} {01} {1}
{1,2} {0,1} {0,1}

Then I ={0,1} isa DPIHKI —T3.

N = O o

Theorem 8.3. Let 1€ D C H. Then D is a DPIHKI — T3 if and only if
N(NzoNz)CD, forall x,z € H.

Proof. Let D be a DPIHKI — T3. Then by Definition 8.1 and Theorem
2.3(xii) we conclude that N((Nz o Ny) o Nz) < D and N(Nyo Nz) < D,
for all z,y,z € H. So by hypothesis we get that N(Nz o Nz) C D, for all
z,z € H.
The proof of the converse is trivial. O

In the sequel of this chapter we let H = {0,1,2} to be a bounded hyper
K-algebra of order 3 with unit 1.

Theorem 8.4. In H we have 100 = {1}.

Proof. On the contrary let 100 # {1}. Then we must have 100 = {1,2}.
By (HK2) we have (100)02 = (102)00,500 € 202 C (100)02=(102)00.
Thus there exists € 102 such that 0 € z 00, which implies that < 0, thus
from (HK4) and (HK5) we get that x = 0. Hence 0 € 102, that is 1 < 2.
Since 2 < 1, thus 2 = 1, which is a contradiction. O
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Theorem 8.5. For all z in H we have NNz = z if and only if 101 = {0}
and 102 = {2}.

Proof. Let NNx =z, i.e. lo(lox) =, for all x in H. Since 1o (102) = 2,
we get that 0 ¢ 102 and 1 ¢ 102. So 102 = {2}. Now since 1o (1o1) =1,
we conclude that 1 ¢ 101 and2 ¢ 101. Thus 101 = {0}.

Conversely, the proof follows from Theorem 8.4 and hypothesis. O

Theorem 8.6. Let D, = {1} and Dy = {1,2} in H. Then Dy and D, are
not DPIHKI — T3.

Proof. Since 0 € 10((100)o(101)) = N(NOo N1),0¢ Dy and 0 ¢ D,
then D, and D- are not DPIHKI — T3, by Theorem 8.3.

Theorem 8.7. Let D = {0,1} in H.Then the following statements hold:
(i) If2€ 102, then D is not a DPIHKI — T3,
(ii) If2 € 101, then D is not a DPIHKI —T3.

Proof. (i) Since2€ 102 C1lo((102)o(lol))=N(N2oN1)and2¢ D,
then D is not DPIHKI — T3, by Theorem 8.3.
(if) The proof is similar to (i). O

Theorem 8.8. Let D = {0,1} in H. Then D is a DPIHKI — T3 if and
only if2¢ 102 and 2 ¢ 10 1.

Proof. Let 2¢ 102 and 2 ¢ 101. Thus 102 = {1} and 101 = {0,1} or
101 ={0}. Now by some calculations we can get that N(Nzo Nz) C D, for
all z,z € H.

Conversely, on the contrary let 2 € 102 or 2 € 10 1. Then Theorem 8.7(i,ii)
gives a contradiction. Thus 2 ¢ 1oc2and 2¢ 101. O

Remark 8.9. In this chapter let D = {0,1} be a DPIHKI —T3. Thus:
(i) From Theorem 8.8 we conclude that 102 = {1} and 101 = {0,1} or
1o1={0}.

(#) By (HK2) we have (101)o0 = (100)o1l and (1c1l)o2=(102)ol. Thus
by (i) and Theorem 8.4 we conclude that 000 C {0,1} and 002 C {0,1}.

Theorem 8.10. I[f202 = {0} and 000 = {0} in H, then 200 = {2}.
Theorem 8.11. [f202={0} and 001 = {0} in H, then 1 ¢ 20 1.
Theorem 8.12. If201={0,2} and 101 = {0} in H, then 200 = {2}.

Proof. On the contrary let 2 0 0 # {2}. Then we must have 200 = {1,2}.
By (HK2) we have (201) 00 = (200) o1 and also by hypothesis we have
(201)00={0,1,2} and (200) o1 = {0,2}, which is a contradiction.
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Theorem 8.13. Let 0ol = {0,1} and 002 = {0} in H. Then the following
statements hold:

(i) If202 C {0,2}, then 201 ¢ {0,2},

(1) If 202 ={0,1} or 202 ={0,1,2}, then 201 # {0}.

Proof. (i) On the contrary let 201 C {0,2}. If 201 = {0, 2}, then by (HK2)
we have (202) 01 =(201)02. If 202 = {0}, then by hypothesis we have
(202)01 =1{0,1} and if 202 = {0,2}, then (202) 01 = {0,1,2}. On the
other hand if 2 02 = {0}, then (201) 02 = {0} and if 202 = {0, 2}, then
(201)02={0,2}, which is a contradiction. If 201 = {0}, then the proof is
similar to the case of 201 = {0, 2}.

The proof of (ii) is the same as (i).

Theorem 8.14. Let 0ol = {0,2} in H. Then the following statements hold:
(i) 202 ¢ {0,1},

(ii) 201 ¢ {0,1},

(iii) If 101 = {0}, then 202 # {0,1,2},

(iw) If 000 = {0}, then 200 = {2},

(v) If 202 ={0,1,2}, then 002 = {0, 1}.

Proof. (i) On the contrary let 202 C {0, 1}. By (HK2) we have (002)o1 =
(0o01)02. If 202 = {0}, then by hypothesis and Remark 8.9 we get that
(001)02 C{0,1} and (002)o1 = {0,2} or {0, 1,2}, which is a contradiction.
If 202 = {0,1}, then the proof is similar to the case of 2 0 2 = {0}.

The proof of the other cases are similar to above by considering the suitable
modifications.

Theorem 8.15. Let 0o 1 = {0,1,2} in H. Then the following statements
hold:

(i) 202 0,1},

(i) 201 ¢ {0,1},

(iii) If 202 = {0,2} and 002 = {0}, then 201 # {0,2},

(i) If201=1{0,2} and 1 ¢ 202, then 002 = {0,1}.

Proof. (i) On the contrary let 202 C {0,1}. By (HK2) we have (002)o1 =
(0o1)o02. If 202 = {0} , then by hypothesis and Remark 8.9 we get that
(001)o2 = {0,1} and (002) o1 = {0,1,2}, which is a contradiction. If
202 ={0,1}, then the proof is similar to the case of 2 0 2 = {0}.

The proof of the other cases are the same as above by considering the suitable
modifications. O

Theorem 8.16. If201,202 and 001 C {0,2}, then 002 = {0}.
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Proof. By (HK2) we have (201)02 =(202)0o1 C {0,2}. Since 002 C
(201)02 C {0,2} and also 2 ¢ 002, by Remark 8.9(ii), then we get that
0c2={0}.O

Theorem 8.17. Let 201 = {0} in H. Then the following statements hold:
(i) If 101 ={0,1} and 202 = {0,1} or {0,1,2}, then 002 = {0,1},

(1) If 000 = {0} and 101 ={0,1}, then 200 = {2},

(iii) If 001 = {0,1}, then 002 = {0,1},

(iv) If 000 = {0,1}, then 200 = {1,2}.

Theorem 8.18. Let 201 ={0,2} in H. Then
(i) If1€001 and1¢ 202, then002=1{0,1},
(i) If 000 = {0,1}, then 200 = {1,2}.

