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ABSTRACT. In this paper we consider a kind of higher-order evolution equation as
% + ‘?;:i’ +---4u —Au= f(u,s7u,x). For this equation, we investigate nonglobal
solution, blow-up in finite time and instantaneous blow-up under some assumption
onk, f and initial data. In this paper we employ the Test function method, the Gen-
eralized convexity method and Galerkin’s method for some of our proofs. Moreover,
occasionally by changing P.D.E problems to some ordinary differential inequalities,
we investigate this kind of higher-order evolution equations.
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neous blow-up.
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1. INTRODUCTION

In the present paper, we investigate, blow-up in finite time, instantaneous blow-
up and nonglobal solution for some nonlinear higher-order evolution equations, as
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follows

k k—1
%+%+~~~+wfﬁu: f(u,7u,x),
and some other similar equations.

In the casé = 1, there are many results for blow-up and nonglobal solutions with
Dirichlet boundary condition whenevei(u) = uu|4~* or f(u) = auju|% +b| v
u|Pwith g, p > 1 ( [5], [6], [7], [9]. [10], [15]). In the cas& = 2, Souplet in [16] ob-
tained some results for blow-up, whéfu) = |u/9+Au, (q > 1). On the other hand,
Souplet has proved the nonglobal character of the solution for this problem, when-
ever the initial data have positive projection on the first eigenvecterAfoperator.

We are going to extend and complete these results. In thekcask Laptev in [12]
Considered a similar inequality, as follows
ou
i~ Auz X,
and he proved that in the complement of a lgal- RN\Bg for 0 > —2, there exists a
critical exponeng]* such that for k< q < g* the last inequality has no global solution
under some assumption on the initial data. Moreover in the @aseBg for 0 < —2
he showed that for & q < « this inequality has no global solution. Laptev in [13] for
the following inequalities
k k K
ngkJ —Au™ > |ul4 % — Au> [x[°|ul % —div(]x|“Du) > |u[?
with k=1,2,... in a cone-like domains obtained a critical exponghsuch that for
1 < g < g* the last inequalities have no global solution. In the present paper some of
our result about these inequalities are independent on the geometry of the domain.

On the other hand, in this paper, we have investigated the equation (1.1) and simi-
lar equations and inequalities comprehensivelykfor 1 and we obtain many results
for blow-up in finite time, instantaneous blow-up and nonglobal solution under some
suitable data.

In Section 2, we consider the equation (1.1) whendyey = |u|9 andQ is a smooth
domain inRN (possibly unbounded), then we show that if the initial data are nonneg-
ative and one of them is very large, then the solution cannot be global. Moreover for
this problem with Neuman boundary condition on the bounded domain, the global

(1.1)

k i
solution does not exist iy [, a%'%u(o,x) > 0. In our proofs in this section, we will
i=1

take advantage from a t;?pe of the Test function method.
In Section 3, we consider some ordinary differential inequalities of the following
forms fort > 0.

204D 7 > A (P1)
29y az>cA, (P2)
Z(k) + Z(k_l) + Az > Cf‘7 (P3)

wherec and\ are positive constants, ad> 0 is a real valued function i€X(R).
For these inequalities, we investigate the nonexistence of global solution and blow-up
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k .
in finite time. On the other hand, we show that &), if T z(0)(~% > 0 then the
iZ1

solution blows-up in finite time. FaiP,) and(Ps), we show that if the initial data are
nonnegative and(0) is large enough then the solution blows-up in finite time.

By using the results of Section 3, in Section 4, we prove the nonglobal character
of the classical solutions for some nonlinear higher-order evolution equations of type
(2.1). In the following there are some of them, moreover one can see the rest of these
equations in Section 4.

oku
(1.2) W+--~+ut—Au:)\u+uq,
akflu t q
(13) W"’"‘LJ(—AU"‘)\U:/O u-,
u
ou o 1u
(1.5 ﬁ+W—Au:a|vu\p+buq

The basic idea for our proofs in Section 4, relies to use from the first eigenfunction
to change P.D.E problems to O.D.E. problems. Indeed, by multiplying the equations
by the first eigenfunction of A operator and integrating ov&, one can change the
above equations to some ordinary differential inequalities. Then we can use the result
of the Section 3 to investigate these equations.

In Section 5, we consider the equation (1.1)Ker 2 andf (u) = uP. By using the
Generalized Convexity method we show that, if

[ 19O Pdx+ [ ju(©)dx- ﬁ/up+1(0)dx< 0,

then the nonnegative solution blows-up in finite time. Then By using the Galerkin’s
method, we show that, if

2
u(o zdx——/up” 0)dx >0,
[ Ivuo)Pax- 2 [wopx
and 2
0)[2d / 0)|%d ——/ PHL(0)d
[ 17 uO)Paxs [ lu(©)Pdx— = [ uP+o)dx
is positive and small enough, then this problem has a global weak solution.

