Iranian Journal of Mathematical Sciences and Informatics
Vol.1, No.2 (2006),pp 31-51

RICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN
SPACE FORM

SUNGPYO HONG AND MUKUT MANI TRIPATHI

DEPARTMENT OF MATHEMATICS, POHANG UNIVERSITY OF SCIENCE AND
TECHNOLOGY (POSTECH), SAN 31 HYOJA DONG, NAM-GU POHANG 790-784,
REPUBLIC OF KOREA
DEPARTMENT OF MATHEMATICS AND ASTRONOMY, LUC-KNOW UNIVERSITY
LUCKNOW 226 007, INDIA

EMAIL: SUNGPYOQPOSTECH.AC.KR
EMAIL: MMTRIPATHI66QYAHOO.COM

ABSTRACT. Involving the Ricci curvature and the squared mean curva-
ture, we obtain basic inequalities for different kind of submanifolds of a
Sasakian space form tangent to the structure vector field of the ambient
manifold. Contrary to already known results, we find a different nec-
essary and sufficient condition for the equality case. We also give very
simple proofs (1) for a basic inequality for Ricci curvature of C-totally
real submanifolds of a Sasakian space form, and (2) of the fact that if a
C-totally real submanifold of maximum dimension satisfies the equality
case, then it must be minimal. Two basic inequalities for submanifolds of
any Riemannian manifold, one involving scalar curvature and the squared
mean curvature and the other involving the invariant 6 and the squared
mean curvature are also obtained. These results are applied to get corre-
sponding results for submanifolds of Sasakian space forms.
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1. INTRODUCTION

One of the basic interests in the submanifold theory is to establish simple
relationships between the main intrinsic invariants and the main extrinsic in-
variants of a submanifold. The main intrinsic invariants include the classical
curvature invariants namely the Ricci curvature and the scalar curvature. For a
unit vector X in an n-dimensional submanifold M of a real space form R™(c),
B. Y. Chen [9] proved the following basic inequality

(1) VP > g {Ric(X) ~ (n — 1)c}

involving the Ricci curvature Ric and the squared mean curvature ||H||?> of
the submanifold. The inequality (1.1) drew attention of several authors and
they established same kind of inequalities for different kind of submanifolds in
ambient manifolds possessing different kind of structures. The submanifolds
include mainly invariant, anti-invariant and slant submanifolds, while ambient
manifolds include mainly real, complex and Sasakian space forms.

Recently in [15], the present authors made a general theory for a submanifold
of Riemannian manifolds by proving a basic inequality, involving the Ricci
curvature and the squared mean curvature of the submanifold. The goal was
achieved by use of the concept of k-Ricci curvature (2 < k < n) in an n-
dimensional Riemannian manifold introduced by B.-Y. Chen [9]. In this paper,
we apply this general theory to study submanifolds of Sasakian space forms. In
section 2, we recall the notion of Ricci curvature, scalar curvature and k-Ricci
curvature and give a brief account of submanifolds. Then we recall the general
basic inequality from [15] (see Theorem 2.1) for a submanifold of Riemannian
manifolds, involving the Ricci curvature and the squared mean curvature of
the submanifold. The equality case is also discussed. Section 3 contains a brief
discussion about Sasakian manifolds and Sasakian space forms. In section 4,
by applying Theorem 2.1 we obtain a basic inequality for submanifolds of a
Sasakian space form such that the structure vector field of the ambient manifold
is tangent to the submanifold. Equality cases are also discussed. Next, in
section 5, we obtain a basic inequality for Ricci curvature of C-totally real
submanifolds of a Sasakian space form. We also give a simple proof of the fact
that if a C-totally real submanifold of maximum dimension satisfies the equality
case, then it must be minimal. In section 6, first we give a basic inequality for
submanifolds of any Riemannian manifold involving scalar curvature and the
squared mean curvature. Then, we obtain one more basic inequality involving
the invariant 6 and the squared mean curvature. Then, we apply these results
to get corresponding results for submanifolds of Sasakian space forms.

2. RICCI CURVATURE OF SUBMANIFOLDS

Let M be an n-dimensional Riemannian manifold equipped with a Riemann-
ian metric g. The inner product of the metric g is denoted by (,). We denote
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the set of unit vectors in T, M by T, M; thus
T'M = {X € T,M | (X,X)=1}.

Let {e1,...,exr}, 2 < k < n, be an orthonormal basis of a k-plane section IIj
of T,M. If k = n then II,, = T,M; and if £ = 2 then II, is a plane section
of T,M. For a fixed i € {1,...,k}, a k-Ricci curvature of Il at e;, denoted
Ricm, (e;), is defined by [9]

k

(2.1) Ricr, (e;) = > Kij,

J#i
where Kj; is the sectional curvature of the plane section spanned by e; and e;.
In fact, a k-Ricci curvature is a (k — 1)-Ricci curvature in the sense of H. Wu
[32]. We note that an n-Ricci curvature Ricr, ar(e;) is the usual Ricei curvature
of e;, denoted Ric (e;). Thus for any orthonormal basis {ey, ..., ey} for T, M
and for a fixed i € {1,...,n}, we have

n
RichM(ei) = Ric (el) = ZKU
J#i
The scalar curvature 7 (II;) of the k-plane section IIj is given by
(2.2) T(M) = Y Ky
1<i<j<k

Geometrically, 7(I1y) is the scalar curvature of the image exp,(Ilx) of Il at
p under the exponential map at p. We define the normalized scalar curvature
7~ () of IIx by

2T (Hk)
2. M) = ——~.
The normalized scalar curvature at p is defined as [8]
27 (p)
24 = —".