Proof. (i) On the contrary let 002 # {0,1}. Then we must have 002 = {0},
by Remark 8.9(ii). By (HK2) we have (201)02 = (202)01. Now by hypothesis
we get that (201) 02 C {0,2} and 1 € (202) o1, which is a contradiction.
The proof of (ii) is similar to (i).

Theorem 8.19. [f202 C {0,2} and 000 ={0,1}, then 200 = {1,2}.

Proof. On the contrary let 2 00 # {1,2}. Then we must have 200 = {2}.
By (HK2) we have (202) 00 = (200) o 2. Now by hypothesis we get that
1€(202)o00and 1¢ (200) 02, which is a contradiction.

Now we are ready to determine all of hyper K-algebras of order 3, in
which D ={0,1} isa DPIHKI — T3.

Theorem 8.20. (Main theorem) There are 220 non-isomorphic bounded
hyper K -algebras of order 3, to have D = {0,1} as a DPIHKI — T3.

Proof. Let H = {0,1,2} and 1 be its unit. The following table shows a prob-
able hyper K-algebra structure on H, in which D = {0,1}isa DPIHKI-T3:

oo 1 2
0 |ai1 a2 as
1 |a21 a3 a9

2 |az1 azz ass

By Remark 2.1.9 we have asg = 100 = {1} , a2 = 101 = {0} or {0,1},
a3 =102={1},a11 =000C{0,1} and a13 =002 C {0, 1}.

Also since H is bounded, then by (H K 3) and (HK5) we have 0 € a12 () a2 () asz.
There are two cases for azp =101. Let 101 = {0}. Then by (HK2) we have
(1o1l)o0 =(100)o1,s0 000 = {0}. Similarly (101)02 = (102)01
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implies that 002 = {0}. We will show that in this case there exist exactly 40
non-isomorphic hyper K-algebras. On the other hand if 1 01 = {0,1}, then
by Remark 8.9(ii) we get that 00 0 C {0,1} and 002 C {0,1} and in this
situation we will obtain exactly 180 non-isomorphic hyper K-algebras other
than the previous 40 ones. So totally we have 220 different non-isomorphic
bounded hyper K-algebras of order 3, to have D = {0,1} asa DPIHKI-T3.
Now we give the details. To do this we consider two main cases 101 = {0}
and 101 ={0,1}, and many subcases of them.

1: 1o1={0}
We consider some subcases as follows:
1.1: 001=1{0}
In this case also we consider 4 states as follows:
1.1.1: 202={0}
By Theorems 8.10 and 8.11 we must have 200 = {2} and 201 C {0,2}. So
there exist 2 hyper K-algebras as follows:

oo 1 2 o0 1 2
0 {0} {0} {0} 0 {or {o} {0}
1} {0y {1} 1 {1}y {0} {1}
2 {2} {0,2} {0} 2 [{23 {0} {0}

1.1.2: 202={0,1}

By (HK2) We have (202) 01 = (201) 02. So by hypothesis we get that
(201)02={0}.If1 €201l 0r2€ 201, thenl€ (201)02={0}, which is a
contradiction. Thus 1 ¢ 201 and 2 ¢ 201, hence 201 = {0}. So there exists
two hyper K-algebras as follows:

o | 0 1 2 o 0 1 2
0 |{o} {0} {o} 0 ({0} {0} {o}
1 {1} {0} {1} 1 {1y {0} {1}
2 {2} {0} {o0,1} 2 |{1,2} {0} {o,1}

1.1.3: 202=1{0,2}
If 201 = {0,2}, then by Theorem 8.12 we have 2 0 0 = {2}. So there exists


www.sid.ir
www.sid.ir

92

seven hyper K-algebras as follows:

0 1 2
{0} {0} {0}
{1} {0} {1}
{2} {0} {0,2}

0 1 2
for {0} {0}
{1r {0}y {1}
{2} {0,2} {0,2}

0 1 2
{oy {o} {o}
{1y {0} {1}

{1,2} {0} {0,2}

N = OO0

N = O 0

N = OO0

Zahedi, M.M.

ol 0 1 2
o/{o} {o} {0}
{1} {o} {1}
2|1{2} {0,1} {0,2}
ol 0 1 2
of{o} {or {o}
{1y {o} {1}
2({2} {0,1,2} {0,2}
ol 0 1 2
of {o} {0} {o}
{1y {o} {1}
2|{1,2} {0,1} {0,2}

1.1.4: 202=1{0,1,2}

ol 0 1 2
0 {0y {0} {0}
L1y {0y {1}
2 |{1,2} {0, 1,2} {0,2}

We prove that 201 # {0,2}. On the contrary, let 201 = {0, 2}. By (HK2) we
have (202)01=(201)02, while (202)01={0,2} and (201)02 = {0,1, 2},
which is a contradiction . So there exist six hyper K-algebras as follows:

ol 0 1 2
0/{o} {0} {0}
{1y {0} {1}
2|1{2} {o} {0,1,2}
o 0 1 2
ooy {op {0}
{1y {0} {1}
21{2} {0,1,2} {0,1,2}
ol 0 1 2
0 {0} {0} {0}
1 {1y {0y {1}
2{1,2} {0} {0,1,2}
1.2: 001={0,1}

ol 0 1 2
o({o} {or {o}
n{1} {op {1}
2({2} {0,1} {0,1,2}
ol 0 1 2
o {0} {0} {0}
1 {1t {0} {1}
2|{1,2} {0,1,2} {0,1,2}
ol 0 1 2

o {o} {o} {0}
{1} {0} {1}
2({1,2} {0,1} {0,1,2}

In this case also we consider four states as follows:

1.2.1: 202={0}

By Theorems 8.10 and 8.13(i) we must have 200 = {2} and 201 ¢ {0,2}.
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So there exist two hyper K-algebras as follows:

o] 0 1 2 o] 0 1 2

0 ({o} {o,1} {0} 0 {0} {o,1} {0}

1 {1} {0} {1} 1 |{1} {0} {1}

2 {2} {0,1,2} {0} 2 | {2} {o,1} {0}
1.2.2: 202={0,1}

By Theorem 8.13(ii) we have 201 # {0}. If 20 1 = {0, 2}, then by Theorem
8.12 we have 2 0 0 = {2}. So there exist five hyper K-algebras as follows:

of 0 1 2 of0 1 2
01{0} {0,1} {0} 01 {0} {0.1} {0}
141} {0} {1} 141} {0} {1}
2|{2} {0,2} {0,1} 2| {2} {0,1} {0,1}

ol 0 1 2

0/ {0} {o,1} {0}
{1y {oy {1}

2| {2} {0,1,2} {o,1}
ol 0 1 2
0] {0} {o,1} {0}
{1y {op {1}
2({1,2} {0,1,2} {0,1}

1.2.3: 202={0,2}

of 0 1 2
0 {0} {0,1} {0}
1 {1} {0} {1}
2|{1,2} {0,1} {0, 1}

By Theorem 8.13(i) we have 201 ¢ {0,2}. So there exist four hyper K-

algebras as follows:

ol 0 1 2 ol 0 1 2

0/ {0} {0,1} {0} 0/ {0} {o,1} {0}
{1y {oy {1} {1y {oy {1}
2({2} {0,1} {0,2} 2({2} {0,1,2} {0,2}
ol 0 1 2 ol 0 1 2
0] {0} {o,1} {0} 0 {0} {o,1} {0}
{1y {0} {1} {1y {0} {1}
2|{1,2} {0,1} {0, 2} 2|{1,2} {0,1,2} {0, 2}

1.2.4: 202=1{0,1,2}

This case is similar to the case 1.2.2. So there exist five hyper K-algebras as

follows:
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ol 0 1 2 ol 0 1 2

0/ {0} {o,1} {0} 0/{0} {o,1} {0}
{1}y {o} {1} {1y {oy {1}
2|1{2} {0,2} {0,1,2} 2|{2} {0,1} {0,1,2}
ol 0 1 2 ol 0 1 2
o/{o} {o,1} {0} of {0} {o.1} {o}
{1y {op {1} {1y {0} {1}
2({2} {0,1,2} {0,1,2} 2({1,2} {0,1} {0,1,2}
ol 0 1 2

o {o} {o,1} {0}

R O !

