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Abstract. In this paper, it is shown that by exploiting the explicit para-
metric state feedback solution, it is feasible to obtain the ultimate solution
to minimum sensitivity problem. A numerical algorithm for construction
of a robust state feedback in eigenvalue assignment problem for a control-

lable linear system is presented. By using a generalized parametric vector
companion form, the problem of eigenvalue assignment with minimum

sensitivity is re-formulated as an unconstrained minimization problem.

The derived explicit expressions of the solutions allow minimization of
the sensitivity problem by using a powerful search technique.
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1. Introduction

Sensitivity minimization of the state feedback controllers has received
considerable attention in recent years by many authors, for example,
see [1 − 5] and [9 − 12]. It is well established that the condition num-
ber of the closed-loop eigenvector matrix should be kept as small as
possible [3], i.e. minimum, in order to minimize the sensitivity of the
closed-loop system to unwanted perturbations of the system parameters
which may arise from aging. At the same time, it is desirable to keep
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2 KARBASSI,SOLTANIAN

the transient response of the closed-loop system satisfactory. However,
these two objectives are conflicting and each require different numerical
treatment. Indeed, a parameterized state feedback controller is needed
for a constructive investigation into these aspects of the work.

Different methods of parametric eigenvalue assignment for multi-input
systems have been established. Most recently implementation of vector
companion forms [6 − 8] have been proposed. An important advantage
of this latter method is the explicit parametric solution which makes it
attractive for mathematical operations. In addition, the methods of [7]
and [8], does not involve eigenvectors in obtaining the parametric state
feedback matrix, nor it does require a prior knowledge of the open-loop
eigenvalues and any restriction on the nature and multiplicity of the
desired eigenvalues. But most of the other methods produce implicit
parametric controllers with non-linear parameters.

In this respect, a new efficient computational algorithm for minimizing
the sensitivity of the closed-loop eigenvector matrix in arbitrary eigen-
value assignment is presented. This algorithm is an extension of the al-
gorithm proposed in [8] and is based on elementary similarity operations
which lead to parametric vector companion forms [6− 7]. The problem
of minimizing the condition number of the closed-loop eigenvector ma-
trix and other measures of robustness using the explicit parametric state
feedback matrix are dealt with in detail.

2. Problem statement

Consider a controllable linear time-invariant system defined by the
state equation

(2.1) ẋ(t) = Ax(t) + Bu(t),

or its discrete-time version

(2.2) x(t + 1) = Ax(t) + Bu(t),

where x(t) ∈ IRn, u(t) ∈ IRm and the matrices A and B are real constant
matrices of dimensions n×n and n×m respectively, with rank(B) = m.
The aim of eigenvalue assignment in view of minimum sensitivity to
small perturbations in the parameters is to design a state feedback con-
troller, K, producing a closed-loop system with a satisfactory response
by shifting controllable poles from undesirable to desirable locations in
such a manner that a small change in system parameters will produce a
negligible change in the eigenvalue spectrum. Karbassi and Bell [6− 7]
have introduced an algorithm for obtaining an explicit parametric con-
troller matrix K by performing similarity operations on the controllable
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pair (B,A). In fact K is chosen such that the eigenvalues of the closed-
loop system

(2.3) Γ = A + BK,

lie in the self conjugate eigenvalue spectrum Λ = {λ1, λ2, ..., λn}. Re-
cently, Karbassi and Tehrani [8] extended the previous results as to
obtain an explicit formula involving nonlinear parameters in the con-
trol law. Now a similar approach is presented in this paper to obtain
a controller gain matrix K such that the sensitivity of the closed-loop
system to small perturbations in the system variables is minimized. In
the next section, the state feedback controller proposed by Karbassi and
Tehrani [8] is briefly reviewed and then the minimization of sensitivity
is enhanced by using a powerful search technique.

3. Synthesis

Consider the state transformation

(3.1) x(t) = T ˜x(t),

where T can be obtained by elementary similarity operations as de-
scribed in [7]. In this way, Ã = T−1AT and B̃ = T−1B are in a compact
canonical form known as vector companion form:

(3.2) Ã =
[

G0

In−m, 0n−m,m

]
, B̃ =

[
B0

0n−m,m

]
,

where G0 is an m × n matrix and B0 is an m × m upper triangular
matrix. Note that if the Kronecker invariants of the pair (B,A) are
regular, then Ã and B̃ are always in the above form. In the case of
irregular Kronecker invariants, some rows of In−m in Ã are displaced.
We may also conclude that if the vector companion form of Ã obtained
from similarity operations has the above structure, then the Kronecker
invariants associated with the pair (B,A) are regular [8].