Then, we see that 7n (p) = 7w (I M). The scalar curvature 7(p) of M at p is
identical with the scalar curvature of the tangent space T,M of M at p, that
is, 7(p) = 7 (TpM). If II, is a plane section and {e1,es} is any orthonormal
basis for II,, then

RiCH2 (61) = Ri(}n2(62) = T(Hg) = TN(HQ) = Klg.

Let M be an n-dimensional submanifold of an m-dimensional Riemannian
manifold M equipped with a Riemannian metric g. We use the inner product
notation (,) for both the metrics g of M and the induced metric g on the
submanifold M. The Gauss and Weingarten formulas are given respectively by

VxY =VxY +0(X,Y) and VxN=—-AyX+ V%N
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for all X,Y € TM and N € T+M, where V, V and V= are respectively the
Riemannian, induced Riemannian and induced normal connections in M , M
and the normal bundle T+ M of M respectively, and ¢ is the second fundamen-
tal form related to the shape operator A by (o(X,Y),N) = (AnyX,Y). The
equation of Gauss is given by

R(X,Y,Z,W) = R(X,Y,ZW)+ (o(X,W),0(Y,Z))
(2.5) —(o(X,2Z),0(Y,W))

for all XY, Z, W € TM, where R and R are the Riemann curvature tensors of

M and M respectively. The curvature tensor R+ of the normal bundle of M
is defined by

R (X,Y)v =VxVyv —VyVxv - Vix y¥
and the covariant derivative of o by
(V'o) (X,Y,2) =V%o (Y, Z) =0 (VxY,Z) — o (Y,VxZ).

If R+ =0, then the normal connection V+ of M is said to be trivial or flat. If
V'o =0, then the second fundamental form is said to be parallel.

The mean curvature vector H is given by nH = trace(o). The submanifold
M is totally geodesic in M if o = 0, and minimal if H = 0. If 0(X,Y) =
(X,Y)H for all X,Y € TM, then M is totally umbilical.

The relative null space of M at p is defined by [9]
N, ={X € T,M|o(X,Y)=0forall Y € T,M},

which is also known as the kernel of the second fundamental form at p [10].

Now, let {e1,...,e,} be an orthonormal basis of the tangent space T, M and
e, belongs to an orthonormal basis {ep41,...,emn} of the normal space TPLM.
We put

n

2
of; = (0 (eire) ey and  lol® = D (0 (eie;), 0 (eie))) -
i,j=1
Let K;; and IN(U denote the sectional curvature of the plane section spanned
by e; and e; at p in the submanifold M and in the ambient manifold M respec-

tively. Thus, we can say that K;; and IN(U are the “intrinsic” and “extrinsic”
sectional curvature of the Span{e;,e;} at p. In view of (2.5), we get

m
(2.6) Kyj=Kij+ Y (o0} —(0];)).

r=n+1

From (2.6) it follows that
(2.7) 27(p) = 27 (T, M) +n’ | H||” — ||o|I”,
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where 7(T,M) denotes the scalar curvature of the m-plane section T,M in

the ambient manifold M. Thus, we can say that 7(p) and 7 (T, M) are the
“intrinsic” and “extrinsic” scalar curvature of the submanifold at p respectively.

Now, we recall the following

Theorem 2.1. [15] Let M be an n-dimensional submanifold of a Riemannian
manifold M. Then the following statements are true.
(a) For X € T; M we have

2
. n =
(2.8) Ric(X) < T |H]> + Ric(r, ar) (X),

where ﬁivc(TpM) (X) is the n-Ricci curvature of TyM at X € Ty M with

respect to the ambient manifold M.
(b) The equality case of (2.8) is satisfied by X € TI}M if and only if

(2.9) o(X,X):gH(p) and o(X,Y) =0

for allY € T,M such that (X,Y) = 0.

(c) The equality case of (2.8) holds for all X € T) M if and only if either
(1) p is a totally geodesic point or (2) n = 2 and p is a totally umbilical
point.

From Theorem 2.1, we immediately have the following

Corollary 2.2. Let M be an n-dimensional submanifold of a Riemannian
manifold. For X € Tle any two of the following three statements imply the
remaining one.

(a) The mean curvature vector H(p) vanishes.

(b) The unit vector X belongs to the relative null space N,.
(c) The unit vector X satisfies the equality case of (2.8), namely

. 1 =
(2.10) Ric(X) = 1 n*||H|]> + Ric(r, ary (X).

3. SASAKIAN SPACE FORMS

A 1-form 7 on a differentiable manifold M of odd dimension 2m + 1 (m>1)
is called a contact form if n A (dn)™ # 0 everywhere on M, and M equipped
with a contact form is a contact manifold. In 1953, S. S. Chern [12] proved
that the structural group of a (2m + 1)-dimensional contact manifold can be
reduced to U (m) x 1. A (2m + 1)-dimensional differentiable manifold M is
called an almost contact manifold [14] if its structural group can be reduced
to U(m) x 1. Equivalently, there is an almost contact structure (p,&,n) [25]
consisting of a tensor field ¢ of type (1,1), a vector field &, and a 1-form 7
satisfying

(3.1) e =-T+n®¢ nlE) =1, ¢t=0, nop=0.
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First and one of the remaining three relations of (3.1) imply the other two
relations of (3.1). An almost contact structure is normal if the Nijenhuis tensor
of p equals —2dn ® &.

