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ABsTRACT. For any h € N, a graph G = (V, E) is said to be h-magic if
there exists a labeling [ : E(G) — Z; — {0} such that the induced
vertex set labeling I :V(G) — Z, defined by

Fy=" > i(uw)
wv€E(G)

is a constant map. For a given graph G, the set of all h € Z 1 for which
G is h-magic is called the integer-magic spectrum of G and is denoted
by IM(QG). In this paper, the integer-magic spectra of certain classes of
cycle related graphs will be determined.
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1. INTRODUCTION

In this paper all graphs are connected, finite, simple, and undirected. For an
abelian group A, written additively, any mapping [ : E(G) — A — {0} is
called a labeling. Given a labeling on the edge set of G one can introduce a
vertex set labeling [t :V(G) — A by

It(v) = Z l(uv).
weE(G)
A graph G is said to be A-magic if there is a labeling ! : E(G) — A — {0}
such that for each vertex v, the sum of the labels of the edges incident with v
are all equal to the same constant; that is, [T(v) = ¢ for some fixed ¢ € A.
In general, a graph G may admit more than one labeling to become A-magic;
for example, if |A] > 2 and [ : E(G) — A — {0} is a magic labeling of G
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with sum ¢, then [ : E(G) — A — {0}, the inverse labeling of 1, defined by
[(uv) = —l(uv) will provide another magic labeling of G with sum —c. A graph
G = (V,E) is called fully magic if it is A-magic for every abelian group A.
For example, every regular graph is fully magic. A graph G = (V, E) is called
non-magic if for every abelian group A, the graph is not A-magic. The most
obvious class of non-magic graphs is P, (n > 3), the path of order n. As a
result, any graph with a pendant path of length n > 3 would be non-magic.
Here is another example of a non-magic graph: Consider the graph H Figure 1.
Given any abelian group A, a typical magic labeling of H is illustrated in that

FIGURE 1. An example of a non-magic graph.

figure. Since [*(u) = z # 0 and [T (v) = 0, then H is not A-magic. This fact
can be generalized as follows:

Observation 1.1. Every even cycle C,, with 2k+1 (< n) consecutive pendants
is non-magic.

Observation 1.2. Every odd cycle C,, with 2k (< n) consecutive pendants is
non-magic.

Certain classes of non-magic graphs are presented in [1].
The original concept of A-magic graph is due to J. Sedlacek [9, 10, 11], who
defined it to be a graph with a real-valued edge labeling such that

(1) distinct edges have distinct nonnegative labels; and
(2) the sum of the labels of the edges incident to a particular vertex is the
same for all vertices.

Jenzy and Trenkler [3] proved that a graph G is magic if and only if every
edge of G is contained in a (1 — 2)-factor. Z-magic graphs were considered by
Stanley [12, 13], who pointed out that the theory of magic labeling can be put
into the more general context of linear homogeneous diophantine equations.
Recently, there has been considerable research articles in graph labeling, in-
terested readers are directed to [2, 14]. For convenience, the notation 1-magic
will be used to indicate Z-magic and Z-magic graphs will be referred to as
h-magic graphs. Clearly, if a graph is h-magic, it is not necessarily k-magic

(h # k).

Definition 1.3. For a given graph G the set of all positive integers h for
which G is h-magic is called the integer-magic spectrum of G and is denoted
by IM(G).
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Since any regular graph is fully magic, then it is h-magic for all positive integers
h > 2; therefore, IM(G) = IN. On the other hand, the graph H, Figure 1, is
non-magic, hence IM(H) = (. The integer-magic spectra of certain classes of
graphs resulted by the amalgamation of cycles and stars have already been
identified [4], and in [5] the integer-magic spectra of the trees of diameter at
most four have been completely characterized. Also, the integer-magic spectra
of some other graphs have been studied in [6, 7, §].

In the following sections the integer-magic spectra of certain classes of cycle
related graphs will be determined. There are different classes of cycle related
graphs that have been studied for variety of labeling purposes. J. Gallian [2]
has a nice collection of such graphs. First, two useful observations:

Observation 1.4. Suppose G has a magic labeling in Z}, such that the sum
of labels adjacent with all vertices is ¢ < h. Then G is k-magic for all k > h.