2. NONGLOBAL SOLUTION FOR A HIGHER-ORDER EVOLUTION PROBLEM

In this section we consider a higher-order evolution problem as follows,

oku
W+"'+Ut*AU: |u\q
(2.1)
ai
wu(O,x) =y(x), 0<i<k-—1,xeQ,
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whereQ is a smooth domain iRN. For this problem, at first we assume tl%%tu(o, X) =
AiW; such thatl; > 0 andA; > 0. In this situation we show that if there exist$ such
thaty; # 0in a subdomai®’ of Q andAj is large, then global solution does not exist.
Moreover, wherfQ is bounded, we shall see that the above problem with the Neuman

k-1
boundary condition does not admit a global solutionyif /o ujdx > 0.
i=0

Definition 2.1. By a solution of the problem (2.1) i := Q x (0,T] we mean a
functionu € ([0, T];HL.(Q)) such that for every test functidne CZ’t’k(Q), .)€
C*(Q), ., T)=¢(,T)=---= ngkZ(.,T) = 0 the following equality holds

(2.2)

k ) ol ko oo ogli=) 9i-1
—1) —7— [ (ADu= PT — —1)! —u(0 :
‘;(T >/%uat,zZ Jyevu=fure=3 5 (0! [ Geuo0 gl

13 @ —ug)

In our proofs in this section, we will take advantage from the test function method.
Test function method is used in different ways. In the first of these, Guedda and Kirane
reconfigured the test function method of Pohozaev et. [8]. Their method enable them
to find the critical exponent for equations of the form (1.1) koe 1 and f(u) =
ululP~1 as well as the others. The basic idea of the Test function method can be found
as far back as in the articles of Baras and Pierre [2] and Baras and Kersner [1].

In the first step,without considering boundary condition, we show that the problem
(2.1) may have no global solution when one of the initial data is very large in a ball
BccQ.

Theorem 2.2. Consider Problem (2.1). Léﬁu(o,x) = Ajy;. If there exists a ball
B cC Q such thatAjp; > 0 for 0 <i < k—1 and there exists a j witl; # O then
there exists a\ = A(Q,q,AoWo, - - -, Ak—1Wk—1) such that forA > A the solution of the
problem (2.1) is not global.

Proof. LetB = {x: |x| < 1} cC Q. Let{ = &(1 —t)P whereP € N is very large and
O0<t<landO0< ¢ e C™(B)isintroduced as follows.
Considerp: [0,1] — [0,1] is a decreasing smooth function such that

1 0<r<?
cp(r)_{ (1-r)° 2<r<1

whereo is a large number. Le§(x) = ¢(|x|). Notice that, since is large, one can
easily deduce thad, =0 and% =00noQ.
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Let v(t) = [g€udx By the definition of the solution which is introduced in (2.1)
and applying integration by parts, we obtain easily

5 pizlrwﬂcm_l JRmerT
(2.3) +_§10B,i /OT(T—t)Bfi/BEu
- [a-vp [agu= [[a-vp [ e,

or

e oli-p)
_i;p;TB P+1CB7p—1/BWU(O7X)E(X)
K T
(24) +.ZLCB"i/0 (T_t)Bfiv(t)
_/(:(T_t)B/B(AE)U: _/OT(T—t)B_/B|u|qE’

wherecg; =B(B—1)...(B—i+1) andcgo= 1.
In this step, we obtain an estimate for the second term to the left-hand side of (2.4)

as follows. LetC(§) := (Jg¢& )q where% +$ = 1. By using Hlder’s inequality and
Young'’s inequality, we get

CEley; [ (10wt dt= [ (r—0FMOC(E)cq(1—1)P/
< (f) =0PMYHa( [ (TP o)t
(25) OT (T—t)B|V|q OT , /oo 7 - /
=) e e P
C

1 T 5 (E) q/ q TB_iq/+1
< sy (0P = @0

Here, we choosp so large thaB —iq’ +1> 1, fori=1,...,k.
By multiplying (2.4) withC(&) and using (2.5), we obtain

ki

(i-p)
CO 3, 3" [, FrrpHO0ER)

CET g
(2k)9/9¢ q e
(2.6) +, q Big—ig+1

—c®) [ (-F [(28u=

c® [@-vf [ |u|qz—2—1q JAGEETE

B-ia’+1
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By using Young's inequality for the third term on the left-hand side of (2.6), we
obtain

o (;T( 0° [ (a8
2.7

<ctiea (-0 g3 [le-0?