The state feedback matrix which assigns all the eigenvalues to zero,
for the transformed pair (B̃, Ã), is then chosen as

(3.3) u = −B−1
0 G0x̃ = F̃ x̃,

which results in the primary state feedback matrix for the pair (B,A)
defined as

(3.4) Fp = F̃ T−1.
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The transformed closed-loop matrix Γ̃0 = Ã + B̃F̃ assumes a compact
Jordan form with zero eigenvalues

(3.5) Γ̃0 =
[

0m,n

In−m, 0n−m,m

]
.

If Ãλ is any matrix in vector companion form, i.e.

(3.6) Ãλ =
[

Gλ

In−m, 0n−m,m

]
,

with the eigenvalue spectrum Λ = {λ1, λ2, ..., λn}, containing a set of
self conjugate eigenvalues, then as shown in [8]

(3.7) K̃ = B−1
0 (−G0 + Gλ)

is the feedback matrix which assigns the eigenvalue spectrum to the
closed-loop matrix Γ̃ = Ã + B̃K̃, and K may then be obtained by K =
K̃T−1. Note that Gλ is an m× n parametric matrix in the form:

(3.8) Gλ =


g11 g12 ... g1n

g21 g22 ... g2n

... ... ... ...
gm1 gm2 ... gmn

 .

To obtain the non-linear system of equations relating the parameters
of Gλ, the characteristic polynomial of Ãλ must be obtained. Thus, let

(3.9) det(Ãλ − λI) = Pn(λ) = 0,

where

(3.10) Pn(λ) = (−1)n(λn + a1λ
n−1 + ... + an−1λ + an)

is the characteristic polynomial of the closed-loop system. Since it is re-
quired that the zeros of this polynomial lie in the set Λ = {λ1, λ2, ..., λn},
it is clear that

(3.11) Pn(λ) = (−1)n(λ− λ1)(λ− λ2)...(λ− λn).

Now by direct computation of det(Ãλ − λI) in parametric form and
equating the coefficients of the characteristic polynomial with (3-11),
the following non-linear system of equations is obtained:

f1(g11, g12, ..., g1n, g21, g22, ..., g2n, ..., gm1, gm2, ..., gmn) = a1

f2(g11, g12, ..., g1n, g21, g22, ..., g2n, ..., gm1, gm2, ..., gmn) = a2

... ... ...

... ... ...

(3.12) fn(g11, g12, ..., g1n, g21, g22, ..., g2n, ..., gm1, gm2, ..., gmn) = an
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where gij , (i = 1, ...,m, j = 1, ..., n), are the elements of Gλ.
In this way, a non-linear system of n equations with n × m unknowns
is obtained. By choosing N = n(m− 1) unknowns arbitrarily it is then
possible to solve the system. Thus different selections can be made to
obtain different solutions. Indeed, the MAPLE software can be used to
obtain all the possible combinations of the solutions to the system of
nonlinear equations thus obtained.

Now to discuss the problem of robust eigenvalue assignment, recall
that for a given controllable pair (B,A) and D we need to find a real
matrix K such that

(3.13) (A + BK)X = XD,

for some nonsingular X, where

(3.14) D = diag(λ1, λ2, ...λn).

From equation (3− 11) it can be seen that the columns xj , j = 1, 2, ..., n
of the matrix X are the right eigenvectors of the matrix Γ = A + BK
corresponding to the assigned eigenvalue λj . Similarly, the rows (yj)t,
j = 1, 2, ..., n of the matrix Y t = X−1 are the corresponding left eigen-
vectors. It has been shown by Wilkinson [13] that the sensitivity of
the eigenvalues λj to perturbations in the components of A,B and K
depends upon the magnitude of the condition number cj = 1/sj , where

(3.15) sj =
|(yj)txj |
‖yj‖2‖xj‖2

≤ 1.

In the case of multiple eigenvalues, a particular choice of eigenvector
is assumed. (For λj the sensitivity sj , is just the cosine of the angle
between the right and left eigenvectors corresponding to λj). It can also
be observed that a bound on the sensitivity of the eigenvalues is given
by Wilkinson [13], and