2(1.2) {0,1,2) 0.1.2}

1.3: 001={0,2}

In this case we have only one state, since by Theorem 8.14(i,v) we have
202 ¢ {0,1} and 202 # {0,1,2}.

1.3.1: 202=1{0,2}

By Theorem 2.1.14(i,iv) we have 201 ¢ {0,1} and 200 = {2}. So there exist
two hyper K-algebras as follows:

| 0 1 2 o| © 1 2
{oy {02}y {0} 0 {0}  {0,2} {0}
{13 {0} {1} {1y {0y {1}
{2 {0,1,2} {0,2} 2 {2} {02} {0,2}
1.4: 001=1{0,1,2}
In this case we have two states, since by Theorem 8.15(i) we have 202 Z {0,1}.
1.4.1: 202={0,2}

N = OO0

exist two hyper K-algebras as follows:

ol 0 1 2 o] 0 1 2
0 {0} {012y {0} 0 {0} {0,1,2} {0}
11y {0} iy 1 {1 {0} {1}
2 {2 {0,1,2} {0,2} 2 [{1,2} {0,1,2} {0,2}

1.4.2: 202=1{0,1,2}
By Theorem 2.1.15(ii) we have 201 € {0,1}. If 201 = {0, 2}, then by Theo-
rem 8.12 we have 200 = {2}. So there exist three hyper K-algebras as follows:

ol 0 1 2 o 0 1 2
01{0} {0,1,2} {0} 01{0} {0,1,2} {0}
11{1} {0} {1} n{y {0y {1}
2{2} {0,1,2} {0, 1,2} 21{2} {0,2} {0,1,2}
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of 0 1 2
of {0} {0,1,2} {0}
1y {0y {1}
2|{1,2} {0, 1,2} {0,1,2}

Now we consider the following case:

2: 101=40,1}
This case has two subcases 000 = {0} or {0,1}.
2.1: 000 = {0}
We consider the following subcases as :
2.1.1: 0ol={0}
In this case also we consider four states as follows:
2.1.1.1: 202 = {0}
By Theorems 8.10 and 8.11 we have 200 = {2} and 1 ¢ 201. If 201 C {0, 2},
then by Theorem 8.16 we have 0 0 2 = {0}. So there exist two hyper K-
algebras as follows:

o | 0 1 2 o | 0 1 2
0 Ho} {0} {0} 0 {0} {0} {0}
11y {01 {1} 11y {01} {1}
2 {2} {02} {0} 2 {2y {0} {0}

2.1.1.2: 202=1{0,1}
If 201 = {0}, then by Theorem 8.17(i.ii) we have 002 = {0, 1} and 200 = {2}.
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So there exist 13 hyper K-algebras as follows:

ol 0 1 2

o/{o} {o} {o}

1 {1} {o,1} {1}

2|1{2} {0,1} {o0,1}
0 1 2
{o} {o} {0}

{1r {01} {1}
{2} {0,1,2} {0,1}

0 1 2
{o} {o} {o,1}
{1} {o,1} {1}
{2} {0,2} {0, 1}

0 1 2
{oy {0} {0,1}
{1} {0,1} {1}
{23 {o} {o,1}

0 1 2

N = O o

N = OO0

N = O o

0 1 2

{or {0} {0}
{1y {o,1}p {1}
{23 {0,2} {0,1}

0 1 2

N = OO0

{0y {0} {0,1}
{1} {0,1} {1}
{2} {0,1} {0,1}

N = O 0

for  {oy {0}
{1 {01} {1}
{1,2} {0,1,2} {0, 1}

N = OO0

0 1 2
{or {0} {o,13
{1y {01} {1}
{1,2} {0,1} {0,1}

0 1 2

N = OO0

{1y {01} {1}

N = OO0

2.1.1.3: 202={0,2}

{oy {0y {01}
{1,2} {0,1,2} {0,1}

ol 0 1 2
o/{o} {0}  {o,1}
{1} {o,1} {1}
2|1{2} {0,1,2} {0, 1}
ol 0 1 2
oj{oy {0} {0}
{1} {o,1} {1}
2{1,2} {0,2} {0,1}
0 1 2
{0y {or {0}

{1y {01} {1}
{1,2} {0,1} {0,1}

N = OO0

ofl 0 1 2
0/{0} {0} {0,1}
1{1} 0,1} {1}
2|{1,2} {0,2} {0,1}

If 201 C {0, 2}, then by Theorem 8.16 we have 002 = {0}. If 201 = {0}, then
by Theorem 8.17(ii) we have 200 = {2}. So there exist 11 hyper K-algebras
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as follows:
ol 0 1 2 ol 0 1 2
of{o} {0} {o} oj{o}r {o} {0}
11{1} {o,1} {1} {1}y {o,1} {1}
2 {2} {0,2} {0,2} 2 {2} {0,1,2} {0,2}
ol 0 1 2 ol 0 1 2
o/ {o} {o} {0} o({o} {0} {0}
1{1} {o,1} {1} 1{1} {o,1} {1}
2/{2} {0} {0,2} 21{2} {0,1} {0,2}
ol 0 1 2 ol 0 1 2
of{o} {o} {0} oj{or {0} {0}
{1} {o,1} {1} {1} {o,1} {1}
2 {1,2} {O, 1} {0,2} 2 {1,2} {O, 1,2} {0,2}
ol 0 1 2 ol 0 1 2
0/{0} {0} {0} oj{o} {0} {0,1}
{1} {o,1} {1} {1} {o,1} {1}
2{1,2} {0,2} {0,2} 21{2} {0,1,2} {0,2}
ol 0 1 2 ol 0 1 2
of{o} {o} {o,1} o{or {o} {o,1}
{1} {o,1} {1} {1} {o,1} {1}
2 {1,2} {O, 1} {0,2} 2 {1,2} {O, 1,2} {0,2}
ol 0 1 2
o{o} {0} {o0,1}
1{1} {o,1} {1}
2|{2} {o0,1} {0,2}

2.1.1.4: 202=4{0,1,2}

97

If 201 = {0}, then by Theorem 8.17(i.ii) we have 002 = {0, 1} and 200 = {2}.
So there exist 13 hyper K-algebras as follows:

N = OO0

{13 {o,1} {1}
{1,2} {0,1} {0,1,2}

N = OO0

ol 0 1 2 ol 0 1 2
0[{0} {0} 0.1} o[{0y 0 {01
{1} {013 {1} {1} {013 {1}
2 {2} {0,2} {0,1,2} 2 {2} {0,1,2} {0,1,2}
0 1 2 0 1 2
0 O 00 0 O o0

{13 {01} {1}
{1,2} {0,2} {0,1,2}
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ol 0 1 2
oj{o} {o} {0,1}
{1t {o,1} {1}
2|{1,2} {0,1,2} {0,1,2}
ol 0 1 2
0/{o} {0} {0}
{1} {o,1} {1}
2({2} {0,1} {0,1,2}
ol 0 1 2
oj{oy {0}  {o}
{1} {o,1} {1}
2|{1,2} {0,1} {0,1,2}
ol 0 1 2
o{o} {o} {0}
{1} {o,1} {1}
2({1,2} {0,2} {0,1,2}
ol 0 1 2
o/{o} {o} {0}
{1} {o, 1} {1}
2|{2} {0,2} {0,1,2}

2.1.2: 001={0,1}

Zahedi, M.M.

N = O o

ol 0 1 2
of{o} {0}  {o0,1}
{1} {o,1} {1}
2|{2} {0,1} {o0,1,2}
ol 0 1 2
o{o} {0} {0}
{1} {01} {1}
21{2} {o0,1,2} {0,1,2}
ol 0 1 2
o{o} {0} {0}
{1t {o,1p {1}
2|{1,2} {0,1,2} {0,1,2}
0 1 2
{oy {0} {o0,1}

{13 {o,1} {1}
{21 {0} {0,1,2}

In this case also we consider four states as follows:

2.1.2.1: 202={0}

By Theorem 2.1.10 we have 20 0 = {2}. If 0 0 2 = {0}, then by Theorem
8.13(i) we have 201 ¢ {0,2}. So there exist six hyper K-algebras as follows:

0 1 2
{0} {o,1} {0}
{1} {0, 1} {1}
{2} {0,1} {0}

0 1 2

o = o|o

{0} {0,1} {0,1}
{13 {0,1} {1}
{23 {0} {0}

N = OO0

of 0 1 2
0{{0} {0,1} {0, 1}
11{1} {01} {1}
2|{2} {0,2} {0}

0 1 2

N = OO

{oy {01} {o}
{1r {01} {1}
{2} {0,1,2} {0}

0 1 2

N = OO0

{0} {0,1} {0,1}
{1} {0,1} {1}
{2} {0,1} {0}

o| 0 1 2

0/ {o} {o,1} {o,1}
{1} {o,1} {1}
2[{2} {0,1,2} {0}
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2.1.2.2: 202=1{0,1}
If 201 = {0}, then by Theorem 8.17(i.ii) we have 002 = {0, 1} and 200 = {2}.
So there exist 13 hyper K-algebras as follows:

0 1 2
foy {o,1}3 {0}
{13 {01} {1}
{12} {0,2} {0,1}

0 1 2
{oy {01} {0}
{1y {o,1} {1}
{1,2} {0,1,2} {0,1}

0 1 2
{o} {o0,1} {0, 1}
{1} {o,1} {1}
{2} {0,1} {0, 1}

0 1 2
{o}y {013 {o,1}
{1y {o,1} {1}
{1,2} {0,1} <{o0,1}

0 1 2
{o}  {0,1} {0,1}
{13 {01} {1}
{1,2} {0,1,2} {0, 1}

0 1 2
{oy {o,1}3 {0}
{1 {01} {1}
{12} {0,1} {0,1}

0 1 2
{0} {0,13 {0,1}
{1} {0,1} {1}
{21 {0} {01}

0 1 2
{o} {o,1}  {0,1}
{13 {0,1} {1}
{23 {02} {0,1}

0 1 2
{oy {o,1} {o,1}
{13 {o,1} {1}
{1,2} {0,2} 0,1}

0 1 2
{o} {o,1} {0}
{1} {o,1} {1}
{2} {0,1} {0, 1}

N = OO0
N = OO0

N = O 0
N = O 0

N = OO0
N = OO0

N = O 0
N = O 0

N = OO0
N = OO0

of 0 1 2 o| 0 1 2

0| {0} {0,1} {0} 0/{0} {0,1} {0}

{1} {0,1} {1} {1} {o,1} {1}

2({2} {0,2} {0,1} 2({2} {0,1,2} {0,1}
ol 0 1 2

o/{o} {o0,1} {o,1}

{1} {o,1} {1}

2/{2} {0,1,2} {0,1}

2.1.2.3: 202 ={0,2}

If 201 = {0,2}, then by Theorem 8.18(i) we have 002 = {0,1}. So there
exist 11 hyper K-algebras as follows:
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2.1.2.4:

as follows:

0 1 2

N = Of O

{0} {0,1} {o}
{1} {0,1} {1}
{2} {0,1} {0,2}

0 1 2

N = O 0

{oy {01} {0}
{1y {01} {1}
{1,2} {0,1} 0,2}

0 1 2

N = Of 0

{0} {0,1} {0,1}
{1} {0,1} {1}
{2t {0} {02}

0 1 2

N = O O

{o} {o0,1} {0, 1}
{1} {0,1} {1}
{2} {0,2} {0,2}

0 1 2

N = Of 0

{op {o,1} {o0,1}
{13 {01} {1}
{12} {0,1} {0,2}

0 1 2

N = O| 0

{oy {01} {o,1}
{1y {01} {1}
{1,2} {0,1,2} {0,2}

202={0,1,2}
This case is similar to the case of 2.1.2.2. So there exist 13 hyper K-algebras

0 1 2

N = O o

{o} {0,1}  {0,1}
{13 {o,13 {1}
{2} {0,1,2} {0,1,2}

0 1 2

N = O o

{op {o,1} {o,1}
{13 {01} {1}
{1,2} {0,2} {0,1,2}

0 1 2

{o} {0,1} {0}
{1} {o,1p {1}
{2} {0,1,2} {0,2}

0 1 2

N = OO0

{or {01} {0}
{1y {01} {1}
{1,2} {0,1,2} {0,2}

0 1 2

N = O 0

{0} {o0,1} {o,1}
{1} {o,1} {1}
{2} {0,1} {0,2}

0 1 2

N = Of 0

{oy {o,1}  {o0,1}
{13 {013 {1}
{2} {0,1,2} {0,2}

0 1 2

N = O 0

{03 {0,1} {o,1}
{13 {01} {1}
{12} {0,2} {0,2}

N = Of 0

Zahedi, M.M.

ol 0 1 2
o/{o} {o,1} {o0,1}
{1} {o,1} {1}
2{1,2} {0,1} {0,1,2}
ol 0 1 2
oj{o} {o,1} {o,1}
{1t {o,1} {1}

2 {1, 2} {0, 1, 2} {0, 1,2}
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0 1 2
{oy {0,1} {o}
{1y {013 {1}
{1.2} {0,2} {0,1,2}