Let g be a compatible Riemannian metric with (¢, &, n), that is,
(3.2) (X,Y) = (oX, oY) +0(X)n (Y), XY €TM,

where (,) denotes the inner product of the metric §. Then, M becomes an al-
most contact metric manifold equipped with an almost contact metric structure
(p,€,m,9). The equation (3.2) is equivalent to

(3.3) P (X,Y) = (X,0Y) = —(X,Y) and (X, &) =n(X).

An almost contact metric structure becomes a contact metric structure if
® = dn. A contact metric manifold is a K-contact manifold if £ is Killing.
A normal contact metric manifold is a Sasakian manifold. An almost contact
metric manifold is Sasakian if and only if

(3.4) (Vxp)V =(X,YV)e-n(Y)X, XY eTM.

A Sasakian manifold is always a K-contact manifold and the converse is true in
the dimension three. A compact K-contact Einstein manifold is also Sasakian.

A plane section in TpM is called a -section if there exists a vector X € Tp]\7
orthogonal to ¢ such that {X, X} span the section. The sectional curvature is
called -sectional curvature. Just as the sectional curvatures of a Riemannian
manifold determine the curvature completely and the holomorphic sectional
curvatures of a Kaehler manifold determine the curvature completely, on a
Sasakian manifold the p-sectional curvatures determine the curvature com-
pletely. Moreover on a Sasakian manifold of dimension > 5 if at each point the
p-sectional curvature is independent of the choice of p-section at the point, it
is constant on the manifold and the curvature tensor is given by

RX,)Y)Z = CZ?’ (Y, Z2)X — (X, Z) Y}
+ (X, 02) oY — (V,02) X +2(X, V) 02

+ n(X)n(2)Y —n(Y)n(2)X
(3.5) + (X, Z)n(Y)¢ — (Y, Z) n(X)&}

forall X,Y,Z € TM. A Sasakian manifold of constant ¢-sectional curvature c
is called a Sasakian space form M (c).

A well known result of Tanno [26] is that a complete simply connected
Sasakian manifold of constant -sectional curvature c is isometric to one of
certain model spaces depending on whether ¢ > —3, ¢ = —3 or ¢ < —3. The
model space for ¢ > —3 is a sphere with a D-homothetic deformation of the
standard structure. For ¢ = —3 the model space is R*"! with the contact form
n=%(dz—Y" | y'dz’) together with the metric ds* = n@n+1 3"  ((dz?)?+



RICCI CURVATURE OF... 37

(dy%)?). For ¢ < —3 one has a canonically defined contact metric structure on
the product B™ x R where B" is a simply connected bounded domain in C™
with a Kaehler structure of constant negative holomorphic curvature. In par-
ticular Sasakian space forms exist for all values of ¢. For more details we refer
to [3].

4. RICCI CURVATURE OF SUBMANIFOLDS OF SASAKIAN SPACE FORMS

A submanifold M of an almost contact metric manifold M with the structure
(p,&,m,9) is said to be invariant if o(T'M) C T M. If the structure vector field
£ is tangent to the invariant submanifold M, then M inherits an almost contact
metric structure (p, £, n, g) by restriction. If M is an invariant submanifold of
a contact metric manifold, then £ € TM, o(X,€) = 0 and M is a minimal
contact metric manifold equipped with the induced structure (p,&,n,g). If

M is K-contact or Sasakian then the induced structure (p,&,m,9) on M is
K-contact or Sasakian respectively. An invariant submanifold of a Sasakian
manifold is also known as a Sasakian submanifold. For more details we refer
to [3].

Now, we need the following

Lemma 4.1. Let M be a submanifold of a K -contact manifold such that & €
TM. If p e M is a totally umbilical point, then p is a totally geodesic point,
and hence o(T,M) C T,M.

Proof. An almost contact metric manifold M is K-contact if and only if
(4.1) Vxé=—pX, XeTM,

where V is the Levi-Civita connection. Therefore, for a submanifold M of a
K-contact manifold such that £ € TM we have

(4.2) Vxé=-PX and o(X,6)=-FX

for all X € TM, where PX and FX are the tangential and the normal parts
of pX respectively. Let p € M be a totally umbilical point. Then, we get

H= <€7£>H = U(f,f) = _F£ = 07
which shows that ¢(X,Y) = 0 for all X,Y € T, M, that is, p is a totally
geodesic point. Since p is a totally geodesic point, therefore we have

0=0(X,§)=-FX
for all X € T M, which shows that ¢(T,M) C T, M. ad
Consequently, we have the following

Proposition 4.2. A totally umbilical submanifold of a K -contact manifold,
such that &€ € TM, is a totally geodesic invariant submanifold.

Now, we prove the following result.
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Theorem 4.3. Let M be an n-dimensional submanifold of a Sasakian space
form M(c) such that the structure vector field & is tangent to the submanifold
M. Then, the following statements are true.

(a) For each X € Ty M we have
(4.3) 4Ric(X) < n’||H|* +4(n 1)+ (c— 1) 3[|IPX|" + (n = 2)(1 = (X))},

(b) A wvector X € TI}M satisfies the equality case of (4.3) if and only if
(2.9) is true. If H(p) =0, then X € TI}M satisfies the equality case of
(4.3) if and only if X € N,.

(c) The equality case of (4.3) holds for all X € TI}M if and only if (T, M) C
T,M and p is a totally geodesic point.