Observation 1.5. If a graph G has a Z-magic labeling ¢ : E(G) — Z and
k € IN does not divide £(e) for every e € E(G), then G is k-magic.

Observation 1.6. In any magic labeling of of a cycle the edges should alter-
natively be labeled the same elements of the group.

Proof. Let ui, us, us, and uyg be the four consecutive vertices of a cycle. The
requirement of l(ujus) + l(usus) = l(usus) + I(uszuy) implies that I(ujuz) =
[(usuy). O

2. WHEELS
Wheels are defined to be W), = C), + K1, where C,, is the cycle of order n > 3.
Theorem 2.1. Ifn > 3, then IM(W,,) = IN — {1+ (—-1)"}.

Proof. We will consider two cases:

Case 1. n = 2k + 1 is odd. We observe that the degree set of Wy is
{3,2k + 1}, hence it is h-magic for all even numbers h; we simply label all the
edges by h/2. Also, if h > k, then we label all the cycle edges by k and spokes
by 1. This is a magic labeling of Wag1 with sum n = 2k + 1.

Now, we may assume that h is odd and is at most k. If ged(k, h) = 4§, 1 < § < h,
then we label the cycle edges by ¢ and spokes by x, where x is the nonzero
solution of the equation kz = ¢ (mod h). This provides a magic labeling of
Wag+1 with sum z + 26.

Finally, if h|k, we label h + 1 consecutive spokes by 1 and the rest of them by
h — 1. For cycle edges, we label those that are adjacent to the spokes labeled
h —1 by 1 the remaining by h — 1 and 1, alternatively. This would be a magic
labeling of Wagy1 with sum 1. Therefore, Wy is h-magic for all A > 1; that
is IM(W2k+1) =IN.

Case 2. n = 2k is even. We observe that the degree set of Wy, is {3, 2k},
hence it cannot be 2-magic. Next we label all the spokes by z and the cycle
edges by a,b, alternatively. The requirement of having the same number for
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the sum of the edges incident with vertices will provide the equation
(2.1) 2k—1Lz=a+b (mod h).

If gcd(2k — 1, h) = 6 > 3, then we choose a = 1, b = —1, and = = h/J. this
would be a magic labeling of Wy, with sum =z.

If ged(2k — 1, h) = 1, then we choose a = b = 1 and notice that the equation
(2k—1)z = 2 (mod h) has a nonzero solution for z. We label all the spokes with
this z, the result is a magic labeling of Wy in Zj with sum 2 + 2. Therefore,
IM (W) = IN — {2} O

3. FANS

If we join a vertex of C,, to all other vertices, the resulting graph is called Fan,
also known as shell, and is denoted by F,,. Let uy, us, --- ,u, be the vertices of
C,, and let u; be the vertex that is connected to all other vertices, as illustrated
in Figure 2.

Uy

U \% U
U1 2

FIGURE 2. The fan F, (n = 8).

The degree set of F, is {2,3,n — 1}, hence it is not 2-magic. For n = 3, we
notice that F3 = Cs5, which is totally magic and IM (F3) = IN. Also, a typical
magic labeling of Fy 22 K4 — e is illustrated in Figure 3, for which we require
that a+b—2z = a+bor 2z =0 (mod h); that is, h has to be even. On the other
hand, if h = 2r, then F} is 4-magic (Figure 3). Therefore, IM (Fy) = 2IN —{2}.

r+1 r+1

FIGURE 3. A typical magic labeling of F}.

From now on we will assume that n > 5.

N —{2,3} if n=7,

Lemma 3.1. Ifn =2k+1>5, then IM(F,) = { N — {2} otherwise



INTEGER-MAGIC SPECTRA OF CYCLE RELATED GRAPHS 57

Proof. First we observe that for any h > k, the fan F5;41 is h-magic. To show
this, we consider the following labels l(uju2) = l(uiuyn) = 1=k, I(uiu;) = 1 for
all 1 < i < n, and the remaining cycle edges by k — 1, —k, alternatively, with
l(ususz) = 1 — k. This is a magic labeling with the sum [ (u;) = 0. If h = F,
then label the two edges ujus and uju, by 3 and all other edges by 1. This is
also a magic labeling with sum 4. Now, we may assume that h < k and label
the edges of F), as illustrated in Figure 4.