0 1 2

N = Of O
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0 1 2

{oy {01} {0}
{1y {01} {1}
{1,2} {0,1,2} {0,1,2}

N = O| 0

0 1 2
{0} {0,1} {o,1}
{1} {0,1} {1}
{2} {0,1} {0,1,2}

0 1 2
{o} {0,1} {0}
{1} {0,1} {1}
{2} {0,2} {0,1,2}

0 1 2
{oy {o,1} {0}
{1} {0,1} {1}
{234 {0,1,2} {0,1,2}

2.1.3: 001=1{0,2}

N = Of O

N = O O

N = Of O

{op {o,1}p {0}
{13 {01} {1}
{1,23{0,1} {0,1,2}

0 1 2

N = Of 0

{oy {o0,1} {0,1}
{13 {0,1} {1}
{21 {0} {0,1,2}

0 1 2

N = O 0

{0} {0,1} {0, 1}
{1} {o,1} {1}
{2} {0,2} {0,1,2}

0 1 2

N = Of 0

{o} {0,1} {0}
{1} {0,1} {1}
{2} {0,1} {0,1,2}

N = O 0

In this case we have two states since by Theorem 8.14(i) we obtain 202 ¢

{0,1}.
2.1.3.1: 202={0,2}

If 201 = {0,2}, then by Theorem 8.16 we have 0 0 2 = {0}. By Theorem
2.1.14(ii,iv) we have 201 ¢ {0,1} and 200 = {2}. So there exist three hyper

K-algebras as follows:

0 1 2

{0} {0,2} {o,1}
{1} {o,1}p {1}
{2} {0,1,2} {0,2}

0 1 2

N = OO0

of 0 1 2

{or {o0,2} {0}
{1y {o,1} {1}
{2} {0,1,2} {0,2}

2.1.3.2: 202={0,1,2}

N = O 0

01{0} {0,2} {0}
{1} {0,1} {1}
2[{2} {0,2} {0, 2}

By Theorem 8.14(ii,iv,v) we must have 201 ¢ {0,1}, 200 = {2} and
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002 =14{0,1}. So there exist two hyper K-algebras as follows:

of0 1 2 ofo 1 2
01{0} {0,2} {0,1} 0i{0} {0,2} {0,1}
{1 {o,1} {1} {1y {0,1} {1}

2|{2} {0,2} {0,1,2} 2|{2} {0,1,2} {0, 1,2}

2.1.4: 0o1=1{0,1,2}

By Theorem 8.15(i) we have 202 ¢ {0, 1}, thus in this case we have only two
states as follows:

2.1.4.1: 202=1{0,2}

By Theorem 8.15(ii) we have 201 ¢ {0,1}.If 201 = {0, 2}, then by Theorem
8.18(i) we have 002 = {0,1}. So there exist six hyper K-algebras as follows:

0 1 2
{0} {0,1,2} {0}
{13 {0,1} {1}
{2} {0,1,2} {0,2}

0 1 2
{0} {0,1,2} {0, 1}
{13 {o0,1} {1}
{2} {0,1,2} {0,2}

0 1 2
{0y {0,1,2} {0,1}
{13 {o,1} {1}
{1,2} {0,1,2} {0,2}

0 1 2
{0y {0,1,2} {0}
{1y {01} {1}
{1,2} {0,1,2} {0,2}

0 1 2
{0} {0,1,2} {0,1}
{13 {01} {1}
{12} {02} {o0,2}

0 1 2
{o} {0,1,2} {0, 1}
{1y {0,1} {1}
{2} {0,2} {0,2}

N = OO0
N = OO0

N = OO0
N = OO0

N = OO0
N = OO0

2.1.4.2: 202=1{0,1,2}
By Theorem 8.15(ii) we have 201 Z {0,1}. So there exist eight hyper K-
algebras as follows:
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0 1 2
{0} {0,1,2} {o,1}
{1y {0,1} {1}
{2} {0,2} {o0,1,2}

0 1 2
{o} {0,1,2} {o,1}
{13 {01} {1}
{12} {0,2} {0,1,2}

0 1 2
{0} {0,1,2} {0}
{1y {0,1} {1}
{2} {0,2} {o0,1,2}

0 1 2
{o} {o,1,2} {0}
{13 {01} {1}
{12} {0,2} {0,1,2}

Now we consider the following case:

2.2: 000={0,1}

We consider some subcases as follows:

2.2.1: 0ol={0}

In this case also we consider four states as follows:

2.2.1.1: 202={0}

By Theorems 8.19 and 2.1.11 we have 200 = {1,2} and 1 ¢ 2 o 1. Since
1¢ 201, hence 201 C {0,2} and by Theorem 8.16 we have 0 0 2 = {0}. So
there exist two hyper K-algebras as follows:

0 1 2
0y {0.1.2} {0,1
{013 {1}
{2} {0,1,2} {0,1,2}

0 1 2
{0} {0,1,2} {o,1}
{13 {01}y {1}
{1,2} {0,1,2} {0,1,2}

0 1 2
{0} {0,1,2} {0}
{13 {o,1} {1}
{2} {0,1,2} {0,1,2}

0 1 2
{0} {o,1,2} {0}
{1 {01} {1}
{1,2} {0,1,2} {0,1,2}

N = OO0
N = OO0

N = Of O
N = OO0

N = OO0
N = OO0

N = Of O
N = OO0

o 1 2
{0,1} {0} {0}
{1} {0,1} {1}
{1,2} {0,2} {0}

2.2.1.2: 202 ={0,1}

If 201 C {0, 2}, then by Theorems 8.17(iv) and 8.18(ii) we have 200 = {1, 2}
.If 201 = {0}, then by Theorem 8.17(i) we have 002 = {0, 1}. So there exist
11 hyper K-algebras as follows:

| o 1 2
10,1} {0} {0}
{1} {0,1} {1}
1,2} {0} {0}

N = OO0
N = OO0

of 0 1 2 of 0 1 2
01{0,1} {0} {0,1} 01{0,1} {0} {0}
{1} {0,1} {1} I {01} {1}
2|{1,2} {0,2} {0,1} 2{1,2} {0,2} {0,1}
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0 1 2
{o,1} {o} {0,1}
{13 {o,1} {1}
{12} {0} {0,1}

0 1 2
{0,1} {0} {o,1}
{1y {013 {1}
{1,2} {0,1} {0,1}

0 1 2
{o,13 {0} {0}
{1} {01} {1}
{1,2} {0,1} {0, 1}

0 1 2
{0,1} {o} {01}
{13 {o,1} {1}
{2} {0,1,2} {o,1}

0 1 2
{0,1} {0} {o}
{13 {01}y {1}
{2} {0,1,2} {0,1}

N = OO0

N = O 0

N = Of 0

N = O 0

N = OO0

2.2.1.3: 202={0,2}

Zahedi, M.M.