- CTBH/ (1—1t) B/ (A&)u

< 52 Cu®)+ S [Te-of [ s,

whereCy(§) = c(q)C(§) Jg '?2,' dx for large values ofy. By considering (2.6) and
q

Thus

(2.8), we get
ko 9i-p)
_ Z 3 TB*pHCB*p‘l/Bmu(O’ X)&(X))
E)q’ (21 ¢/ag B-id'+1
(2.9) +Z o B'B i’ +1
Rt C(E
*m%)z?/o -0° [l

= a(r—

2q/o [v|%(t t

On the other hand, by the definition of the consi@g) and Hdlder’s inequality,

we obtain . .
c@ [ @-P [ e [ (@-0P
0 D —Jo
Now, by considering the last inequality a%au(o, X) = Aiy; in (2.9), we have

k

_ Z IZ TB*erlCB’p_l)\i_p/BLIJi—pE(X))

1
k ) B-ia'+1
(2.10) +_ZC(E)Q (20%/9c o |:++1

B+l 1 1 T 8
57010 2 50 ) [viE-vP,

Hence, since); > 0 for 0<i <k—1 and there exists psuch that}; # 0 then for
large value o\ the left hand side of (2.10) will be negative, which is implies that
the maximum existence time of solution, must be less tharl.[]

Remark 2.3. Notice that in the last TheorerB,is not necessary be the unit ball with
center at the origin, because by linear transformation every ball in the space can be
transfer to the mention ball.
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Remark 2.4. In the argument about the proof of the last Theorem, one can see that
it is not necessary all of the initial data are positive, but if one of them is positive and
very large then the result of the Theorem remains valid.

Remark 2.5. In the proof of above Theorem, we assumed that for large valug of

/
Is ‘ﬁf/‘: dxis finite. To see this ,notice that

dr

IAE g () ()|
/B gd/a dx_/o @(r)a/a

211 / /
@) col [ IO g O

@(r)d/a o @r)d/a

for some positive constamt Hence, according to the choice of the functigrit is
sufficient that we consider the above integrals near the point 1.The first term on the
right-hand side of (2.11) near the point 1,changes to

/1 pn-1-d [0(1_ r)o—l]q’ dr
g (L—r)od/a

Thus, by choosing-(c —1)d +0%’ < 1lorq —o <1, the above integral becomes
finite. Moreover, for the second term on the right-hand side of (2.11) near the point
1,we have

[, oo e 0,
8 (r)9/a : (1—r)od/a '

Hence, by choosing (0 — 2)d +0(q —1) <1 or—c+2q < 1, the above integral
should be finite too.

Remark 2.6. Notice that in the last theorem our result was not depend on the bound-
ary condition and boundedness or unboundedness of ddqaiat if we consider the
Problem (2.1) in a bounded domain with Neuman boundary condition, then we have
a better result which has appeared in the following Theorem.

Theorem 2.7. Let Q be a smooth bounded domain and consider the problem (2.1)
with the Neuman boundary conditic%ﬁ(t,x) > 0for x € 0Q. Then the problem (2.1)

2T u(0,x)dx > 0.

k
has no global solution ify [
i=1

Proof. Without lost of generality, we may assume that @. Let 1 > 0 be the first
eigenfunction of-A in H}(Q), and&(x) = ¢1(ex) for small values of. By taking
&(t,x) = ¢1(x)(t —1)P as a test function, similar to the proof of the last Theorem, we



16 H.ASSA, M.HESAARAKI , AMOAMENI

have

k 1 - 9li-p)
_ Z\ leB P+1c[31p_l/ e u(0,x)&(x)
p:

SN oy )
(2.12) +Zl (2% i g g1 // D(A8u

aA<4EﬂW——/u4MW

+C(&) fo (1= 1) fyn (83 — uF).
wherev(t) = [ u(x,t)&(x)dxandC(& ) (Jo®) .
Notice that, ife — 0 thenAE — 0, % 5 — 0andC(§) — C(0) := (¢1(0)megQ)) .
Here,megQ) is the Lebesgue measure of the dom@in Now, if we lete — 0 in
(2.12), we get

Qo

(2.13)
k i al p
GO/ 3, 3 PP o ppU0201(0)
k q’ , B-ig /+1
+'7 C(C:)/) (2'() /q g'm_
0O [[(t-vP [ - 5 [(-0Pn+00C0) [[(1-0F [ Shdo.
On the other hand,

co) [ —° [ 1u%:0) > [ —F| [ w0

Thus by the last inequality, the Neuman boundary condition and (2.13), we get

k i—1
(2.14) —1R(C(0)91(0) Z/ %u(q x)dx) +O(tP-9+1) >0
i=/Q ot
Now, if [q g%u(o, x)dx> 0, for 1 <i <k, andt — +o then the left-hand side of
(2.14) should be negative, which is a contradictiah.

Remark 2.8. Let we substitute the equation (2.1) with the following inequality

k 9y
I;& 6ti —AUZF(LLVU’X)’

whereg; > 0, z!‘zla; > 0 andF (u,syu) > C|u|%. For suitable choice of initial data,
similar to the proof of the above theorems, we can show that this inequality has no
global solution.
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3. SOME ORDINARY DIFFERENTIAL INEQUALITIES

In this section we consider the following ordinary differential inequalities (O.D.l.)