Proof. If M is an n-dimensional submanifold of a Sasakian space form M (¢)
such that £ € TM, then in view of (3.5) we have

(44) Ric(r,pn)(X) = 10~ 1)(e+3) + (e~ D3 [PXIF ~ (- 2n(X)? -1}

for all X € T) M. Using (4.4) in (2.8) yields the inequality (4.3). Proof of (b)
is as usual. Next, in view of the statement (¢) of Theorem 2.1 and Lemma 4.1,
the statement (c) follows easily. O

The above Theorem is an improvement of Theorem 3.2 of [28].
__Let M be an n-dimensional invariant submanifold of a Sasakian space form
M(c). Then £ € TM, o(X,€) = 0 for all X € TM, and M is minimal [3].
Since M is invariant, we get
(4.5) IPX|P =1-n(X)?, X eT)M.
Using minimality condition and (4.5) in the inequality (4.3) we get
Theorem 4.4. Every totally geodesic invariant submanifold of a Sasakian
space form M (c) satisfies
(4.6) 4Ric(X)=4(n—1)+(c—1)(n+1) (1 - n(X)2) , X e TI}M.
Next, we prove the following
Theorem 4.5. A totally geodesic invariant submanifold of a Sasakian space
form M(c) is Einstein if and only if ¢ = 1.

Proof. Let M be an n-dimensional totally geodesic invariant submanifold of
a Sasakian space form M (c). If ¢ = 1, from (4.6) we see that M is Einstein.
Conversely, if M is Einstein, then for any X € Tle orthogonal to &, from (4.6)
it follows that

1
0 = Ric(X) — Ric(¢) = Z(C —1)(n+1),
which shows that ¢ = 1. O

It is well known that ([17], Lemma 1.2) if the second fundamental form o of
an invariant submanifold M of a Sasakian manifold is parallel, then M is totally
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geodesic. Now, we consider some well known results for invariant submanifolds

of a Sasakian space form as follows.

Theorem 4.6. Let M be a (2n + 1)-dimensional invariant submanifold of a
(2m+1)-dimensional Sasakian space form M (c). Then the following statements

are true.

(1) ([35], Proposition 1.3, p. 313) M is totally geodesic if and only if M is

of constant p-sectional curvature c.

(2) ([35], Theorem 1.2, p. 318) If M is compact, then either M is totally
geodesic, or ||o||> = (n+2)(c+3)/3, or at some pointp € M, ||o||” (p) >

(n +2)(c+3)/3.

(3) ([35], Theorem 1.4, p. 318) If M is n-Einstein invariant, then either

M is totally geodesic or ||o|” > n(c + 3).

(4) ([35], Theorem 1.6, p. 319) If M is of constant p-sectional curvature
k, and if ¢ > =3, then either M is totally geodesic or ¢+ 3 > 2(k + 3).
(5) ([35], Theorem 1.7, p. 319) If M is of constant p-sectional curvature
k, and if the second fundamental form o of M is n-parallel ([35], p.

314), that is,
(VWXg)(¢Y7¢Z)207 X7Y7Z€TM7
then either M is totally geodesic or ¢+ 3 = 2(k +3) > 0.

(6) ([35], Theorem 1.8, p. 319) If M is of constant p-sectional curvature
k, andm—n <n(n+1)/2, then M is totally geodesic (that is, k = c).
(7) ([35], Theorem 1.10, p. 325) Let M be of codimension 2 with n-parallel
Ricci tensor. If ¢ < —3, then M is totally geodesic. If ¢ > —3, then
either M is totally geodesic, or an n-Einstein manifold with ||o]|* =

n(c+ 3) and hence the scalar curvature T = n (n(c+ 3) — 2) /2.

(8) ([35], Theorem 1.11, p. 326) Let M be compact with codimension 2
and ¢ > —3. If the scalar curvature T of M is constant, then either M
is totally geodesic or an n-FEinstein manifold with the scalar curvature

T=n(n(c+3)—2)/2.

(9) ([17], Theorem 2.1) If M is compact, then either M is totally geodesic

or at some point p € M, ||o||”> (p) > (c(n + 2) + 3n)/3.

(10) ([17], Proposition 2.1) If M is with trivial normal connection, then we
have ¢ < 1 with equality condition if and only if M is totally geodesic

and n-Einstein.

(11) ([17], Theorem 3.1) If codimension of M is greater than two, then the

following two statements are equivalent :
(1) the normal connection of M is trivial, and
(ii) M is totally geodesic and ¢ = 1.

(12) ([31], Theorem 1) If M is compact with ¢ > —3 and p-sectional curva-

ture greater than (c —3) /2, then M is totally geodesic.

(13) ([31], Theorem 2) If M is complete (n > 2) with ¢ > —3 and sectional

curvature greater than (c + 3)/8, then M is totally geodesic.

In view of Theorem 4.4 and Theorem 4.6, we can state the following
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Corollary 4.7. Let M be a (2n + 1)-dimensional invariant submanifold of a

(2m + 1)-dimensional Sasakian space form M(c). Then M satisfies the equality
(4.6), that is,

4Ric(X)=4(n—1)+ (c—1)(n+ 1) (1—n(X)2), XETI}M,
if one of the following statements is true.

(1) M is of constant p-sectional curvature c.
(2) M is compact and satisfies ||o|” < (n + 2)(c + 3)/3.
(3) M is n-Einstein and satisfies ||o]|> < n(c + 3).
(4) M is of constant p-sectional curvature k such that 0 < c+3 < 2(k + 3).
(5) M is of constant @-sectional curvature such that m —n > n(n + 1) /2.
(6) M is of codimension 2 with n-parallel Ricci tensor and ¢ < —3.
(7) M is compact with codimension 2 and ¢ > —3 such that M is not an
n-Einstein manifold.
(8) M is compact and ||o]|* < (c(n + 2) + 3n)/3.
(9) M is with trivial normal connection and ¢ = 1.
(10) M is of codimension greater than two and with trivial normal connec-
tion.
(11) M is compact with ¢ > —3 and @-sectional curvature greater than
(c—3)/2.
(12) M is complete (n > 2) with ¢ > —3 and sectional curvature greater
than (c + 3)/8.
(18) The second fundamental form o is parallel.