0 1 2

N = OO0

0,13 {0} {o,1}
{13 {o,1} {1}
{2} {0,1} {0,1}

0 1 2

N = O 0

{0,1} {0}y {0}
{13 {0,1} {1}
{2+ {0,1}{0,1}

0 1 2

N = OO0

{0,13 {0} {0}
{13 {01} {1}
{1,2} {0,1,2} {o0,1}

0 1 2

N = O 0

{0,113 {0} {o,1}
{1y {o,1} {1}
{1,2} {0,1,2} {0,1}

By Theorem 8.19 we have 200 = {1,2}. If 201 C {0, 2}, then by Theorem
8.16 we have 0 02 = {0}. So there exist six hyper K-algebras as follows:

ol 0 1 2
0/{0,1} {0}  {o}
{1} {o,1} {1}
2{1,2} {0} {0,2}
ol 0 1 2
of{o,1} {o} {o,1}
{1y {o,1} {1}
2({1,2} {0,1} {0,2}

0 1 2

{0,1} {0}  {o0,1}

N = OO0

{13 {01}y {1}
{1,2} {0,1,2} {0,2}

0 1 2

N = OO0

0,13 {0} {0}
{1} {01} {1}
{1,2} {0,2} {0,2}

0 1 2

N = OO0

{0,1} {0} {0}
{1y {01} {1}
{1,2} {0,1} {0,2}

0 1 2

N = OO0

{0,1} {o} {0}
{1y {013 {1}
{1,2} {0,1,2} {0,2}
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2.2.1.4: 202=4{0,1,2}

This case is similar to the case of 2.2.1.2. So there exist 11 hyper K-algebras

as follows:
ol 0 1 2 ol 0 1 2
0j{o,1} {0} {0} 0{0,1} {0} {0,1}
{1y {013 {1} {1} {01} {1}
o[ {2} {0,1,2} {0,1,2} 2l{1,2) {0} {0,1,2)
ol 0 1 2 ol 0 1 2
0{o,1} {0} {0} 0j{0,1} {0} {0, 1}
{1} {o,1} {1} n{1}p {o,1} {1}
2({1,2} {0,2} {0,1,2} 2({1,2} {0,2} {0,1,2}
ol 0 1 2 ol 0 1 2
0/{0,1} {0} {0} 0[{0,1} {o} {o,1}
{1y {013 {1} {1} {013 {1}
2|{1,2} {0,1,2} {0, 1,2} 21,2} {0,1,2} {0,1,2}
ol 0 1 2 ol 0 1 2
0/{0,1} {0} {0,1} 0[{0,1} {0}  {o,1}
1 {013 {1 {1} {01y {1}
2/{2} {0,1,2} {0,1,2} 2/{1,2} {0,1} {0,1,2}
ol 0 1 2 ol 0 1 2
00,1} {0} {0} 0/{0,1} {o} {0}
{1}y {o,1}p {1} {1}y {o,1} {1}
2{1,2} {0,1} {0,1,2} 2[{2} {0,1} {0,1,2}
ol 0 1 2
0/{o,1} {0}  {o,1}
{1} {o,1} {1}
2({2} {o0,1} {0,1,2}

2.2.2: 001={0,1}

Consider the following four states:

2.2.2.1: 202={0}

By Theorem 8.19 we have 200 = {1,2}. If 201 C {0, 2}, then by Theorems
8.17(iii) and 8.18(i) we have 002 = {0, 1}. So there exist six hyper K-algebras

as follows:

ol 0 1 2

o

0 1 2

0{0,1} {0,1} {0}
{1y {o,1} {1}
21{1,2} {0,1,2} {0}

0/{0,1} {0,1} {0, 1}
{1}y {0,1} {1}
2[{1,2} {0} {0}
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2.2.2.2:

0 1 2

{0,1} {0,1} {0,1}
{1y {01} {1}
{1,2} {0,1} {0}

0 1 2

N = OO0

{o,1} {o,1} {0, 1}
{1 {01} {1}
{1,2} {0,1,2} {0}

N = OO0

202={0,1}

0 1 2

{0,1} {0,1} {0,1}
{1y {01} {1}
{1.2} {0,2} {0}

0 1 2

N = OO0

{0,1} {0,1} {0}
{13 {o,1} {1}
{1,2} {0,1} {0}

N = Of O

Zahedi, M.M.

If 201 C {0, 2}, then by Theorems 8.17(iv) and 8.18(ii) we have 200 = {1, 2}.
If 201 = {0}, then by Theorem 8.17(iii) we have 002 = {0, 1}. So there exist
11 hyper K-algebras as follows:

0 1 2

N = OO0

{0,1} {0,1} {0,1}
{1y {01} {1}
{2+ {0.13{0,1}

0 1 2

N = OO0

{0,1} {0,1} {0,1}
{1} {01} {1}
{1,2} {0,1} {0,1}

0 1 2

N = OO0

{0,1} {0,1} {0,1}
{1y {01} {1}
{1,2} {0} {o0,1}

0 1 2

N = OO0

{o,1} {0,1} {0, 1}
{13 {01} {1}
{1,2} {0,2} {0, 1}

0 1 2

N = OO0

{0,1} {0,1} {o0,1}
{13 {o,1} {1}
{2} {o0,1,2} {0,1}

0 1 2

N = OO0

{o,1} {0,1} {0, 1}
{1y {01} {1}
{1,2} {0,1,2} {0, 1}

0 1 2

N = OO0

{0,1}{0,1} {0}
{1} {o,1} {1}
{2b {0,131 {0,1}

0 1 2

N = OO

{0,1} {0,1} {0}
{1 {01} {1}
{12} {0,1} {o,1}

0 1 2

N = OO0

{0,1} {0,1} {0}
{1y {01} {1}
{1,2} {0,2} {0,1}

0 1 2

N = OO0

{o,1p {o,1} {0}
{13 {01} {1}
{23 {0,1,2} {o,1}

0 1 2

N = OO0

{0,1} {0,1} {0}
{1y {01} {1}
{1,2} {0,1,2} {0,1}
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By Theorem 8.19 we have 200 = {1,2}. If 20 1 C {0,2}, then by Theorems
8.18(i) and 8.17(iii) we have 002 = {0, 1}. So there exist six hyper K-algebras

as follows:
ol 0 1 2 ol 0 1 2
0/{0,1} {0,1} {0} 0/{0,1} {o0,1} {0}
{1} {o,1} {1} {1} {o,1} {1}
2({1,2} {0,1} {0,2} 2({1,2} {0,1,2} {0,2}
ol 0 1 2 ol 0 1 2
0{0,1} {0,1} {0,1} 0/{0,1} {0,1} {0}
{1} {o,1} {1} {1} {o,1} {1}
2|{1,2} {0,1} {0,2} 2|{1,2} {0,1,2} {0,2}
ol 0 1 2 ol 0 1 2
o({o,1} {0,1} {o,1} 0{o,1} {0,1} {o}
{1} {o,1} {1} {1} {o,1} {1}
2({1, 2} {0, 2} {0,2} 21{1,2} {0} {o0,2}

2.2.2.4: 202={0,1,2}

If 201 C {0, 2}, then by Theorems 8.17(iv) and 8.18(ii) we have 200 = {1,2}.
If 201 = {0}, then by Theorem 8.17(i) we have 002 = {0, 1}. So there exist

11 hyper K-algebras as follows:

o 0 1 2 o| 0 1 2
0[{0,1} {0,1} {0, 1} o[{0,13 {o,1} {o,1}
{1y {01} {1} {1y {o,1} {1}
2({2}  {0,1} {0,1,2} 2| {2} {0,1,2} {0,1,2}
o| 0 1 2 o| 0 1 2
0/{0,1} {0,1}  {0,1} 0/{0,1} {0,2}  {0,1}
{1y {01} {1} {1y {o,1} {1}
2[{1,2} {0} {0,1,2} 2|{1,2} {0,1,2} {0,1,2}
o 0 1 2 o| 0 1 2
0[{0,1} {0, 1} {0} 0[{0,1} {0,131  {0,1}
{1y {01} {1} {1y {01} {1}
2({1,2} {0,2} {0,1,2} 2({1,2} {0,1} {0,1,2}
ol 0 1 2 o| 0 1 2