Z(k)+z(kfl)+..._~_z' > Cﬂ (Pl)
729 4 az> cA (P2)
294+ 2D 1 az>cA (Ps)

wherel, ¢ > 0 are constants arek CX(R) is a real valued function. For these inequal-
ities, we shall prove that the functi@cannot be global under certain assumptions on
A,c.k and initial data. These problems are very useful for investigation of nonglobal
smooth solution for some higher-order evolution equations. In the next section, we
shall see some application of them.
At first we considerPy). Multiplying (P1) by (t —t)P and integrating with respect
tot in the interval[0, T], and using integration by parts, yields
k
,(leﬂ—l)(o))rB
r

(3.1) ZZTB P12 P (0))

+Z|CB./ T-t)Piz
> [o(t—t)BA,

By using Hblder's inequality and Young's inequality, for the third term on the left-
hand side of (3.1), we get

G /OT(T—t)B_iz(t):/OT(T—t)B/qz(t)CB-(T—t)B/q/_i
<( / T(r—tﬂ‘z‘*( >dt>l/‘*< / @ O ) Wq

q kq/q '[B iq’+1
= _t)B -
—kq/( t) 2(0)+ <, q B—ig +1’

wherep € N is a large number such tht-iq’+1 > 1 fori =1,...,k. Thus, from
(3.1) and (3.2), we get

k

RO ROl

K i
—( 8P+l . Z1-P(0))
(3.3) .;1;3 B.p—1
= /O (T—t)BA()
k - iq’+1 o

o ZLB—I '+1 B'—/ (-t At
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Ka'/a
q -
S AU P_ S T PPl (i-p) A g
—(S 2'77(0)tP - P12 P(0)+AY o———Cp
(3.4) i; i;pZz be i; B—iq'+ 1P

T

2(1—})/ (T—t)PAM)dt
a Jo

whereA ;= Hence

ko
Now, if 3 z1~Y(0) > 0 andt — o, the left-hand side of (3.4) will be negative but the

i=1
right-hand side is positive, which is a contradiction. Therefore, we have proved the
following Theorem.

Theorem 3.1. The ordinary differential inequalityP1) has no positive smooth global

ko
solution if ¥ Z1-Y(0) > 0.
i=1
Remark 3.2. Consider the following equation
k
70
az" > cA.
2

Similar to the proof of the last Theorem, one can show this inequality has no global

kK
solution if ¥ az1~Y(0) > 0,& >oandyf ;& > 0.

We have the following theorem about nonglobal solutiofif).

Theorem 3.3. If z(0) > ”*\1@,2’(0) >0,...,2%1(0) > 0, then the solution ofP2)
is not global.
Proof. Suppose thatis a global solution fo(P,). At first, we are going to prove that
ZW(t) > 0forallt > 0.
i -1/A
Let f(t) = cZ’(t) — Az(t). Sincez(0) > Py/%, we have

f(0) = c2’(0) — Az(0) = 2(0)(c2*"1(0) — A\) > 0.

Thus, there existd > 0 such that for < t < 8, we havef (t) > 0. Hence for 0<t < §,
we have
Z¥(t) > cP(t) — Az(t) = f(t) > 0.

Now, letty > 0 be the first point such that? (to) = 0. In the interval0, to], the func-
tion Z¥ is a nonnegative function. Thu&~Y is an increasing function if0,ty].But
Zk-9(0) > 0 implies thatZk~Y is a nonnegative function if0,tg]. By induction,
we conclude that is a nonnegative function if9,to], sozis an increasing function
in [0,tg]. Thus,z(tg) > z(0). But the functiong(x) = cxP — Ax for x > qu/c"—p is an

increasing function. Thereforg(ty) > z(0) > p‘\l/g > ch’ yields

ZM(t9) > c2’(to) — Az(to) > ¢2(0) — Az(0) > O,
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which is a contradiction. Therefo (t) > 0 for allt > 0. Thus for a fix number
e > 0,25V (g) > 21 (0) > 0. By integrating ovefe, t], we obtain
Z2(t) > (t—e)Z" V(e) + 2K V(e).
() > (t—e)z""(e) (&)
Hencez*~2)(t) — +o ast — +o0.We obtain inductivelyz is an increasing function
andz — 4 ast — +oo. Thus, there exist§ > 0 such thag(T) > P/ % or
c(T)—A(T) > Ez”(T).

Hence, fort > T we must havez’(t) — Az(t) > 52°(t) or

N

(3.5) 29 > gzﬂ

(t
Now, by considering Remark 3.2 aaf~Y(T) > 0, the inequality (3.5) has no global
solution, which is a contradictiof
Eventually, we have the following result fgPs).

Theorem 3.4. If z(0) > P</A/c, Z(0) > 0,Z'(0) > 0,...,2*"1(0) > 0, then the so-
lution of the problen{Ps) is not global.

>T).

Proof. We claim thatZk~ is positive. Leto > 0 be the first point that*—Y (tg) = 0.
Hencez*~Y is positive on(0,to) and consequentlg® (ty) < 0. Therefore
(3.6) AZ(to) > 2 (to) + 2% (to) + Az(to) > cZ(to).
By using the same argument in the last theorem,we can gftgws an increasing
function on|0,to]. Thusz(ty) > z(0) > pf\ﬁ or

cA(to) > Az(to),

which, contradicts (3.6). Hena 1 (t) > 0 for everyt > 0. Similar to the proof of
the last theorem, there exists> 0 such thatz’ — Az > gzp forallt > T. Thus

(3.7) 9+ 2%V (t) > gzp(t), t>T)
Now, by considering Remark 3.2, the solution of the inequality (3.7) is not glabal.