F1GURE 4. A typical magic labeling of F7.

For this labeling we require (2k — 2)x +2a = a + b (mod h) or

(3.1 2(k—1)x=b—a (mod h).

If ged(h,k — 1) = § > 1, we choose z = h/d, a = b # x, which would provide
a magic labeling in Z, with sum 2a; because, It (u1) = 2(k — 1)h/d + 2a = 2a
(mod h). Finally, if gcd(h, k — 1) = 1, we choose z to be the nonzero solution
of the equation (k — 1)z =1 (mod h), a # z, and b = a + 2. This provides a
magic labeling of F,, with sum 2a + 2 provided h # 3. O
N —{2} i 3[(k—1);

IN —{2,3} otherwise.
Proof. First we try the labeling illustrated in Figure 5, for which we require
2(k — 1)z =0 (mod h). If h = 2r > 4 is an even number, we choose x = r.
This provides a magic labeling with sum r + 2.

Lemma 3.2. If n =2k > 6, then IM(F),) = {

FIGURE 5. One possible magic labeling of Fs.

If ged(h,k —1) = 6 > 1, we choose & = h/§, which would provide a magic
labeling in Z, with sum I*(u;) =2+ 2z + (2k—3)h/6 =2+ z+2(k—1)h/6 =
2+ z (mod h).
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Now, we may assume that h is odd and ged(h, k—1) = 1. Consider the labeling
illustrated in Figure 6.

FIGURE 6. A typical magic labeling of Fig.

We have the option of labeling none, two, or four consecutive chords by ¥, which
will produce the equations (k — 1)z =0 (mod h), y + (k — 2)xz = 0 (mod h),
and 2y + (k — 3)x = 0 (mod h), respectively. Since ged(k — 2,k — 3) =1, then
ht(k—2)orht(k-23).

If bt (k—2), then let ged(h, k—2) = d. Choose y = —4d and let = be the nonzero
solution of the equation (k — 2)z = § (mod h), and a # z,y. This would be a
magic labeling of Fy; with sum 2a.

If bt (k — 3), then let ged(h,k — 3) = 6. Choose y = —24 and let z be the
nonzero solution of the equation (k¥ — 3)z = 2§ (mod h), and a # x,y. This
would be a magic labeling of F5;, with sum 2a. Finally, since Z3 has only two
nonzero elements, we only have the option z = y and the equation (k—1)z =0
(mod 3), which would be true if and only if 3|(k — 1). O

4. CYCLES WITH A P, CHORD

A cycles with a Py, chord is a cycle with the path Py joining two nonconsecutive
vertices of the cycle. Since the degree set of these graphs is {2, 3}, they are not
2-magic. Based on Observation 1.6, it is enough to consider the cases when
k = 2,3. The chord P, splits C,, into two subcycles. Depending on the number
of edges of these subcycles, we will have different results. The next lemma is
about cycles with a P, chord:

Lemma 4.1. Let G, be the cycle C,, with a P, chord. Then
N — {2} both subcycles are even,
IM(Gn2) =< 2IN — {2}  both subcycles are odd,
IN — {2,3} otherwise.

Proof.

Based on the observation 1.6, it is enough to consider C3 and C, as the two
subcycles.

Case 1. Both subcycles are even. The labeling illustrated in Figure 7, proves
that G, 2 is h-magic for all h > 3.
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FIGURE 7. G, 2 consists of two even subcycles.

Case 2. Both subcycles are odd. The typical labeling of G, 2 in Z}, is
illustrated in Figure 8. The requirement a+z+d=c+dand b+z+c=c+d
imply that c=a+ z and d = b+ z. Also, a + b = ¢ + d will result to 2z = 0
(mod h) or 2|h. On the other hand, if h = 2r, then the choice of z =7, a =1,
and b = —1 provides a zero sum result. Therefore, IM (G, 2) = 2IN — {2}.

FIGURE 8. G2 consists of two odd subcycles.