Now, we recall the definition of almost semi-invariant submanifold [27] of an
almost contact metric manifold.

Definition 4.8. A submanifold M of an almost contact metric manifold . M
with £ € TM is said to be an almost semi-invariant submanifold of M if
there are k distinct functions Aq, ..., Ay defined on M with values in the open
interval (0, 1) such that T M is decomposed as P-invariant mutually orthogonal
differentiable distributions given by

TM=D'¢D°eD" &---& D" ¢ {¢},

where D = ker (F|{£}L)p, D) = ker (P|{£}L)p and

DX = ker (P2|{£}L + A2 (p)I)p, ief{l,... k).

If in addition, each \; is constant, then M is called an almost semi-invariant*
submanifold.

An almost semi-invariant submanifold becomes

(1) a semi-invariant submanifold ([1], [2]) if k£ = 0.

(2) an invariant submanifold if k = 0 and D° = {0}.

(3) an anti-invariant submanifold [2] if k = 0 and D} = {0}.
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(4) a 6-slant submanifold [5] if D' = {0} = D°, k = 1 and )\, is constant.
In this case, we have TM = D> @ {¢} and the slant angle 6 is given
by A1 = cos#.

(5) a semi-slant submanifold [4] if D* # {0}, D° = {0}, k = 1 and }; is
constant. In this case, we have TM = D' & DM @ {¢}, and the slant
angle 6 of the distribution DM is given by A\; = cos#.

(6) a bi-slant submanifold [4] if D' = {0} = D°, k = 2 and A\, A2 are
constant. In this case, we have TM = D> @ D*2 @ {¢}, and the slant
angles #; of the distributions D*¢ are given by \; = cos ;.

Thus, the definition of almost semi-invariant submanifold is the most logical
generalized definition. If M is an almost semi-invariant submanifold of an
almost contact metric manifold M, then for X € TM we may write

X=U'X+UX+UMX +---+UM™X 4+ n(X)¢,

where U', U°, UM, ..., U™ are orthogonal projection operators of TM on D',
DO, DM ... DM respectively. Then, it follows that

X1 = [0 X 4+ x| o X X 4 (0.

We also have

P’X = -U'X = )] (UMX) —-- = \} (UMX),
which implies that
47 |IPX|? =(PX,PX)=—(P°X,X)= > X [ x|

XE{L, A1, 0 )

In particular, if M is an n-dimensional #-slant submanifold, then A\? = cos? §
and we have

(48)  IPXIP =cos’d [UM X = cos”8 (IXIF ~n(X)*)
If X € T) M, then (4.8) becomes
(4.9) |PX]|]> = cos® 8 (1 —n(X)?) .

Moreover, if the unit vector X € TI}M is orthogonal to the structure vector
field &, then

(4.10) |PX|]” = cos? 6.
Now, from Theorem 4.3 we immediately have the following Corollary.

Corollary 4.9. Let M be an n-dimensional submanifold of a Sasakian space

form ]\7(0) such that the structure vector field £ is tangent to M. Then, the
following statements are true.

(a) If M is an almost semi-invariant submanifold, then for X € TI}M we
have

4Ric(X) < n?||H|* + 4(n — 1)
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@1) -1z S X+ m -2 -nX)?) ],
}\E{17)\1,...7)\k}
where U, UM ... UM are orthogonal projection operators of TM on
DL, DM, ..., D respectively.
(b) If M is a -slant submanifold, then for X € TI}M we have
(4.12) 4Ric(X) < n?||H|I>+4(n—1)+ (c—1) (3cos’ 0 +n —2) (1 — n(X)?) .
(c) If M is an anti-invariant submanifold, then for X € TI}M, we have
(4.13) 4Ric(X) < n?||H|? +4(n— 1) + (c—1)(n —2) (1 — n(X)?).

(d) The equality cases of (4.11), (4.12) and (4.13) are satisfied by X € Ty M
if and only if (2.9) is true. If H(p) = 0, then X € TI}M satisfies the
equality cases of (4.11), (4.12) and (4.13) if and only if X € N,.

Proof. Using (4.7) in the inequality (4.3) we get (4.11). Next, using (4.9) in

the inequality (4.3) we get the inequality (4.12). Putting # = 7/2 in (4.12) we
get (4.13). Rest of the proof is straightforward. O

Next, we have

Theorem 4.10. Let M be an n-dimensional submanifold of a Sasakian space
form M (c) such that the structure vector field & is tangent to the submanifold
M. Then, the following statements are true.

(a) For each unit vector X € {f}:‘ we have
(4.14) 4Ric(X) < n?[|H|]? 4+ (n — 1)(c + 3) + 3 ||PX|]> = 1)(c — 1).
(b) The equality case of (4.14) is satisfied by the unit vector X € {{}j if
and only if (2.9) is true. If H(p) = 0, then the unit vector X € {{}+
satisfies the equality case of (4.14) if and only if X € N,.

(c) The equality case of (4.14) holds for all unit vectors X € {f}é if and
only if o(Tp,M) C Ty,M and p is a totally geodesic point.

