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Abstract. In this paper we show that if G is a group acting on a tree

X with inversions and if (T ; Y ) is a fundamental domain for the action

of G on X, then there exist a group G̃ and a tree X̃ induced by (T ; Y )

such that G̃ acts on X̃ with inversions, G is isomorphic to G̃, and X is
isomorphic to X̃. The pair (G̃; X̃) is called the quasi universal cover of

(G; X) induced by the (T ; Y ).
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1. Introduction

The structure of groups acting on trees without inversions known as Bass-
Serre theory obtained in [6], and the action with inversions obtained by Mah-
mud in [5]. Let G is a group acting on a tree X without inversions, T be a max-
imal tree of the quotient graph Y for the action of G on X, and G̃ = π(G, Y, T )
be the fundamental group of the graph of groups associated with Y relative T
as defined in [6, p 42]. Various trees X̃ were constructed on which G̃ acts on X̃

without inversions, G is isomorphic to G̃, and X is isomorphic to X̃. For more
details we refer the readers to [1, p 419], or [2, p 205], or [6, p 55]. In this case
(G̃; X̃) is called the universal cover of (G;X). In this paper we generalize such
result to groups acting on trees with inversions as follows. Let G is a group
acting on a tree X with inversions, (T ;Y ) be a fundamental domain for the
action of G on X, and G̃ = π(T ;Y ) be the fundamental group of (T ;Y ) defined
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40 MAHMOOD

later. Then there exists a tree denoted X̃ = (̃T, Y ) such that G̃ acts on X̃ with
inversions, G is isomorphic to G̃, and X is isomorphic to X̃. The pair (G̃; X̃)
is called the quasi universal cover of (G;X) relative to (T ;Y ).

We begin by giving preliminary definitions. By a graphX we understand
a pair of disjoint sets V (X) and E(X) with V (X) non-empty, together with
three functions ∂0 : E(X) → V (X), ∂1 : E(X) → V (X), and η : E(X) → E(X)
satisfying the conditions that η ∂0 = ∂1, η ∂1 = ∂0, and η is an involution fixing
some elements of E(X). For simplicity, if e ∈ E(X), we write ∂0(e) = o(e),
∂1(e) = t(e), and η(e) = ē. This implies that o(ē) = t(e), t(ē) = o(e), and
¯̄e = e on which the case ē = e is allowed. We call the elements of V (X) vertices
and those of E(X) edges. For e ∈ E(X), we call o(e) the initial of e, t(e) the
terminal of e, and ē the inverse of e. If A is a set of edges of X, define Ā to
be the set of inverses of the edges of A. That is, Ā = { ȳ : y ∈ A}.

There are obvious definitions of subgraphs, trees, morphisms of graphs and
Aut(X), the set of all automorphisms of the graph X which is a group under
the composition of morphisms of graphs. For more details we refer the readers
to Serre [6], or to Mahmud [5]. We say that a group G acts on a graph X,
if there is a group homomorphism φ : G → Aut(X). If x ∈ X (vertex or
edge) and g ∈ G, we write g(x) for (φ(g))(x). If y ∈ E(X) and g ∈ G , then
g(o(y)) = o(g(y)), g(t(y)) = t(g(y)), and g(ȳ) = g(y). The case g(y) = ȳ
for some g ∈ G and some y ∈ E(X) may occur. That is, G acts on X with
inversions.

We have the following notations related to the action of the group G on the
graph X.

(1) If x ∈ X (vertex or edge), we define G(x) = {g(x) : g ∈ G}, and this set is
called the orbit of x. (2) If x, y ∈ X, we define G(x → y) = {g ∈ G : g(x) = y}
and G(x → x) = Gx, the stabilizer of x. Thus G(x → y) 6= ∅ if and only if
x and y are in the same orbit. It is clear that if v ∈ V (X), y ∈ E(X), and
u ∈ {o(y), t(y)}, then G(v, y) = ∅, Gȳ = Gy, and Gy ≤ Gu .

2. Structure of groups acting on trees with inversions

The aim of this section is to establish various notational conventions and
results that we shall use throughout the paper.

Let G be a group acting on a tree X with inversions. Let T and Y be two
subtrees of X, T ⊆ Y satisfying the conditions that T contains exactly one
vertex from each vertex orbit, and each edge of Y has at least one end in T and
Y contains exactly one edge y from each edge orbit such that G(y → ȳ) = ∅,
and exactly one pair x and x̄ from each edge orbit such that G(x → x̄) 6= ∅ .
The pair (T ;Y ) is called a fundamental domain for the action of G on X. It is
clear that the structure of Y implies that if e1 and e2 are two edges of Y such
that e1 and e2 are in tha same G−edge orbit, then e1 = e2, or e1 = ē2.
For the existence of T and Y we refer the readers to [3].