0| {0,1} {o,1} {0} 0/{0,1} {0,1}  {0,1}
{1 o1} {1} {1y {01} {1}
2|{1,2}  {0,1} {0,1,2} 2|{1,2} {0,2} {0,1,2}
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0 1 2
{o,1} {0,1} {0}
{13 {01} {1}
{1,2} {0,1,2} {0,1,2}

N = Of 0

0 1 2
0,1} {0,1} {0}
{11 {01} {1}
{2} {0,1} {o0,1,2}

2.2.3: 0ol={0,2}

N = O| 0

Zahedi, M.M.

o| 0 1 2

0{0,1} {o,1} {0}
{1y {01} {1}
2[{2} {0,1,2}{0,1,2}

By Theorem 8.14(i) we have 202 ¢ {0, 1}. Thus this case has only two states

as follows:
2.2.3.1: 202={0,2}

By Theorems 8.14(ii) and 8.19 we have 201 Z {0,1} and 200 = {1,2}. If
201 = {0, 2}, then by Theorem 8.16 we have 002 = {0}. So there exist three

hyper K-algebras as follows:

0 1 2
{0,1} {0,2} {0}
{13 {o,1} {1}
{12} {0,2} {0,2}

0 1 2
{0,1} {0,2} {0,1}
{13 {01} {1}
{1,2} {0,1,2} {0,2}

2.2.3.2 202=1{0,1,2}.

N = OO0

N = O 0

o| 0 1 2

0/{o,1} {o0,2} {0}
{1y {o,13 {1}
21{1,2} {0,1,2} {0, 2}

By Theorem 8.14(ii,v) we have 201 ¢ {0,1} and 002 = {0,1}.If 201 = {0, 2},
then by Theorem 8.18(ii) we have 2 0 0 = {1,2}. So there exist three hyper

K-algebras as follows:

0 1 2

{0,1} {0,2}  {o,1}
{1 {01}y {1}
{23 {0,1,2} {0,1,2}

N = Of 0

0 1 2

of 0 1 2

{0,1} {0,2} {o0,1}
{1y {o,1} {1}
{1,2} {0,1,2} {0,1,2}

2.2.4: 0ol={0,1,2}

N = O 0

0/{0,1} {0,2} {0,1}
{1}y {o0,1} {1}
2{1,2} {0,2} {0,1,2}

By Theorem 8.15(ii) we have 202 ¢ {0, 1}. Thus this case has only two states
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as follows:

2.2.4.1: 202=1{0,2}

By Theorems 8.15(ii) and 2.1.19 we have 201 ¢ {0,1} and 200 = {1,2}. If
201 ={0,2}, then by Theorem 8.18(i) we have 002 = {0,1}. So there exist
three hyper K-algebras as follows:

o]l 0 1 2 o 0 1 2

0{{0,1} {0,1,2} {0} 0{o,1} {0,1,2} {0,1}
{1}y {o,1} {1} {1}y {o,1} {1}

2/{1,2} {0,1,2} {0, 2} 21{1,2} {0,2} {0,2}
ol 0 1 2

o[{o} {0,1,2} {0,1}

{1}y  {o,1} {1}

21{1,2} {0,1,2} {0,2}

2.2.4.2: 202=1{0,1,2}
By Theorem 8.15(ii) we have 201 ¢ {0,1}. If 201 = {0, 2}, then by Theorem
8.18(ii) we have 200 = {1, 2}. So there exist six hyper K-algebras as follows:

0 1 2
{0,13{0,1,2} {0}
{1y {01} {1}
{1,2} {0,2} {0,1,2}

0 1 2
{0,1} {0,1,2} {0}
{13 {01} {1}
{1,2} {0,1,2} {0,1,2}

0 1 2
{0,1} {0,1,2} {0,1}
{13 {01} {1}
{12} {0,2} {0,1,2}

0 1 2
{07 1} {O, 1,2} {07 1}
1 {01 {1y
{1,2} {0,1,2} {0,1,2}

N = OO0
N = Of O

N = O 0
N = O| 0

0 1 2
{0,1}3{0,1,2} {o,1}
{1 {01}y {1}
{2} {0,1,2} {0,1,2}

0 1 2
{0,1} {0,1,2} {0}
{1 {01}y {1}
{2} {0,1,2}{0,1,2}

N = OO0
N = Of O

Now we show that each pair of the above 220 hyper K-algebras are not
isomorphic together. On the contrary let (H;,o01,0) and (Hs,o02,0) be iso-
morphic. then there exists an isomorhpism f : Hy — Hs. So f(x o1 y) =
f(x)os f(y) , for all z,y € H , thus we have f(01) = 02, f(1) =2, f(2) =1.
But f(1o12) = f({1}) = {2} and f(1) o2 f(2) = 201 D {0}, which is a
contradiction, since 0 € f(10q 2) = {2}. O


www.sid.ir
www.sid.ir

110 Zahedi, M.M.
References
1. A. Borumand Saeid, R.A. Borzooei and M.M. Zahedi, (Weak) Implicative hyper

10.

11.

12.

13.

14.

15.

16.

K -ideals, Bull. Korean Math. Soc., 40(2003), No.1, pp 123-137.

. A. Borumand Saeid and M.M. Zahedi, Mazimal and Obstinate Hyper K -ideals,

Scientiae Mathematicae Japonicae 60. No. 3 (2004), 421-428.

A. Borumand Saeid and M.M. Zahedi, Quotient Hyper BCK -algebras, Quasi-
groups and related systems , 12(2004),93-102.

. A. Borumand Saeid and M.M. Zahedi, Uniform structure on Hyper K -algebras,

Scientiae Mathematicae Japonicae, Vol. 58, No. 1 (2003), 53-56.

. A. Borumand Saeid and M.M. Zahedi, Quotient Hyper K -algebras, J. of Alge-

bra, Number Theory and Applications, accepted.

A. Borumand Saeid and M.M. Zahedi, Uniform structure on Hyper BCK -
algebras, Ttalian Journal of Pure and Applied Mathematics, to appear.

A. Borumand Saeid and M.M. Zahedi, Uniform topology on Hyper K -algebras,
Pure Mathematics and Application (PU.M.A), Vol. 14. No. 4, (2003), 313-319.

A. Borumand Saeid, M.M. Zahedi and R.A Borzooei, Some results on (Weak)
Implicative Hyper K -ideals, 8th Int. Conference on AHA 2002, Greece (2002),
91-102.

R.A. Borzooei, M. Bakhshi, Some kinds of positive Implicative hyper BCK -
ideals, Submitted.

R.A Borzooei, A. Borumand Saeid and M.M. Zahedi (Strong, Weak) Implicative
Hyper K-algebras, 8th Int. Conference on AHA 2002, Greece (2002), 103-114.

R.A. Borzooei, P. Corsini and M.M. Zahedi, Some kinds of positive Implicative
hyper K -ideals, Journal of Discrete Mathematical Sciences and Cryptography,
Delhi, Vol. 6, No 1. (2003), pp. 97-108.