Proof. Put n(X) = 0 in (4.3) to get (4.14). Rest of the proof is similar. Of

course, one also uses the fact that (&, &) = 0. O
The following is an immediate Corollary of Theorem 4.10.

Corollary 4.11. Let M be an n-dimensional submanifold of a Sasakian space

form M(c) tangent to . Then, the following statements are true.

(a) If M is an almost semi-invariant submanifold, then for a unit vector
X € {S}pL we have

Rie(X) < ¢ {n?IH|” +(n—1)c+3)

(4.15) +13 > XX -t]e-1y,
Ae{l, A1, A}
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where U, UM ... UM are orthogonal projection operators of TM on
D', DM, ..., D respectively.
(b) The equality case of (4.15) is satisfied by a unit vector X € {f}f; if and

only if (2.9) is true. If H(p) = 0, then a unit vector X € {{}j satisfies
the equality cases of (4.15) if and only if X € N,.

Proof. By using (4.7) in (4.14) we get (4.15). Rest of the proof is straightfor-
ward. O

Now, we prove the following

Theorem 4.12. Let M be an n-dimensional submanifold of a Sasakian space
form M (c) tangent to &, and let X € {f};‘ be a unit vector. Then, the following
statements are true.

(a) If M is a proper 6-slant submanifold, then
(4.16)  Ric(X) < i {R?|H|” + (n = 1)(c+3) + (3cos’§ — 1) (c— 1)} .
(b) If M is anti-invariant, then
(4.17) Ric(X) < i (2 HIP + (= 1)(c+3) — (c— 1)}
(c) If M is invariant, then
(4.18) Ric(X) < i{(n— D(c+3)+2(c—-1)}
Proof. By using (4.10) in (4.14), for a unit vector X € {£}.- we get
(4.19)  Ric(X) < i {R|H|” + (n — 1)(c+ 3) + (3cos’d — 1) (c— 1)} .
Putting 6 = 7/2 in the inequality (4.19), for a unit vector X € {f}; we get

(4.20) Ric(X) < i (2 H|? + (0 = D(c+3) — (c— 1)},

(4.16). Putting 6 = 7/2 in the inequality (4.19) we get (4.20). If possible, let
equality case of (4.19) or (4.20) is satisfied by a unit vector X € {f}j. Then, it
follows that o (X, &) = 0, which in view of (4.2), gives F X = 0, a contradiction.
Thus, (4.16) and (4.17) are proved. Using minimality condition and § = 0 in
(4.19), we get (4.18). O

We also have the following

Corollary 4.13. (Theorem 3.6, [28]) Let M be an n-dimensional semi-invariant

submanifold in a Sasakian space form M(c). Then, the following statements
are true.

(a) For each unit vector X belonging to the invariant distribution D', we
have

(4.21) Ric(X) < i {(R|H|I”+(n+1)c+3n—5}.
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(b) For each unit vector X belonging to the anti-invariant distribution D°,
we have

(4.22) Ric(X) < i {R?|H|” + (n —2)c+ 3n — 2} .

(c¢) If H(p) =0, a unit vector X belonging to the invariant distribution D
satisfies the equality case of (4.21) if and only if X € N.

Remark 4.14. The inequality (4.14) is the corrected version of the inequality
(2.10) of Theorem 2.2 in [23], namely

Ric(X) < i {n2||H||2 +(n—=1)(c+3)+ %(3 IPX])* = 2)(c — 1)} .

The inequality (4.16) is the corrected version of the inequality (2.1) of Theo-
rem 2.1 in [13], namely

Ric(X) < i {7~L2||H||2 +(n—-1)(c+3)+ % (3cos®0 — 2) (¢ — 1)} )

The inequality (4.17) is the inequality (2.15) of Corollary 2.4 in [23] (or the
inequality (2.16) of Corollary 2.5 in [13]). The inequality (4.18) is the corrected
version of the inequality (2.14) of Corollary 2.3 in [23] (or the inequality (2.15)
of Corollary 2.4 in [13]), namely

Ric(X) < i {(n— 1)(c+3) + %(c— 1)}.

Remark 4.15. In view of the Statement (a) of Theorem 4.12, it follows that
the following are not feasible:

(1) Theorem 2.2 and Theorem 2.3 in [24],

(2) the statements (ii) and (iii) of Corollary 2.4 in [23] and

(3) the statements (ii) and (iii) of Theorem 2.1 in [13].

Remark 4.16. The inequalities (4.21) and (4.22) are the corrected version of
the inequalities (i) and (ii) of Corollary 2.5 in [23], namely

Ric(X) < i {112||H||2 +(m—1)(c+3)+ %(c— 1)} ,
and .
Ric(X) < 1 {R?|H|]” + (n — 2)c+3n — 2} .

5. RICCI CURVATURE OF C-TOTALLY REAL SUBMANIFOLDS

A submanifold M of an almost contact metric manifold is said to be anti-
invariant ([34], [35]) if o(TM) C T+M. A submanifold M in a contact mani-
fold is called an integral submanifold [3] if every tangent vector of M belongs to
the contact distribution defined by n = 0. In this case we have dn (X,Y") = 0;
X,Y € TM. An integral submanifold M in a contact metric manifold is called
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a C-totally real submanifold [33]. Thus C-totally real submanifolds of a con-
tact metric manifold are always anti-invariant. In particular, a C-totally real
submanifold of a Sasakian manifold is anti-invariant.

Now, we have the following Theorem.

Theorem 5.1. If M is an n-dimensional C-totally real submanifold of a
Sasakian space form M/(c), then the following statements are true.