For the rest of this section G, X, T and Y will be as above. We have the
following notations.
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(i) Let +Y and −Y be the sets defined as follows. +Y = {y ∈ E(Y ) : o(y) ∈
V (T ), t(y) 6∈ V (T ), G(y → ȳ) = ∅}, and−Y = {x ∈ E(Y ) : o(x) ∈ V (T ), t(x) 6∈
V (T ), G(x → x̄) 6= ∅}. It is clear that Y = E(T ) ∪+Y ∪+Y ∪ −Y ∪ −Y .
(ii) For each vertex v of X, let v∗ be the unique vertex of T such that G(v∗ →
v) 6= ∅. That is, v and v∗ are in the same vertex orbit.
(iii) For each edge e of E(T )∪+Y ∪−Y define [e] be an element be an arbitrary
element of G(t(e) → (t(e)∗). That is, [e]((t(e))∗) = t(e) to be chosen as follows.
[e] = 1 if e ∈ E(T ), and [e](e) = ē if e ∈ −Y .
It is clear that [e]−1Ge[e] is a subgroup of G(t(e))∗ , and if e ∈ −Y , then [e]2 ∈ Ge.

Proposition 2.1. G is generated by the elements [e] and by the generators of
Gv, where e runs over the edges of Y and v runs over the vertices of T .

Proof. By Theorem 5.1 of [5].

3. Quasi universal covers for groups acting on trees with
inversions

Throughout this section G will be a group acting on a tree X with inversions,
and (T ;Y ) be a fundamental domain for the action G on X. In [4], Mahmood
introduced the concept of a subfundamental domain (T1;Y1) for the action of
G on X, and defined it is fundamental group π(T1; Y1), and then showed that

there exists a tree denoted ˜(T1; Y1) on which π(T1; Y1) acts with inversions.
In this section we take T1 and Y1 of Definition 4.1 of [4] to be T1 = T and
Y1 = Y , and G̃v = Gv, G̃y = [y]−1Gy[y] such that φy : [y]−1Gy[y] → Gy is
given by φy(g) = [y]g[y]−1 and φy(g) = [y]g[y]−1 if G(y, ȳ) 6= ∅ for any vertex
v of T and any edge y of Y . Then by Proposition 5.2 of [4] implies that the
group π(T, Y ) has the presentation

π(T, Y ) = 〈Gv, ty, tx| relGv, Gm = Gm̄,

ty.[y]−1Gy[y].t−1
y = Gy, tx.Gx.t−1

x = Gx, t2x = [y]2〉

where v ∈ V (T ), m ∈ E(T ), y ∈ +Y , and x ∈ −Y .
The notations of the presentation of π(T, Y ) are defined as follows.
(i) 〈Gv | relGv〉 is any presentation of Gv.

(ii) Gm = Gm̄ is the set of relations w(g) = w′(g), where w(g) and w′(g) are
words in the generating symbols of Gt(m) and Go(m) respectively of value g,
where g is an element in the set of the generators of Gm.
(iii) ty.[y]−1Gy[y]. t−1

y = Gy is the set of relations tyw([y]−1g[y] ) t−1
y = w(g)

, where w([y]−1g[y]) and w(g) are words in the sets of generating symbols of
G(t(y))∗ and Go(y) of values [y]−1g[y] and g respectively , where g is an element
in the set of the generators of Gy .
(iv) tx . Gx . t−1

x = Gx is the set of relations tx w(g ) t−1
x = w′(g), where w(g)

and w′(g) are words in the set of generating symbols of Go(x) of values g and
[x] g [x]−1 respectively, where g is an element in the set of the generators of Gx.
(v) t2x = [x]2 is the relation x2 = w([x]2), where w([x]2) is a word in the set of
the generating symbols of Go(x) of value [x]2.
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By Theorem 7.14 of [4], we have the tree (̃T, Y ) defined as follows. V ((̃T, Y )) =

{[g, v] : g ∈ π(T, Y ), v ∈ V (T )}, and E((̃T, Y )) = {[g, y] : g ∈ π(T, Y ), y ∈
E(T ) ∪+Y ∪+Y ∪ −Y }, where [g, v] is the ordered pair (gGv, v) and [g, y] is
the ordered pair (gGy, y). (Note that if g ∈ Gv, or g ∈ Gy, then [g, v] = [1, v],

and [g, y] = [1, y]). Define the ends and the inverse of the edge [g, y] of (̃T, Y )
to be as follows. o([g, y]) = [g, (o(y))∗], t([g, y]) = [gty, (t(y))∗], and

[g, y] =
{

[gty, ȳ]ify ∈ E(T ) ∪+Y ∪+Y
[gty, y]ify ∈ −Y

.