Case 3. Subcycles have different parities. The typical labeling of G, 2 in Z,
is illustrated in Figure 9. The condition a + z + z = a + y + z implies z = y.
Also, the requirements a + z + x = 2z will result to 2z = — a and b = 2z — a.
Therefore, given ¢ € Zp — {0}, we need another nonzero element a # z, 2z,
hence h > 4. Therefore, the integer-magic spectrum of such graphs would be
N —{2,3}. O

FIGURE 9. G, 2 consists of one odd and one even subcycles.

Corollary 4.2. Let Gy, o1, be the cycle C,, with a Psy, chord. Then
N — {2} both subcycles are even,

IM(Gpnor) =< 2IN —{2}  both subcycles are odd;
IN —{2,3} otherwise.

Lemma 4.3. Let G, 3 be the cycle C,, with a P3 chord. Then
N - {2} both subcycles are even;
IM(Gn3) =< IN —{2,3} both subcycles are odd,
2IN — {2}  otherwise.
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Proof.

Based on the observation 1.6, it is enough to consider Cy and C; as the two
subcycles.

Case 1. Both subcycles are even (Cy). The labeling illustrated in Figure 10,
shows that G, 3 is h-magic for all h > 3; that is, IM (G, 3) = IN — {2}.

FIGURE 10. G, 3 consists of two even subcycles.

Case 2. Both subcycles are odd (C5). The typical magic labeling of G, 3 in
Z, is illustrated in Figure 11, which has sum 2x. Here, given x € Z}, one
needs another nonzero element a # x, —z. Hence, the graph cannot be 3-magic,
and its integer-magic spectrum is IN — {2, 3}.

2z-a

F1GurE 11. G, 3 consists of two odd subcycles.

Case 3. Subcycles have different parities. The typical magic labeling of G, 3 in
Z p, is illustrated in Figure 12. For the graph to be h-magic, we need 3a+c+x =
a+c+zor2a=0 (mod h); that is, h is even and the integer-magic spectrum
of the graph would be 2IN — {2}. O

FIGURE 12. G, 3 consists of one odd and one even subcycles.
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Corollary 4.4. Let Gy 2141 be the cycle C), with a Pyy41 chord. Then
N — {2} both subcycles are even,

IM(Gport1) =< IN—{2,3} both subcycles are odd,
2IN — {2}  otherwise.

5. n-GON BOOKS

When k copies of C,, share a common edge, it will form an n-gon book of k
pages and is denoted by B(n,k). In this section, the integer-magic spectrum
of B(n, k) will be determined. Again, using the observation 1.6, we will only
consider the two cases n = 3,4.

Theorem 5.1. IM(B(2n,k)) = IN — {1+ (—1)¥}. Also,

[ IN—{d>1:d|(k-2)} k is odd ;
IM(B(2n+1,k))—{ N—-{d>1:d=2, ordis odd and d|(k —2)} k is even.

Proof. As before, depending on whether n is even or odd it will be enough to
consider Cy and Cj, respectively. If n is even and k is odd, we will label the
common edge by —1 and top edges 1, —1 alternatively. This provides a magic
labeling with sum 0.

If n and k are both even, we will label the common edge by —1 and one top
edge by 2 the remaining top edges —1, 1 alternatively. This will produce a
Zero sum.

Suppose n is odd. We will label the common edge by z and the edges of the
it" cycle by a;, b;, as illustrated in Figure 13. Since the sum of the labels of
the edges at the two vertices of the common edge should be the same, we will
end up with the following set of equations:

U

Wi wy

FIGURE 13. A typical labeling of B(3,k).

(51) a;+b; = a1 +b (mod h),
k

(5.2) z+ Zai = a1 +b (mod h);
i=1
k

(5.3) 2+ > b = ar+b (modh).
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From (5.2)and (5.3) we get > (a; — b;) = 0; one option would be a; = b; =1
with the choice of z = 2 — k. Then [T(u) = [T(v) = 2 (mod h), provided
ht (k —2). Therefore, for any h > 2, if h t (k — 2), then h € IM(B(3,k)).
Now suppose h|(k — 2). From (5.1) we get 2> a; = k(a1 +b1) = 2(a1 + by)
(mod h), which together with (5.2) and (5.3) imply 2z = 0 (mod h). For odd
values of h, this would be z = 0, not an acceptable label and the graph is not
h-magic.