Remark 3.5. For the ordinary differential inequalities(®; ), (P.) and(Ps), we have
proved that the solutions under some assumption on initial data, cannot be global.
Moreover, we can prove that these solutions blow-up in finite time. Here, by blow-up
we mean that ifT* < o is the maximal existence time, then the solution blows-up
whenever

HZkHLl(O,T*) = Fo.

In order to prove this claim, one can suppose tfiatz*) (t)dt < w. Thenz,Z, ...,z
bear some limits which are denoted & *),Z(T*),...,2% 1 (T*) ast tend toT*.
Then the solution of the inequalities could be extended to the right hand sidebyf
a local solution of the following O.D.I. fofP1), (P2) and(P3), respectively

Wk (t) 4 -+ W(t) > cwA(t)
{ W(T*) = 2(T*),W/(T*) = Z(T*),..., wk-D(T*) = 21 (%),
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cwA(t)

(T*) =Z(T%),... , W (T*) = ZK-1(T*).
+AW(t) > cwA(t)
=Z(T%),... , wk-D(T*) = Zk-1(T*).

{ w(0) + hw(t) >
W(T*) = 2(T"), W

w (t) + w2 (1)
{ W(T") =2(T*),w(T*) =
4. APPLICATION

In this section, by using the results of the last section,we investigate nonglobal so-
lution for some higher-order evolution equations.Consider the following equations,in
a bounded domaif c RN.

k
(4.1) gtf+ U — AU= AU+,
akflu t q
4.2) ik STttt w— Au+)\u—/ ud,
oku o1ty
(43) W—Fatk 1 AU—a|VU‘p+qu
aku
oku
(4.5) Sk T tu Au=a|7ulP+Au,
aku
(4.6) U Au=a|yulP+M,
wherea, b,A andM are nonnegative constants. In this section, we also assume that
4.7) ue C¥((0,TI;L2(Q)) N C((0, T, W™ (Q)),u> 0,

wherer = maxX p,q}. LetA; be the lowest eigenvalue of the operatef in H(}(Q)
andd1 be the corresponding positive eigenfunction with

/Qd)ldx=1.

At first, we consider the equation (4.1). Multiplying this equationphyand integrat-
ing overQ, yields

ox 0
(4.8) 7/ Uprdx+ -+ —/ u¢1dx+)\1/ ub1dx = )\/ u¢ldx+/ dauddx

ot*Ja otJa Q Q Q
By settingz(t) = [ udp1dx and using the Holder’s inequality, we get

4D 7 z> Az
Now, if A > A1, then
AV 7> A
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Thus, by Theorem 3.1 and Remark 3. 52fz 0)(-Y > 0, then the solution of the

above inequality must blow-up in finite tlme
Now, we consider the equation (4.2). If we differentiate this equation with respect
tot, we get

oku

3K +oo g — Al Ay = u,
Let z(t) be as above. By using a similar argument , we obtain
(4.9) M4 MZAN > A
Hence, ifz(0) > 0 then
(4.10) Z¥(0) +---+2'(0)+ (A +A1)Z(0) > 0.

But, for the equation (4.2), we must hag& Y (0) +--- +Z(0) + (A +A1)z(0) = 0.
Indeed, By multiplying the equation (4.2) wigh and letting — 0, this equality must

be satisfied. Hence, by considering the last equality and (4.10), one can easily deduce
that there exists a> 0 such that

2 V(e)+---+Z()+ (A +A1)z(e) > 0.

Therefore, ifA +A1 > 0 then by Theorem 3.1 and Remark 3.5 the solution of the
inequality (4.9) blows-up in finite time.

Remark 4.1. Notice that for the equation (4.2) whén= 1, Souplet in [17] showed
that if A > A1 andz(0) > 0 then the solution blows-up in finite time. But in the last
argument, we can see thaiz{D) > 0 then this result remains valid ev&n> —A, and
moreover for everk > 1.

For the equations (4.3),(4.4),(4.5) and (4.6) the following lemma is useful.

Lemma 4.2. Let u ands be as above. If p- 2, there exists a constant@, ¢1) > 0,
such that

c(@.60)( | ubrc)® < [ |7uPpa0x
Proof.Foru and¢; we can write,

[ lugadx < o]l [ Juldx
<c(Q ||¢1||oo/ | 7 ujdx (Pomcaresmequallty)

||¢1||m/ v ubPo; Pdx

Q)0 |7 a3 [ 85 "o
Thus
c(0.60)( | ubc)® < [ |7 uPpaox
This completes the proafl
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=
Remark 4.3. In Lemma 4.2 ,we assume thg§ ¢, " dx, is finite. In fact, if¢y is the
first eigenfunction of-A operator inHZ(Q), thends € W22(Q) "Wy (Q). More-
over the author in [16, Lemma 5.1] has proved that

/Qq)I“(x)dx:c(a,Q)<oo Va € (0,1).

