Iranian Journal of Mathematical Sciences and Informatics
Vol.2, No.1 (2007),pp 15-20

A NOTE ON THE EQUISEPARABLE TREES

ALI REZA ASHRAFI AND SHAHRAM YOUSEFI

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF
KASHAN, KASHAN, TRAN
CENTER FOR SPACE STUDIES, MALEK-ASHTAR UNIVERSITY OF
TECHNOLOGY, TEHRAN, TRAN

EMAIL: ASHRAFIQKASHANU.AC.IR

ABSTRACT. Let T be a tree and ni(e|T) and na2(e|T") denote the number
of vertices of T', lying on the two sides of the edge e. Suppose 77 and
T are two trees with equal number of vertices, e € T1 and f € T>. The
edges e and f are said to be equiseparable if either ni(e|T1) = ni(f|T2)
or ni(e|T1) = na(f|T). If there is an one-to-one correspondence between
the vertices of 71 and T% such that the corresponding edges are equisep-
arable, then 77 and T% are called equiseparable trees. Recently, Gutman,
Arsic and Furtula investigated some equiseparable alkanes and obtained
some useful rules (see J. Serb. Chem. Soc. (68)7 (2003), 549-555). In
this paper, we use a combinatorial argument to find an equivalent def-
inition for equiseparability and then prove some results about relation
of equiseparability and isomorphism of trees. We also obtain an exact
expression for the number of distinct alkanes on n vertices which three of
them has degree one.
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1. INTRODUCTION

A topological index is a numerical quantity derived in an unambiguous man-
ner from the structural graph of a molecule. These indices are graph invariants,
which usually reflect molecular size and shape.

The first nontrivial topological index in chemistry was introduced by H.
Wiener[1] in 1947 to study the boiling points of paraffins. Since then, the
Wiener index has been used to explain various chemical and physical properties
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of molecules and to correlate the structure of molecules to their biological
activity [2].

Wiener originally defined his index on trees and studied its use for correla-
tions of physicochemical properties of alkanes, alcohols, amines, and other anal-
ogous compounds. The original definition was given in terms of edge weights.
In an arbitrary tree, every edge is a bridge, that is, after deletion of the edge,
the graph is no more connected. The weight of an edge is taken to be the
product of numbers of vertices in the two connected components. This number
also is equal to the number of all shortest paths in the tree which go through
the edge [3]. Thus the usual generalization of the Wiener index on arbitrary
graphs is defined to be the sum of all distances in a graph.

Another natural generalization was previously put forward and called the
Szeged index, Sz[4,5]. Formulas or special algorithms for Szeged index of several
families of graphs were proposed recently [6-9]. We describe first the notation
and basic definitions, before stating our results.

First of all, we recall the definition of Szeged index. Suppose G is a graph
consisting of an arbitrary set V = V(G) of vertices and a set E = E(G) of
unordered pairs {z,y} = zy of distinct vertices, called edges. For any edge
e = wv of E(G), N1(e|G) denotes the set of vertices of G that are closer to u
than v and N2(e|@) is the complement of N (e|G) in V(G). The Szeged index
of G is defined by

(1.1) Sz(G) = > ni(e|G)na(elG)

e€E(Q)

where the sum runs over all edges of G and the numbers n;(e|G) and na(e|G)
are cardinalities of the sets Ny(e|G) and Na(e|G). If G is a tree then we can
consider the numbers n; (e|G) and nz(e|G) as the count of the vertices of the
two fragments, obtained by deleting the edge e from G. In fact, the edge e
separates G into two fragments, with n; (e|G) and n2(e|G) vertices. According
to these observations, Gutman and etal [10] defined the notion of equiseparable
trees, as follows:

Definition 1.1. Let 77 and T5 be two trees with equal number of vertices,
e € E(Ty) and f € E(T»). We say that e and f are equiseparable edges, e ~ f,
if by deleting e from T and f from 75 fragments are obtained with equal number
of vertices. Moreover, let e1,es, - , e, be the edges of T} and fi, fa, -, fm
be the edges of T,. T1 and T» are said to be equiseparable if one can label the
edges of T and T5 such that for 1 < ¢ < m, by deleting e; from T} and f; from
T, fragments are obtained with equal number of vertices.

Suppose G is a graph. A 1-1 and onto function f : V(G) — V(G) is called
an automorphism of G if f preserves adjacency and non-adjacency. It is an easy
fact that the set of all automorphisms of G, which is denoted by Aut(G), is a
group under composition of functions . Suppose x and y are vertices of G. We
say that = and y are similar if there is an automorphism of G which takes = to
y. Equivalence classes of the similarity relation are called orbits of G.
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Let T be a tree with n vertices and [n/2] denotes the greatest integers less than
or equal to n/2. For 1 < r < [n/2], we define:

A (T)={ee€ E(T)|n1(e|T) =r or n—r},

X(T) = {A(D)1 <r < [n/2], A,(T) # 0}.
A partition[11] of a set X, is a family of pairwise disjoint, non-empty sub-
sets whose union is X. Let n and k be positive integers with n < k. Set
ar(T) =|4,(T)],1 <7 <[n/2]. In the next section, we find a relation between
equiseparable trees and the numbers «,.(T) = |Ar(T)|,1 < r < [n/2].