(a) For X € TyM, we have
(5.1) 4Ric(X) < n?||H||? + (n — 1)(c + 3),

(b) The equality case of (5.1) is satisfied by X € T) M if and only if (2.9)
is true. If H(p) =0, X € Ty M satisfies equality in (5.1) if and only if
X eN,.

(c) The equality case of (5.1) holds for all X € TI}M if and only if either
p s a totally geodesic point or n = 2 and p is a totally umbilical point.

Proof. If M is an n-dimensional C-totally real submanifold, then we have

(5.2) ARicir,an(X) = (n—1)(c+3), X eTIM.
Using (5.2) in (2.8), we find the inequality (5.1). Rest of the proof is straight-
forward. 0

By polarization, from Theorem 5.1, we derive

Theorem 5.2. Let M be an n-dimensional C-totally real submanifold of a
Sasakian space form M (c). Then the Ricci tensor S satisfies

(53) S< IHIP + (= 1)(c+3) g,

where g is the induced Riemannian metric on M. The equality case of (5.3) is
true if and only if either M is a totally geodesic submanifold or n = 2 and M
is a totally umbilical submanifold.

Remark 5.3. The inequality (5.1) is the same as the inequalities (i) of The-
orem 1 in [21], (2.1) of Theorem 2.1 in [23] and (2.1) in Theorem 2.1 in [22].
The inequality (5.3) is same as the inequalities (9) in the Theorem 3.1 in [19]
or [18], (2.9) in Theorem 2.2 in [22] and the inequality in Theorem 2 in [21]).

The maximum Ricci curvature function on a Riemannian manifold M, de-
noted Ric, is defined as [10]

Ric(p) = max {Ric(X) | X € T M} .

B.-Y. Chen ([10], Theorem 2) proved an inequality for maximum Ricci curva-
ture Ric for Lagrangian submanifolds of complex space forms, and proved that
in the equality case, the Lagrangian submanifolds must be minimal. Here, we
prove the following
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Theorem 5.4. Let M be an n-dimensional C-totally real submanifold of a
(2n + 1)-dimensional Sasakian space form M (c). If a unit vector of TpyM sat-
isfies the equality case of (5.1), then H (p) = 0.

Proof. Choose an orthonormal basis {e1, ..., e,} of T, M such that e; satisfies
the equality case of (5.1). Then, {e,t1,...,€2n,€2,+1 = &} is an orthonormal
basis of T;-M such that enq; = ej, j € {1,...,n}. It is known that [34] if
M is a C-totally real submanifold of a Sasakian manifold, then A, = 0 and
A,xY = A,y X for X,Y € TM. Using these two facts alongwith (2.9), for
any Y =370 ajenyj +af € T;-M, we have

(o(er,e1),Y) = 01<U(€1a€1) wer)

+ Za] 61,61 §D€j>+(1<0(61,61),£>
Jj=2

= <Z o(ej,e;) 4,061>+Za] (e1,e1),pe;) +0

Jj=2

= alz ole1,e;),e;) +ZaJ o(e1,ej), per)

j=2
= 0+0:0.

Hence in view of (2.9), H (p) = 0. O

Consequently, we have the following (see also Theorem 4.1 of [19, 18] or
Theorem 3.1 of [22]).

Theorem 5.5. Let M be an n-dimensional C-totally real submanifold of a
(2n + 1)-dimensional Sasakian space form M(c), then

(5.4) Ric < 1 {n?1H|? + (0~ 1)(c+3)}

If M satisfies the equality case of (5.4) identically, then M is a minimal sub-
manifold and

(5.5) Ric = 4(n — 1)(c + 3).
Combining Corollary 3 of [21] and Corollary 3.2 of [22], we have

Theorem 5.6. Let M be an n-dimensional C-totally real submanifold of a
(2n + 1)-dimensional Sasakian space form M (c). Then M satisfies the equality
case of (5.4) identically if and only if dim(N,) > 1. If dim(N}) is a positive
constant, then N, is integrable and its leaves are totally geodesic, that is, N,
is foliated by totally geodesic submanifolds.

For minimal C'-totally real submanifold of maximum dimension of a Sasakian
space form M (c), the following are also known.
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Theorem 5.7. (Theorem 4.2, [19, 18]) Let M be an n-dimensional minimal

C-totally real submanifold of a (2n+1)-dimensional Sasakian space form M (c).
Then the following statements are true.

(1) The submanifold M satisfies the equality case of (5.4) if and only if
dim(N,) > 1.

(2) If dim(N)) is a positive constant d, then N, is completely integral dis-
tribution and M is d-ruled, that is, for each p € M, M contains a d-
dimensional totally geodesic submanifold M' of M(c) passing through

D.

(3) If the submanifold M is also ruled, then it satisfies the equality case of
(5.4) identically if and only if, for each ruling M' in M, the normal
bundle T+M restricted to M' is a parallel normal subbundle of the
normal bundle T+M' along M'.

6. SCALAR CURVATURE OF SUBMANIFOLDS
We begin with the following

Proposition 6.1. For an n-dimensional submanifold M of a Riemannian
manifold at each point p € M, we have

1 ~
(6.1) T@)S§WHHW+TUWW)
with equality if and only if p is a totally geodesic point.

Proof. The proof follows from (2.7). O

Now, we state the following algebraic Lemma without proof.

Lemma 6.2. If ay,...,a, are n (n > 1) real numbers then

n 2 n
(6.2) %(Zm)éﬁﬁ?
i=1 i=1

with equality holding if and only if a1 = a2 = --- = ap.
Then using Lemma 6.2 we improve the inequality (6.1). In fact, we have

Theorem 6.3. For an n-dimensional submanifold M in an m-dimensional
Riemannian manifold, at each point p € M, we have

nn-—1
(63) r(p) < M0
with equality if and only if p is a totally umbilical point.