Now, we consider the equation (4.3). By using the same notation as above the
equation (4.3) can be written

(4.11) z(k)+z(k‘1)+)\z:a/ |7 uPhrdx+ b/ wd1dx
o Q

Now, according the above lemma and (4.11), by consideaibg> 0 andp > 2,we
obtain

(4.12) ZW 42V L Az> ac(Q, $1)2° + bA.

Thus, by Theorem 3.4 and Remark 3.5,aif- b > 0 then the solution of the in-
equality (4.12) blows-up in finite time wheneve(0) is large enough and(0) >
0,---,ZxY(0) > 0.

For the equation (4.4), exactly similar to the argument of the equation (4.3), one
can show that i#(0) is large enough andl(0) > 0, - -- ,Z¥~1(0) > 0 then the function
zblows-up in finite time, too.

For the equation (4.5), by employing Lemma 4.2 ,we obtain

(4.13) 294474 Mz>adQ,01)F + Az

Thus by (P1) for A > A1, the solution of this inequality must blow-up whenever
§ Zi-Y(0) > 0.

I:1For the equation (4.6), we have the following Theorem.

k _
Theorem 4.4. Let p> 2. If M is large enough ands z(0)(~Y > 0, then the equation
i=1

(4.6) cannot admit a global solution.

Proof.By using Green’s theorem ,we get

(4.14) z(k>+~~-+z’+/gvu.v¢1dx=a/Q|vu\p¢1dx+M/Q¢1dx,

By considering the HElder’s inequality and Young's inequality for the last term on the
left-hand side, we can write
(4.15)

. 1 _1
Javu v oidx < [o[vuldaP|7dalds Pdx
, 4 kS
< (Jo| 7 UPO1AX)? (Jo| 761701~ 7 dX) ¥, (Holder's inequality)
<8 JalvuPdidx+cy [q v 6171~ P dx, (Young's inequality)
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o
c1folvo1l” o, Pd

for some positive constants. Now, if M > T}(X, then from (4.14) and
(4.15), we get
(4.16) z<">+~-+izg/ |7 ulPh1dx.

Q

Now,by using Lemma 4.2, we obtain
(4.17) 047> gc(qq)l)zp.
By considering Theorem 3.1 and Remark 3.5, the solution of the equation (4.6) blows-
up in finite time Wheneve_rglz(‘*” (0) > 00

i=
Remark 4.5. Notice that in the last Theorem, we assunfeis bounded. Here, we
should mention for some unbounded domains this theorem remains valid, too. In fact

in [10], we showed that one can substit@ey an unbounded domaif/, such that
the Poincare’s inequality is valid iH3(Q') and there exist some positive functions

@€ Wy™(Q') such that fors = 511, we have

/ idx<<>o
o (x)°

For this domainQ’ the conclusion of Theorem 4.3 remains valid. For existence of
such a domaif®)’ ,the functiong and the rest of details one can see [10].
5. A NONLINEAR WAVE EQUATION

In this section, we consider the following nonlinear wave problem

U+Ui—Au=ulP Q:=Qx(0,T],
u(0,x) =ug, X€Q,

Ww(0,X) =ugx X€Q,

ut,x)=0  xe€0Q,

whereQ is a bounded domain iR". For this problem, at first by using the Generalized
Convexity method, we show that if the initial data satisfy the following condition

62 [Ivuofd: | |ut<o>|2dx—ﬁ [ wioux<o,

then the nonnegative classic solution blows-up in finite time. After that, we will in-
vestigate what happens for the solution if the condition (5.2) does not hold. In fact, by
using the Galerkin’s method we show that if the condition (5.2) does not hold, i.e.

" 2 "
u(0)|%dx / 0 zdx——/up+10dx>0,
[ 17 w0 [lu©Fdx- 25 vt
and the left hand side of the last inequality is small, and the following inequality holds

/|vu(0)\2dxf/up+l(0)dx> 0,

then the weak solution of the problem (5.1) is global.

(5.1)
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In this step we define the global classic and global weak solution for the problem
(5.1).

Definition 5.1. By a global classic solution for the problem (5.1), we mean a function
ue C2((0,e0);WgP(Q)) such that

Ut + U — Au=UP,
for everyx € Q andt > 0.

Definition 5.2. By a weak solution iQ x [0,T] for the problem (5.1), we mean a
functionu € C((0,T);Wy'P(Q)) anduy, uy € L2(0, T;L2(Q)), such that

(5.3) /(;T/gz[(tk+utt)l+vu.vi}dtd><= /()T/Qupldtdx

for every test functio € L?(0, T; H(Q)).

Moreover, we say that the weak solutiofs global wheneveu is a weak solution
for problem (5.1) inQ x [0, T], for everyT > 0.
The following theorem shows all of our results in this section.