R.A. Borzooei, A. Hasankhani, M.M. Zahedi and Y.B. Jun, ” On hyper K-
algebras” Math. Japon. Vol. 52, No. 1 (2000), 113-121.

R.A. Borzoei, A. Hasankhani, M.M. Zahedi and Y.B. Jun, Week hyper BCK -
algebra(Ideals), 30th Iranian Mathematics Conference, 1-4 August 1999, Mo-
haghegh Ardebili University, Ardabil, Iran.

R.A. Borzoei, Y.B. Jun, M.M. Zahedi, Varlet and Additive hyper BCK -ideals,
12th Iranian Algebra Seminar, March 28-29, 2000, Shahid Beheshti University,
Therean, Iran.

R.A.Borzoei, H. Rezaei, M.M. Zahedi, Hyper BC K -algebra of order 3, Interna-
tional Congress ” Constantin Caratheodory in his ... origins”, September 1-4,
2000, Vissa, Greece.

R.A. Borzooei and M.M. Zahedi, Hyper K -condition on hyper K-algebras, Far
East Journal of Mathematical Sciences, to appear.


www.sid.ir
www.sid.ir

A Review On Hyper 111

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

R.A. Borzooei and M.M. Zahedi, Positive Implicative hyper K -ideals, Scientiae
Mathematicae Japonicae, Vol. 53, No. 3 (2001), 525-533.

R.A. Borzoei, M.M. Zahedi , Varlet and Additive hyperK -ideals of a hyper K-
algebra, International Congress ” Constantin
Caratheodory in his ... origins”, September 1-4, 2000, Vissa, Greece.

R.A. Borzoei, M.M. Zahedi , Positive Implicative HyperK -ideals of type 1,2,3
and 4, 31th Iranian Mathematics Conference, 27-30 August 2000, University of
Theran, Theran, Iran.

R.A. Borzooei, ” hyper BCK and K -algebras”, Shahid Bahonar University of
Kerman, Thesis, 2000.

P. Corsini, Prolegomena of hypergroup, Aviani Editore (1993).

Y. Imai and K. Iseki, On aziom systems of propositional calculi XIV, Proc.
Japan Academy, 42 (1966), 19-22.

K. Iseki and S. Tanaka, Ideal theory of BCK -algebra, Math. Japon., 21 (1976),
351-366.

K. Iseki and S. Tanaka, An introduction to the theory of BCK -algebras, Math.
Japon., 23 (1978), 1-26.

K. D. Joshi, Introduction to general topology, New Age International Publisher,
India, 1997.

Y. B. Jun, X. L. Xin, Implicative hyper BCK -ideals of Hyper BCK -algebras
Math. Japonica, Vol. 52, No. 3 (2000), 435-443.

Y.B. Jun, X.L. Xin, Scalar elements and hyperatoms of hyper BC K -algebras,
Bull.Korean Math. Soc, to appear.

Y.B. Jun, X.L. Xin, H.Roh, M.M. Zahedi, Strong hyper BCK -ideals of hyper
BCK -algebras, Math. Japon., 51(2000),493-498.

Y.B. Jun, X.L. Xin, M.M. Zahedi, R.A. Borzoei, On hyper BCK -algebra that
satisfies the hypercondition, Math. Japon., 52(2000), 95-101.

Y. B. Jun, X. L. Xin, E. H. Roh, M. M. Zahedi, Strong hyper BCK-ideals of
hyper BCK-algebras, Math. Japon, Vol. 51, No. 3 (2000), 493-498.

Y.B. Jun, M.M. Zahedi, X.L. Xin and R.A. Borzooei, On hyper BCK-algebras,
Italian Journal of Pure and Applied Mathematics, No. 8 (2000), 127-136.

F. Marty, Sur une generalization de la notion de groups, 8th congress Math.
Scandinaves, Stockholm, (1934), 45-49.

J. Meng and B. Jun, BCK -algebras, Kyung Moonsa, Seoul, Korea, (1994).

W. Page, Topological Uniform Structures Dover Publication, Inc. New York,
1988.

L. Torkzadeh, M.M. Zahedi, Dual Positive Implicative Hyper K-Ideals of Type


www.sid.ir
www.sid.ir

112

36.

37.

38.

39.

40.

41.
42.
43.

44.

45.

46.

47.

48.

49.

50.

Zahedi, M.M.

1, Scientiae Mathematicae Japonicae online, e-2004, 315-330.

L. Torkzadeh, M.M. Zahedi, Dual Positive Implicative Hyper K-Ideals of Type
3, J.Quasigroups and Related Systems, 9 (2002), 85-106.

L. Torkzadeh, M.M. Zahedi, Dual Positive Implicative Hyper K-Ideals of Type
4, Scientiae Mathematicae Japonicae, 59. No. 3(2004), 591-603, :€9, 583-595.

L. Torkzadeh, M.M. Zahedi, Commutative hyper K-ideals and Quasi-
commutative hyper K-algebras, Ttalian Journal Of Pure and Applied Mathe-
matics, to appear.

L. Torkzadeh, M.M. Zahedi, Dual commutative hyper K-ideals, Submitted.

L. Torkzadeh, M.M. Zahedi, (Anti-)Fuzzy Dual Positive Implicative Hyper K-
Ideals, Italian Journal Of Pure and Applied Mathematics, to appear.

H. S. Wall, Hypergroups, Amer. J. Math. Vol. 59 (1937), 77-98.
S. Willard General Topology, Adison-Wesley Publishing Company, 1970.

M.M. Zahedi, A. Borumand Saeid and R.A. Borzooei, Implicative hyper K-
algebras, Czechoslovak Math. Journal to appear.

M.M. Zahedi, R.A. Borzoei Some Results on hyper BCK -algebras, 7Tth Interna-
tional Congress on algebraic hyperstructures and Applications, Jun 13-19,1999,
Taormina, Italy.

M.M. Zahedi, R.A. Borzoei, A. Hasankhani Bounded week hyper BC K -algebras,
30th Iranian Mathematics Conference, 1-4 August 1999, Mohaghegh Ardebili
University, Ardabil, Iran.

M.M. Zahedi, R.A. Borzoei, Y.B. Jun, A. Hasankhani, Some Results on
hyperK -algebra, Scientiae Mathematicae, Vol 3. No 1(2000),53-59.

M.M. Zahedi, R.A. Borzooei and H. Rezaei, Some classification of hyper K-
algebras of order 3, Scientiae Mathematicae Japonicae, Vol. 53, No. 1, (2001),
133-142.

M.M. Zahedi , R.A. Borzoei, H. Rezaei, A classifications of hyperK -algebras of
order 3 which satisfy the simple condition, Internationa Congress ” Constantin
Caratheodory in his ... origins”, September 1-4, 2000, Vissa, Greece.

M.M. Zahedi , R.A. Borzoei, H. Rezaei, A classifications of hyperK -algebras of
order 3 which satisfy the normal condition, 31th Iranian Mathematics Confer-
ence, 27-30 August 2000, University of Theran, Theran, Iran.

M.M. Zahedi, L. Torkzadeh, R.A. Borzooei Dual Positive Implicative Hyper K -
Ideals of Type 2, Pure Mathematics and Application (PU.M.A), Vol. 14, No.
4(2003), 329-346.


www.sid.ir
www.sid.ir