(3.16) max cj ≤ κ2(X) ≡ ‖X‖2‖X−1‖2,

where κ2(X) is the condition number of the matrix X = [x1, x2, ..., xn].
A common measure of robustness is taken as ν = κ2(X), the condi-

tion number of the matrix X. Of course, other measures of robustness
may also be used, (such as defining a cost function J = ‖X‖2+‖X−1‖2).
However, to minimize sensitivity it dose not make any difference which
definition is used for measuring robustness [12]. It has been shown that,
high condition number lead to increased sensitivity of the eigenvalues of
the closed-loop system [10], therefore, an important aspect of eigenvalue
assignment is to achieve a small condition number for the eigenvector
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matrices of the closed-loop system. In this paper a new method is de-
veloped to minimize sensitivity (i.e. to obtain a small condition number
for the eigenvector matrices of the closed-loop system) by employing
the nonlinear system of equations (3.12) which include all the possible
combinations of the solutions. By using MAPLE software all possible
solutions of the nonlinear system of equations can be obtained for a spec-
ified set of eigenvalue spectrum. Then, a search algorithm is employed
in such a way as to calculate the condition number of the closed-loop
eigenvector matrices in order to achieve a given bound for the condition
number. In this manner, for each choice of solution a local minima is
obtained. By solving the problem repeatedly with different choice of
solutions, the state feedback matrix which produces the lowest value of
the condition number for the closed-loop system can be selected. This
method leads to a series of local sensitivity minima. The following algo-
rithm is devised for obtaining the state feedback matrix with minimum
sensitivity.

The algorithm for obtaining K with minimum sensitivity:
OBJECT: To obtain parameters (gij), in order to calculate the state
feedback matrix K, for which the condition number of the eigenvector
matrix X of the closed loop system Γ is minimized, i.e. to obtain K
with minimum sensitivity.
INPUT: The controllable pair (B,A) and the eigenvalue spectrum Λ =
{λ1, λ2, ..., λn}.
OUTPUT: K with minimum sensitivity and the corresponding condition
number κ2(X) of the eigenvector matrix X of the closed-loop system.
STEP 1: Employ the algorithm given by [6] to obtain B0

−1, G0 and
T−1.
STEP 2: Obtain the coefficients of the characteristic polynomial whose
roots are the same as the desired eigenvalue spectrum Λ = {λ1, λ2, ..., λn}.
STEP 3: Obtain the characteristic polynomial of Ãλ as defined in (9).
STEP 4: Obtain the nonlinear system of equations relating parameters
gij , by equating the coefficients of the characteristic polynomials ob-
tained in steps 2 and 3.
STEP 5: Employ MAPLE software to obtain all the solutions to the
nonlinear system of equations obtained in step 4.
STEP 6: Specify a relatively high condition number as an upper bound.
Then choose one of the parametric solutions, designate random values
to free parameters of this parametric solution and obtain the feedback
matrix K by K = B−1

0 (−G0 +Gλ)T−1 and the corresponding condition
number for the eigenvector matrix X of the closed-loop system.
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STEP 7: If the condition number obtained in step 6 is less than the
specified bound, then halve the bound and repeat step 6 until no fur-
ther decrease is obtained.
STEP 8: Store this condition number and repeat step 6 for all the solu-
tions.
STEP 9: Choose the minimum condition number obtained in step 8 and
obtain K, the corresponding feedback matrix.

In the next section of the paper some examples which are commonly
found in the literature are intentionally presented in order to compare
the numerical results obtained by our method with the previously re-
ported results.

4. Illustrative examples

EXAMPLE 1. Consider the system [5]

B =


0.0755 0 0.0246
4.4800 5.2200 −0.7420
−5.0300 0.0998 0.9840
0.0755 0 0.0246

 , A =


−0.3400 0.0517 0.0010 −0.9970

0 0 1 0
−2.6900 0 −1.1500 0.7380
5.9100 0 0.1380 −0.5060


. The transformation matrix which transforms the controllable (B,A)
into vector companion form (B̃, Ã) is:

T−1 =


−15.1780 0.1256 −0.3327 −1.1924
−0.3108 0.1885 0.1583 −0.3329
12.4427 −0.0072 0.3752 12.9820
2.4285 0 0 −2.4285

 .

It is desired to assign the eigenvalue spectrum Λ = {−1,−2,−3,−0.5}
to the closed-loop system. It is easy to verify that the nonlinear system
of equations governing this eigenvalue assignment are:

(4.1) −(g11 + g22 + g33) = 6.5

(4.2) g11g22 − g31g13 − g12g21 − g23g32 + g11g33 + g22g33 − g14 = 14

−g12g24 − g13g34 + g22g14 + g14g33 − g31g12g23 + g31g13g22

(4.3) −g21g32g13 + g11g32g23 − g11g22g33 + g21g12g33 = 11.5

g22g13g34 + g12g24g33 − g12g23g34 − g32g13g24 + g32g14g23

(4.4) −g22g14g33 = 3
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which consists of four equations and twelve unknowns. MAPLE soft-
ware can be used to obtain all the possible combinations of linear and
nonlinear parametric solutions. In this way, from the nonlinear sys-
tem of equations (4.1) − (4.4),42 parametric relationships and for each
of them a minimum value for condition number can then be obtained.
All the condition numbers which produce minimum sensitivity for each
parametric solution are listed in table 1 in asending order.