Theorem 5.3. Consider the problem (5.1).

a) Let u be a classic nonnegative solution of the problem (5.1) and the initial data
satisfy the condition (5.2), then u blows-up in finite time #).

b) Let T > 0. If u(0) > 0 and y(0) satisfy the following conditions

(5.4) / |7 u(0)[2dx— / uP+(0)dx > O,
and
65 o< [Ivu0)fdct [ u(o)dx- ﬁ/upﬂ(mdm 5,

whered := info_.,cp1(q) SUR=oH (Au) > 0 (3> O will be proved in Lemma 5.5), then

for 2 < p+1< 2 (where2* = 2% for N > 2 and 2* = o for N < 2), there exists

a nonnegative solution u for the problem (5.1) such that w™(0,T;H(Q)) and
U € L%(0,T;L?(Q)) and U’ € L?(0,T;H1(Q)).

In order to prove part (a) of the theorem we need the following lemma.

Lemma 5.4. If a function
F(t)e C? F(t) =0,
satisfies the inequality
F/(OF (t) — (1+a)F'(t)2 > —2C,F (t)F'(t) — CoF (1),

for some real numbers > 0 and G,C, > 0, then we have
a) If F(0) > 0,F’(0) > —y,a~1F(0),C; +C; > 0, where

Y2 =—C1—/C2+aC,,
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then, forys = —C1 + 4 /Cf +aCy, there exists a positive real number
1 vaF (0) +aF’(0)

n
2,/C2+C3 y2F (0) +aF’(0)

such that Kt) — +o ast— t;.

b) If F(0) > 0, F’(0) > 0and G = C; = 0, then there exists a positive real number

to < gy Such that Rt) — +e ast—ti.

1 <

Part (a) of the lemma is taken from [11] which is due to O.A. Ladyzhenshaya and
V.K. Kalantarov. Part (b) of the lemma is introduced by H.A. Levine in [14].

The most crucial point in the application of this lemma is to find a functional that
represents the disipation on the boundary and satisfies the conditions of the lemma.
This method is known as the "Generalized convexity” method.

Proof of part (a) of Theorem 5.3. LEt(t) := [, u?(t,x)dx. Then

F'(t) = 2/ uwdx,
Q
and
F"(t) :2(/ ufdx+/uundx).
Q
It follows that,

FF”—(a4+1)F2 =4(a+1)A2+2F (t)[[ uudx
(5.6) + [uudx— (20 +1) [ u2dX
—2F(t) [ uu.

In this step we show that
H(t) ::/uutdx+/uu[dx—(2a+l)/utzdxz 0.
Notice that we havey = Au+4uP — . Thus
H(t) = [uAudx+ [uPtldx— [uwdx+ [uwdx— (20 +1) [uldx

.7 — | AuPdx+ [uPtidx— (20 + 1) [ W2dx
Hence

H'(t) =-3[]Audx+(p+1) [ uuuPdx— (20 + 1) [ tUydx
(5.8) = —§ J | AuPdxr (p+1) [ wuPdx

—2(20 4+ 1)[[ wuPdx— [uPdx [ u AU
=20 [|AuPdx+ P 4 fupia+2(20+1) [ U2
Now, (5.7) and (5.8) imply that

(p—4a—-1)

H(t)—H(o)z—ZG/IVU(O)\ZdX‘ p+1

/ WP+ (0)dx

Therefore

(6:9) ()= ~(2a-+ 3] [ |7u0)fdx+ [ w©)Fdx- -2 w0y >0
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Now, from (5.6) and (5.9) we obtain
F’(t)F(t) — (a+1F' (1) > —F(1)F'(t)

Therefore the hypotheses of Lemma 5.4 are satisfied®@yith 1/2 andC, = 0. Hence
from the conclusion of the lemma 5.4 the proof of the theorem is completed.
In order to prove part (b) of the theorem we need the following lemmas.

Lemma 5.5. Suppose that & H3(Q) and2 < p+1 < 2* (where2* = & for N > 2
and2* = oo for N < 2). Put

1 1
HW = [ Ivuldx- 2 [ oudx

in whichg(u) = {0if u < 0,uP*1if u > 0}.
Then we have
6= inf supH(Au) > 0.
0£ucH}(Q) A>0

Proof. Evidently, we have

A2 AP+1
(5.10) H(AU) = E/\vu|20|x_ m/cp(u)olx
On the other hand by Poiné&s inequality we have
(5.11) ([ et <ol [ |7 uldn?.
Hence . '
2 1
supH () = H((W)Mu)

N

P+

ot UalvuPdrt 1 1o
2 P (Jpeudx e

Now, we introduce the stable set
W = {ulu € H3(Q), 0< H(Au) < 3,A € [0,1]}.

Lemma 5.6. We have

W =W, U{0},
where
W = {ulu € HY(Q), /Q|vu|2dx> /Q(p(u)dx H(u) < 3).