Proposition 7.4 of [4], implies that π(T, Y ) acts on (̃T, Y ) with inversions as

follows. If f ∈ π(T, Y ), [g, v] ∈ V ((̃T, Y )), and [g, v] ∈ E((̃T, Y )), then f [g, v] =
[fg, v], and f [g, y] = [fg, y].
We note that Corollary 7.5 of [4], implies that if y ∈ −Y , then π(T, Y ) inverts

all edges [g, y] in ˜(T, Y ).
For example, the element ty takes the edge [1, y] into its inverse [ty, y], because
[1, y] = [ty, y] = ty[1, y].
Now we show that π(T, Y ) is isomorphic to G and π(T, Y ) is isomorphic to X.
First we start by the following definitions and propositions.

Definition 3.1. Define the mapping θ : π(T, Y ) → G by the identity mapping
on Gv and by the mapping ty → [y], tx → [x], where v ∈ V (T ), y ∈ +Y , and
x ∈ −Y .

Proposition 3.2. θ is an onto homomorphism.

Proof. It is clear that the images [y] and [x] of y and x respectively under
the given mapping ty → [y], tx → [x], where y ∈ +Y , and x ∈ −Y satisfy the
defining relations ty.[y]−1Gy[y]. t−1

y = Gy, tx . Gx . t−1
x = Gx, and t2x = [x]2 of

π(T, Y ). So, by Dyck‘s Theorem [2, Th.14. p.19] the given mapping defines
the given homomorphism θ : π(T, Y ) → G. Since by Proposition 2.1, G is
generated by Gv and by [y] and [x], where v ∈ V (T ), y ∈ +Y , and x ∈ −Y ,
therefore θ is an onto homomorphism. This completes the proof.

Definition 3.3. Define σ : (̃T, Y ) → X by σ([g, v]) = (θ(g))(v) , and

σ([g, y] =
{

(θ(g))(y) if o(y) ∈ V (T )
(θ(g))[y](y) if o(y) /∈ V (T )

where v ∈ V (T ), and y ∈ E(T ) ∪+Y ∪+Y ∪ −Y }.

Proposition 3.4. σ is an onto morphism.

Proof. It is clear that σ maps vertices to vertices and edges to edges. If [f, u]

and [g, v] are two vertices of (̃T, Y ) such that [f, u] = [g, v], then u = v and
fGv = gGv.
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Then f = gh, h ∈ Gv, and

σ([f, u]) = σ([gh, v])
= (θ(gh))(v)
= (θ(g)θ(h))(v) because θ is a homomorphism
= θ(g)(θ(h))(v)
= θ(g)(σ[h, v])
= θ(g)(σ[1, v]) becauseh ∈ Gv

= θ(g)(θ(1))(v)
= θ(g)(1)(v)
= θ(g)(v)
= σ([g, v]).

Similarly, if [f, x] and [g, y] are two edges of (̃T, Y ) such that [f, x] = [g, y],
then σ[f, x] = σ[g, y].

This implies that σ is a well-defined mapping.
Now let [g, y] be an edge of (̃T, Y ). We need to prove the following.
(i) σ(o[g, y]) = o(σ[g, y]),
(ii) σ(t[g, y]) = t(σ[g, y]), and
(iii) σ([g, y]) = σ[g, y].

Now

σ(o([g, y])) = σ([g, (o(y))∗])
= (θ(g))(o(y))∗)
= (θ(g))(o(y)∗)

=
{

(θ(g))(o(y)) if o(y) ∈ V (T )
(θ(g))[y](o(y)) if o(y) /∈ V (T )

=
{

o((θ(g))(y)) if o(y) ∈ V (T )
o((θ(g))[y](y)) if o(y) /∈ V (T )

= o(σ[g, y]).