IH | +7 (T,M)

Proof. We choose an orthonormal basis {ey, ..., e, €pt1, ..., €m } at p such that
€1, ..., ey, are tangential to M at p, {€n+1,...,€m } normal to M at p and e, 41 is
parallel to the mean curvature vector H(p) and e, ..., e,, diagonalize the shape
operator A.,,,. Then the shape operators take the forms

(6.4) A n+l _n+l n+1

enH:dlag(on 309 ey Oprt ),
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n
(6.5) Ao, = (0];), traced,, =) o5, =0

i=1
forallé,j=1,...,nand r =n+2,...,m; and from (2.7), we get

n

(6.6) 27 (p) = 27 (T,M) +n? |H|? = 3 (o7 Z Z op)’

i=1 r=n+2i,j=1
Using Lemma 6.2, we get
(6.7) n||H|” < Z i)
In view of (6.6) and (6.7), we have
n(n—1) 2~ I & e
68) o)< TEEHP R @M -5 S S o)
r=n+21i,j=1

which implies (6.3). If the equality in (6.3) holds, then from Lemma 6.2 and
(6.8) it follows that

n+1 n+l __ _ n+l _ _
o1 =04, =--=o0, and A, =0, r=n+2,..,m

Therefore, p is a totally umbilical point. The converse is straightforward. O

For each integer k,2 < k < n, the Riemannian invariant 6 on an n-
dimensional Riemannian manifold M is defined by [11]

(6.9) O (p) = <ki1> 1nf Ricm, (X), p€e M,

where I}, runs over all k-plane sections in T, M and X runs over all unit vectors
in IIx. We denote by II;, . ; the k-plane section spanned by e;,, ..., €;, . From
(2.1) and (2.2), it follows that

1 .
(6.10) T(Lil--.ik) = 5 ' Z ' R‘ICLil...ik (ei)a
t€{i1,. ik}
and
1
(6.11) 7(p) = o2 Z T (Liy...iy ) -
k=2 1<ii<<ix<n

Combining (6.9), (6.10) and (6.11), one obtains

(6.12) 7(p) > wﬁk(p)-

In view of the equations (6.3) and (6.12), we have the following relation-
ship between the Riemannian invariant 6 and the squared mean curvature for
submanifolds of a Riemannian manifold.
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Theorem 6.4. Let M be an n-dimensional submanifold of a Riemannian man-
ifold. Then, for each integer k, 2 < k < n, and every point p € M, we have

(6.13) 01 (p) < |H|* + 7 (T, M),

where Ty (T M) is the normalized scalar curvature of the n-plane section T, M
in the ambient submanifold.

Now, we study scalar curvature of submanifolds of Sasakian space forms. In
fact, we have the following

Theorem 6.5. Let M be an n-dimensional submanifold of a Sasakian space
form M(c), such that the structure vector field £ is tangent to M. Then at each
point p € M, we have

(6.14)

n(n —1)
r(p) < 2D

1
HHIP + 2 {3 =DIPIP +(n = 1) (= 2De+3n+2)}.
with equality if and only if p is a totally umbilical point.
Proof. Let {ei,...,e,} be an orthonormal basis of the tangent space T),M.

The squared norm of P at p E/\]\/I is defined to be ||P||2 = 2?,3:1 (Pei,ej)Q_
Then, using 27 (T, M) = Y1, Riciz, ) (e;) in (4.4), we get

6.15)  F(T,M) = é {3(c=DIIPI + (0~ D)1~ +3n+2)}.
Using (6.15) in (6.3) gives (6.14). O

In view of (6.15), the equation (2.7) becomes
(6.16)

1
2r(p) = n? [ H|* = [loll’ + 7 {3(c = D IPIF + (n = )((n = Dc +3n +2)}
Next, using (6.15) in (6.13) gives the following

Theorem 6.6. Let M be an n-dimensional submanifold of a Sasakian space
form M(c) such that € € TM. Then, for each integer k, 2 < k < n, and every
point p € M, we have

3(c—1)

617 6e@) < MHIF + o 1P+ - {(n=2)c+3n+2}.

n(n
Now, we give following two Corollaries.

Corollary 6.7. Let M be an n-dimensional invariant submanifold of a Sasakian
space form M(c). Then the following statements are true.

(a) At each point p € M it follows that
n—1
8
with equality if and only if p is a totally umbilical point.

(6.18) 7(p) < {3(c=1)+ (n—2)c+3n+2}.
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(b) For each integer k, 2 < k < n, and every point p € M, we have
1
(6.19) 0 (p) < E{?)(c— 1)+ (n—2)c+3n+2}.

Proof. Using ||P|> =n —1 and ||[H|]> = 0 in (6.14) and (6.17) gives (6.18)
and (6.19) respectively. O

Corollary 6.8. Let M be an n-dimensional anti-invariant submanifold of a
Sasakian space form M(c) such that & is tangent to M. Then the following
statements are true.

(a) At each point p € M it follows that

—1 1
(6.20) 7(p) < % IHI? + 5 {(n = 2)e +3n + 2}
with equality if and only if p is a totally umbilical point.
(b) For each integer k, 2 < k < n, and every point p € M, we have

(6.21) 0, (p) < [|H| + %{(n—2)c+3n+2}.

Proof. Using P = 0 in (6.14) and (6.17) gives (6.20) and (6.21) respectively.
a
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