Proof. Suppose that € W, u # 0, then we have

o ( JalTuPx
SupH(Au) = H (( Jo@udx | ”) 28,

and, hence
1
g 2 -1
(/Q|vu| dx) 1

Jo ®(u)dx
which implies thau € W..
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Now, letu € W,.. Then, sincet%H()\u) >0forO0< A <1andH(0) =0, we have

sup H(Au) =H(u) < 8.0
0<A<1

Proof of part (b) of Theorem 5.3. In order to prove this part, we employ the Galerkin’s
method. Let{wy }k—12,. be a complete system of function Htg(Q) such that

{wi}i_, is an ortogonal basis #1}(Q),

and
{Wi}ie_, is an orthonormal basis &f(Q).

Notice that the conditions (5.4) and (5.5) yield thgte W. letupmn be a sequence such
that

o 1
(5.12) /Q\vu()m|2dx> /Qcp(u()m)dx and H(u0m)<§—§||u6||fz(m,

and
m

f 1,
Uom:= Y OlkmWk — U in Wy P(Q).
K=1
For a positive integem, we write
A
Un(t) := Z A () Wi,
K=1

where the functiord¥(t) are determined by the following system of ordinary differ-
ential equations,

dk(0) = aym (k=1,...,m),
(5.13) dk(0) = (uot, W) (k=1,...,m)
and
(5.14) (u7, W) + (U, Wk) + (VUm, YWk) = (¢ (Um),Wk) (0<t<T,k=1,....m),

0 u<O,
forow={ 5 4o

Our plan hereafter is to leh — . In order to do this, we will need some uniform

estimates on m.
If we multiply equation (5.14) byl (t) and sum it fok = 1,...,m, we get

(515) (UK,], u;n) + (u§n7 u;n) + (Vum7 Vuﬁn) = (¢(Um)7 ul/'n)a
for 0 <t < T. Observe thatu’, u.,) = %(%Hu{nﬂfz(m) and

d, 1

d 1
(5.16) (VUm, VUp,) = a(éH VUmHEz(Q))a (¢ (Um), up) = a( p+l||(P(Um)||Ll(Q))-
Hence
(5.1d7) d d
1 1 1
E(EHU:UHEZ(Q)) + HuanEz(Q) +5 Gl VUmHEZ(Q)) = a(m“fp(um)HLl(Q)),
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Thus
(5.18)

1
3o [ M@yt 317l
1
S (100 o)~ XU O) ) + 51U >HEZ<Q>+||vum<0>|\52<9)>.
Then, (5.18) yields

1 t 1
(6.29) 3 upl%2(q +_/o U [22q A+ H (Um(®)) = 5 I1Un(0) 22 g + H (Um(0))
In this step, we will show that
(5.20) Um(t) eW, vt >0

Suppose that (5.20) does not hold. tebe the smallest time for which,(t*) ¢ W.
Sinceum(0) € W thent* > 0. Thus in virtue ofin(t), we see thatim(t*) € OW. Hence
from Lemma 5.6 we have

(5.21) H (Un(t)) = &
or
(5.22) /Q|vum(t*)|2dx—/9<p(um(t*))dx:0

which contradicts the equality (5.19). Indeed, if (5.21) holds then according to (5.19),
we get

1 t 1 1
Sz + [ 112 +3 < S 1Un(O) e g) + 8- 51U Oz
which is a contradiction, and if (5.22) holds, then
. Jol 7 um(t)[Pdx, 1, )
H(um(t*)) = H Plum(t’) | =3
( m( )) (( fQ(p(Um(t*))dX ) m( ) =

which is again a contradiction.
Now, by using Lemma 5.6 we can write

1
||u 1220 +/ ||U||L2 d3+(*—7)||v m||
(5.23) e 2 pl
IOz gy + 315 ()2~ [O(tn(0 >>||L1<m

Let jm(0) = 3 |Un(0)l|Z2 g, + 311 7 um(0) |2 - m||<p<um< 0)) 1) Then (5.23)
yields

(5.24) SRl g + Ul ) < Cim(©) < 03
for some constant > 0. Now, we will show that|up|| 2o 1:4-1(q)) is uniformly
bounded.

Letve H3(Q), ||vHH1 < 1. We can writev = v1 + V2, wherevy € Spaf{W},_;
and(vg,wx) =0,k=1,.. m Notice that||v1HH1 < 1. Thus (5.14) implies

(U, V) = (U, V1) = (@ (Um),Va) — (U, Va) = (7Um, VVa).-
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Then, from Lemma 5.6 and the last equality, we get
(U V)| <1

for some positive constari. Consequently

T
(5.25) LI gyt < .
Now, from (5.24) and (5.25), we get

||UIT1HL°°(O.T;H&(Q)) =¢
[UnllLz07L2(0)) <€
[umll2oH-10) <€
From Aubin’s compactness theorem, we see that there exist a functoa a
subsequencéum, } of {un} such that

Um — U, weaklyinL®(0,T;H(Q))
“ﬁn_ —u, weaklyinL?(0,T;L%(Q))
Up, — U, weaklyinL?(0,T;H-1(Q))

are fulfilled. Finally, if we letm — o in (5.14) and using the above fact,we will age
is a solution of the problem (5.1) {0, T].00
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