Throughout this paper, all graphs and groups considered are assumed to be

finite. Our notation is standard and taken mainly from Refs. [11-13]. The
topics of interest in this paper are the following theorems:

Theorem 1.2. For every tree T, X (T') is a partition of T. Moreover, trees Ty
and Ts with equal number of vertices are equiseparable if and only if for every
1<r<[n/2], a.(T1) = a,.(T3).

Theorem 1.3. Let T be a tree. Then every non-empty subset A.(T) of V(T)
is a union of orbits of T. In particular, the number of orbits of T is at least
| X(T)]-

Theorem 1.4. The exact number of distinct alkanes with n vertices and a1 (T) =

3 is equal to
k .
n—(2+ 3i) n—4
N e R ek
=0

Also, all of these alkanes are mutually non-equiseparable.

2. PROOF OF THE THEOREMS

Proof of Theorem 1.2. Obviously, if the tree T has n vertices, then for
all of its edges, ni(e|T") + n2(e|T) = n. This shows that A,.(T) = A,,_.(T) and
we can assume that 1 < r < [n/2]. We first prove that X (T) is a partition of
V(T). By definition of X (T'), every element of X (T) is non-empty. Suppose for
1< rsleq[n/2], A(T)NAs(T) # B and e € A.(T)NAg(T). Then By definition
of A.(T) and A4(T), n1(e|]T) = r or n —r and ny(e|T’) = s or n — s. This
implies that r = s or r + s = n. Hence A,.(T) = A4(T). Finally, we prove that
NA,(T) = E(T). Since for every r, A.(T) C E(T), we have NA,.(T) C E(T).
Suppose f € E(T) is arbitrary and ny(f|T) = s. Then f € A(T) C NA.(T),
as desired.

We now prove the "Moreover” part of the theorem. In order to do this,
we assume that T; and T, are equiseparable trees with n vertices such that
er & fr, for 1 <r <n. Define u, : A,.(T1) — A.(T2) by u.(et) = fi. Suppose
et € Apr(T1) and ny(e¢|T1) = u. Then ny(fi|T1) = vor n—uand so f; € A, (T»).
Thus u, is well-defined and since 77 and T» are equiseparable, u, is bijective.
Therefore, for any 1 < r < [n/2], a,.(T1) = a,(T>). Conversely, we assume
that a,(T1) = a,(T>), for 1 < r < [n/2]. Hence for every 1 < r < [n/2], we
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can consider a bijective function £, : A.(T1) — A.(T2). Then e =~ f,(e),
1 <r < [n/2]. This completes the theorem.

Suppose that T and T5 are trees with equal number of vertices. The previous
theorem gives an algorithm for determining whether or not T} and T, are
equiseparable?

We now obtain a lower bound for the number of orbits in a finite tree 7'. To
do this, we prove the theorem 2:

Proof of Theorem 1.3. It is obvious that, if & € Aut(T) and e € E(T)
then e = a(e) and « induces a labeling on V(T') such that the corresponding
edges are equiseparable. We now assume that A is an orbit of T" and e € A.
By Theorem 1, there exists 1 < r < [n/2] such that e € A,.(T). Also, by the
mentioned property of automorphisms, for all a € Aut(T), a(e) ~ e. This
shows that A C A,(T'). Thus every orbit of T' containing an element of A,.(T)
is contained in A,(T), i.e., A,(T') is a union of orbits of T'. Now since V(T') is
the union of both A,.(T")’s and its orbits, the number of orbits of T is at least
X (T)].

The following examples show that the number of orbits of 7' can be equal
or less than | X (T)|.

Example 2.1. Consider the star-like tree T' of Figure 1 with n vertices. This
tree has exactly one orbit and A;(T) = E(T). Hence |X(T)| = 1 and the
number of orbits of T is equal to | X (T)|.

Example 2.2. Consider the star-like tree F' of Figure 2 with n vertices. Define
er to be the edge {1,7} =1r, 1 <r <n—1, and e, = {n — 1,n}. Then this
tree has exactly three orbits {e1,es,- - ,en—2}, {en—1}, {en} and |4:(T)| =
|E(T)| — 1. Hence |X(T)| = 2 and the number of orbits of F is greater than
X(T)].

It is an easy fact that for any tree T' with |E(T)| > 0, aq(T') > 2 with equality
if and only if T is the tree of Figure 3. Therefore, there is exactly one tree with
a1 (T) = 2. Now it is natural to ask about T, when «;(T") > 3. In theorem 3,
we obtain the exact number of trees with a;(T") = 3.

Proof of Theorem 1.4. Let T be a tree with exactly n vertices and
A (T) = {vy,v9,v3}. Tt is obvious that T has a unique vertex v of degree
3. Suppose d is the minimum distance of the unique paths between vy, vs, v3
and v. We first claim that d < [(n — 1)/3]. Suppose the contrary, i.e. d >
[(n —1)/3]+ 1. If m denotes the number of edges of T then n — 1 =m > 3d >
3[(n — 1)/3] + 3 > n, which is impossible. Suppose d = 1. Then the number
of distinct alkanes with aq(T) = 3 is equal to [(n — 2)/2]. For d = 2, this
number is equal to [((n —2) —3)/2] and so on. Thus if we define I = d — 1 and
k=1[(n-1)/3]—1=[(n —4)/3] then we have:

L Tn—(2+3i n—4
N e

i=0

On the other hand, our constructions of distinct alkanes show that all of these
alkanes are mutually non-equiseparable.
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FIGURE 2

FIGURE 3
Some trees with exactly n vertices
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