If h = 2r is even, then B(3, k) would be h-magic; the choices z =r, a; =7 + 1,
and b; = 1 will provide a magic labeling of the graph in Z; with the sum
IT(u) =k(r+1)+r=r+2 (mod h).

T+1 u r+1

v

FIGURE 14. A magic labeling of B(3,k), when h = 2r and
hl(k —2).

Finally we observe that when k is even, the degrees of vertices do not have the
same parity and the book is not 2-magic. O

6. SUGGESTIONS FOR FURTHER RESEARCH

Note that wheels and fans can be described by the join operation W,, = C,, +v
and F, = P,_1 + v, even the triangular book B(3,k) can be described by
ST (k) + v, where ST(k) = K(1,k) is the star with k leaves. It would be
natural to establish a relationship between IM(G) and IM (G + v).

Problem 6.1. Given two graphs G; and Gs, find a relationship between
IM(Gl), IM(GQ) and IM(Gl + GQ)

Also, note that IM(G) C IM(G x K;). Here, equality may not occur; for
example, if G = Ps, then IM (P;) = (), while IM (Ps x P») = IN —{2}. However,
if G is a regular graph, then IM(G) = IM(Gx P;) = --- = IM (G xQy,), where
@, is the hypercube (or n-cube).

Problem 6.2. Characterize the graphs for which IM(G) = IM (G x P).

Clearly, if the graphs G and H are h-magic, then so is G x H, their Cartesian
products, which implies that IM (G)NIM(H) C IM(G x H). Here, again the
equality may not occur, as can be verified for G = P3, which leads us to the
following problem:

Problem 6.3. Characterize the graphs for which
(6.1) IMG)NIM(H)=IM(G x H).



(1]
2]
(3]
(4]
(5]

[6]
7]
(8]
(9]

[10]
(11]

(12]
(13]

[14]

INTEGER-MAGIC SPECTRA OF CYCLE RELATED GRAPHS 63

REFERENCES

G. Bachman and E. Salehi, Non-Magic and K-Nonmagic Graphs, Congressus Numer-
antium 160 (2003), 97-108.

J. Gallian, A Dynamic Survey in Graphs Labeling (ninth edition), Electronic Journal
of Combinatorics (2005).

S. Jezny and M. Trenkler, Characterization of Magic Graphs, Czechoslovak Mathemat-
ical Journal 33 (108), (1983), 435-438.

S-M Lee, E. Salehi, Integer-Magic Spectra of Amalgamations of Stars and Cycles, Ars
Combinatoria 67 (2003), 199-212.

S-M Lee, E. Salehi, and H. Sun, Integer-Magic Spectra of Trees with Diameter at most
Four, Journal of Combinatorial Mathematics and Combinatorial Computing 50 (2004),
3-15.

S-M Lee and H. Wong, On Integer-Magic Spectra of Power of Paths, Journal of Com-
binatorial Mathematics and Combinatorial Computing 42 (2002), 187-194.

R.M. Low and S-M Lee, On the Integer-Magic Spectra of Tessellation Graphs, Aus-
tralasian Journal of Combinatorics 34 (2006), 195-210.

E. Salehi and S-M Lee, Integer-Magic Spectra of Functional Extension of Graphs, to
appear in the Journal of Combinatorial Mathematics and Combinatorial Computing.
J. Sedlacek, Theory of Graphs and Its Application (Problem 27), Proc. Symposium
Smolenice, June (1963), 163-167.

J. Sedlacek, On Magic Graphs, Math. Slov. 26 (1976), 329-335.

J. Sedlacek, Some Properties of Magic Graphs, in Graphs, Hypergraph, Bloc Syst. 1976,
Proc. Symp. Comb. Anal. Zielona Gora (1976), 247-253.

R.P. Stanley, Linear Homogeneous Diophantine Equations and Magic Labelings of
Graphs, Duke Mathematics Journal 40 (1973), 607-632.

R.P. Stanley, Magic Labeling of Graphs, Symmetric Magic Squares, Systems of Param-
eters and Cohen-Macaulay Rings, Duke Mathematics Journal 40 (1976), 511-531.
W.D. Wallis, Magic Graphs, Birkhduser Boston 2001.