σ(t([g, y])) = σ([gty, (t(y))∗])
= (θ(g)ty)((t(y))∗)
= (θ(g)[y])((t(y))∗)

=
{

(θ(g))[y][ȳ](t(y)) if o(y) ∈ V (T )
(θ(g))[y](t(y)) if o(y) /∈ V (T )

=
{

t((θ(g))(y)) if o(y) ∈ V (T )
t((θ(g))[y](y) if o(y) /∈ V (T )

= t(σ[g, y]),
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σ([g, y]) =
{

[gty, ȳ] if y ∈ E(T ) ∪+Y ∪+Y
[gty, y] if y ∈ −Y

=


(θ(gty))[ȳ](ȳ) if y ∈ E(T ) ∪+Y
(θ(gty))(ȳ) if y ∈ E(T ) ∪+Y

(θ(gty))(y) if y ∈ −Y

=


(θ(g[y]))[ȳ](ȳ) if y ∈ E(T ) ∪+Y
(θ(g[y]))(ȳ) if y ∈ E(T ) ∪+Y

(θ(g[y]))(y) if y ∈ −Y

=


(θ(g))(ȳ) if y ∈ E(T ) ∪+Y
(θ(g[y]))(ȳ) if y ∈ E(T ) ∪+Y

(θ(g))(ȳ) if y ∈ −Y

=


(θ(g))(y) if y ∈ E(T ) ∪+Y

(θ(g[y]))(y) if y ∈ E(T ) ∪+Y

(θ(g))(y) if y ∈ −Y

= σ[g, y].

Thus σ is a well-defined morphism. Since θ is onto, therefore σ is onto. This
completes the proof.

The following concept is needed in order to show that σ : (̃T, Y ) → X is an
isomorphism.

If Γ1 and Γ2 are two graphs, and f : Γ1 → Γ2 is a morphism, then locally
injective if for every two edges e1 and e2 of Γ1 such that o(e1) = o(e2), and
f(e1) = f(e2), then e1 = e2.

The following proposition is essential to prove the main theorem of this
section.

Proposition 3.5. σ is locally injective.

Proof. Let [a1, e1] and [a2, e2] be two edges of (̃T, Y ) such that o[a1, e1] =
o[a2, e2] and σ[a1, e2] = σ[a2, e2]. We need to show that e1 = e2, and a−1

1 a2 ∈
Ge1 . It is clear that (o(e1))∗ = (o(e2))∗ , a−1

1 a2 ∈ G(o(e1))∗ , and θ(a−1
1 a2)(e1) =

e2. This implies that e1 and e2 are in the same G−edge orbit on X. Since e1

and e2 are in Y , therefore the properties of Y imply that e1 = e2, or e1 = ē2.
If e1 = e2, then it is clear that θ(a−1

1 a2) ∈ Ge1 . Since Ge1 ≤ G(o(e1))∗ , and θ is
the identity on G(o(e1))∗, therefore θ is the identity on Ge1 . This implies that
a−1
1 a2 ∈ Ge1 . Consequently [a1, e1] = [a2, e2].

If e1 = ē2, then G(e1, ē1) 6= ∅. This implies that e2 is in −Y1. This contradicts

the fact that the edges of (̃T, Y ) are of the forms [g, e], where g ∈ π(T, Y ), and
y ∈ E(T ) ∪+Y ∪+Y ∪ −Y . This completes the proof.
For the proof of the following lemma we refer the readers to [6, Lemma 5, p
39].

Lemma 3.6. If Γ1 is a connected graph,Γ2 is a tree, and f : Γ1 → Γ2 is locally
injective, then f is injective.
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Now we state the main result of this section.

Theorem 3.7. Let G, X, T, Y, σ, and θ be as above such that X is a tree. Then
(1) σ : (̃T, Y ) → X is an isomorphism. (2) θ : π(T, Y ) → G is an isomorphism.

Proof. (i) By Proposition 3.4, σ is an onto morphism, and by Proposition
3.5, σ is locally injective. Since X is a tree, therefore by Lemma 3.6.σ is an
isomorphism.
(ii) Suppose that h ∈ ker(θ), and v be any vertex of T . Then σ[1, v] =
(θ(1))(v) = v, because θ is a homomorphism, and σ[h, v] = (θ(h))(v) = v,
since h ∈ ker(θ). Then we have σ[h, v] = σ[1, v]. Since σ is an isomorphism,
therefore [h, v] = [1, v]. This implies that h ∈ Gv. Since θ restricted to Gv

is an isomorphism, therefore h = 1. Since by Proposition 3.2, θ is an onto
homomorphism, therefore θ is an isomorphism. This completes the proof.
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