Table 1:Condition numbers in ascending order from left to right
3.9788 4.3113 4.3525 4.4736 5.6759 6.9557
7.1892 7.3779 7.5989 7.8693 8.6556 8.9975
9.7512 10.6917 10.9931 11.3875 11.7894 12.7890
12.7931 18.8639 21.9911 22.9875 27.9263 28.6343
29.5793 29.8052 30.2976 31.9714 32.3132 36.7690
37.6907 42.5762 50.7288 50.9137 50.9884 54.3886
54.9894 81.8706 83.7711 99.7260 152.7981 156.2221

The parametric solution which yields the lowest value for condition
number, after a thorough search, was found to be given by :

g23 = 0, g32 = 0,

and by defining

g12 = a, g13 = b, g21 = c, g22 = d, g31 = e, g33 = f.

The other parametric relationships were then found to be:

g11 = −(d + f + 6.5),
g14 = −(f2 + d2 + ac + be + df + 6.5(f + d) + 14,

g24 = (2d4 + 13d3 + 28d2 + 2d2ac + 23d− 2acdf + 6)/2a(f − d),
g34 = (2f4 + 13f3 + 28f2 + 2f2be + 23f − 2bdef + 6)/2b(d− f).

Applying our search program yields

(4.5) Gλ =

 −3.5869 0.4370 0.2777 −1.7953
0.0610 −1.9848 0 0.1699
0.2165 0 −0.9283 0.4334

 ,

which produces the state feedback matrix

(4.6) K =

 −17.2870 0.1312 −0.2482 1.2598
2.3913 −0.3504 −0.2948 −0.4196

−85.2690 −0.6092 −1.7857 5.3354

 .

The results are compared in table 2:
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Table 2
Method Condition number

Purposed 3.9788
Ibbini 119.7421

In fact 3.9788 is the smallest value for the condition number of the
above eigenvalue assignment problem yet achieved.

EXAMPLE 2. Consider the system [9]

B =


0 0

5.6790 0
1.1360 −3.1460
1.1360 0

 , A =


1.3800 −0.2077 6.7150 −5.6760
−0.5814 −4.2900 0 0.6750
1.0670 4.2730 −6.6540 5.8930
0.0480 4.2730 1.3430 −2.1040


. The transformation matrix which transforms the controllable (B,A)
into vector companion form (B̃, Ã) is given by:

T−1 =


−0.0040 0.1839 0 −0.0393
−0.0653 0.0098 −0.3179 0.2687
−0.0071 −0.0071 0 0.0356
−0.0473 0 0 0

 .

It is desired to assign the eigenvalue spectrum Λ = {−0.2,−0.5,−5.0566,−8.6659}
to the closed-loop system. The nonlinear system of equations governing
this eigenvalue assignment is (as found in [8]):

(4.7) −(g11 + g22) = 14.4225

(4.8) g11g22 − g12g21 − g13 − g24 = 53.5257

(4.9) g22g13 − g12g23 + g11g24 − g14g21 = 32.0462

(4.10) g24g13 − g14g23 = 4.3820

which consists of four equations and eight unknowns. Once again, with
using MAPLE software, 11 combinations of linear and nonlinear para-
metric solutions and for each solution a minimum value for condition
number is obtained by a suitably written program incorporating a special
search algorithm. The increasing sequence of condition numbers which
produce minimum sensitivity for each parametric solution is shown in
table 3:

Table 3:Condition numbers in ascending order from left to right
3.1781 3.4189 3.4965 3.5268 3.6613 3.6789
4.3929 4.3945 4.8757 52.9566 56.9268
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The parametric solution which yielded the optimal value for condition
number was found from the nonlinear system of equations (4.7)− (4.10)
defined by:

g21 = a, g22 = b, g23 = c, g24 = d

and
e = a2d− abc− c2

The other parametric relationships were then found to be:

g11 = −(b + 14.4225),
g12 = (−ad2 − ab2d− 14.4225abd− 53.5257ad− 4.3820a + 2bcd

+b3c + 53.5257bc + 14.4225b2c + 14.4225cd + 32.0462c)/e,

g13 = (c2d− abcd + 4.3820a2 − 14.4225acd− 32.0462ac + b2c2

+14.4225bc2 + 53.5257c2)/e,

g14 = (−abd2 + 4.3820ab + 4.3820c + 53.5257cd + cd2 − 32.0462ad

−14.4225ad2 + 14.4225bcd + b2cd)/e.

After using the search program it was found that

(4.11) Gλ =
[
−5.7182 −0.3922 −1.9530 0.2800
−1.6602 −8.7043 1.4452 −2.4509

]
,

which produces the state feedback matrix

(4.12) K =
[

0.1632 −0.0857 0.2041 −0.1797
1.1024 −0.1622 0.7296 −0.1606

]
.

The results are copared in table 4:

Table 4
Condition number Frobenius norm

Purposed method 3.1781 1.3811
Kautsky’s method 3.32 1.40

.

EXAMPLE 3. Consider the system [11]

B =


0 0

0.0638 0
0.0838 −0.1396
0.1004 −0.2060
0.0063 −0.0128

 , A =


−0.1094 0.0628 0 0 0
1.306 −2.132 0.9807 0 0

0 1.595 −3.149 1.547 0
0 0.0355 2.632 −4.257 1.855
0 0.00227 0 0.1636 −0.1625

 .
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The transformation matrix which transforms the controllable (B,A) into
vector companion form (B̃, Ã) is:

T−1 =


−2.1074 14.9824 −37.3835 32.2226 −9.2525
−10.2764 8.6959 −4.2921 −2.1823 3.8072
−1.9828 −1.7797 7.2011 −4.9247 0.7208
89.8109 −0.3454 1.4777 0.2659 −20.3942
22.5843 0.3736 −1.5290 0.7674 4.3250

 .

The desired eigenvalue spectrum, Λ = {−0.2,−0.5,−1,−1± i} is to be
assigned to the closed-loop system in this case. It is easy to verify that
the nonlinear system of equations governing this eigenvalue assignment
are :

(4.13) −(g11 + g22) = 3.7

(4.14) g21g12 − g11g22 + g13 + g24 = −6.2

(4.15) g15 − g22g13 + g12g23 − g11g24 + g14g21 = −5.1

(4.16) g23g14 − g13g24 + g12g25 − g22g15 = −1.8

(4.17) g14g25 − g15g24 = −0.2

which consists of five equations and ten unknowns.To obtain all the pos-
sible combinations of linear and nonlinear parametric solutions, MAPLE
software was again used. For each solution a minimum value for con-
dition number was obtained as before. The parametric solution which
yields the lowest value for condition number from the nonlinear system
of equations (4.13)− (4.17) was found to be:

g14 = a, g21 = b, g23 = c, g24 = d

with the other parametric relationships as follows:

g11 = −(5d + 3.5),
g12 = 5a,

g13 = −(25d2 + 17.5d + 5ba + 5.5),
g15 = −(125d3 + 87.5d2 + 27.5d + 25abd + 5ac + 4),
g22 = 5d− 0.2,

g25 = −(125d4 + 87.5d3 + 27.5d2 + 4d + 25d2ba + 5acd + 0.2)/a.

Applying our search program yields

(4.18) Gλ =
[
−4.3675 1.3470 −5.6479 0.2694 −0.2316
−2.7810 0.6875 −6.5189 0.1775 −0.8950

]
,
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which produces the state feedback matrix

(4.19) K =
[
−0.7686 48.5339 −47.6569 −1.9305 0.9691
−5.0299 1.6182 39.3997 −62.9201 20.8260

]
.

For this example, the results are compared in table 5:
Table 5

Condition number Frobenius norm
Purposed method 218.7343 102.9801

Tam’s method 1.6337× 103 103.2225

5. Conclusions

The minimum sensitivity of the closed-loop eigenvalues was achieved
by exploitation of the parameterized state feedback controller matrix
proposed by Karbassi and Tehrani [8], assigning the closed-loop system
eigenvalues to the prescribed locations. The derived explicit expressions
allow the use of standard search based minimization techniques. The
main advantage of this methodology is that not only all the possible
combination of parametric state feedback controllers can be generated,
but also that for each specific parametric form a minima can be ob-
tained. Several numerical examples that were tested, showed that the
minimum sensitivity occurs with the parametric state feedback matrix
which contains the highest number of free parameters, as expected. The
proposed robust eigenvalue assignment approach produced better results
for both minimum sensitivity and minimum norm than recent sensitiv-
ity analysis results [5], [9] and [11]. With the available softwares, the
algorithm presented in this paper is much simpler to implement than
the existing numerical methods [5], [9] and [11].
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search Council of Yazd University.
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