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ABSTRACT. In this paper we show that if G is a group acting on a tree

X with inversions and if (T;Y) is a fundamental domain for the action

of G on X, then there exist a group G and a tree X induced by (T;Y)

such that G acts on X with inversions, G is isomorphic to G, and X is

isomorphic to X. The pair (G; X) is called the quasi universal cover of

(G; X) induced by the (T;Y).
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1. INTRODUCTION

The structure of groups acting on trees without inversions known as Bass-
Serre theory obtained in [6], and the action with inversions obtained by Mah-
mud in [5]. Let G is a group acting on a tree X without inversions, T be a max-
imal tree of the quotient graph Y for the action of G on X, and G = m(G,Y,T)
be the fundamental group of the graph of groups associated with Y relative T
as defined in [6, p 42]. Various trees X were constructed on which G acts on X
without inversions, G is isomorphic to G, and X is isomorphic to X. For more
details we refer the readers to [1, p 419], or [2, p 205], or [6, p 55]. In this case
(G; X) is called the universal cover of (G; X). In this paper we generalize such
result to groups acting on trees with inversions as follows. Let G is a group
acting on a tree X with inversions, (T;Y) be a fundamental domain for the
action of G on X, and G = n(T;Y) be the fundamental group of (T;Y) defined
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later. Then there exists a tree denoted X = (T, Y) such that G acts on X with
inversions, G is isomorphic to G, and X is isomorphic to X. The pair (G’, X )
is called the quasi universal cover of (G; X) relative to (T;Y).

We begin by giving preliminary definitions. By a graphX we understand
a pair of disjoint sets V(X) and E(X) with V(X) non-empty, together with
three functions 9y : E(X) — V(X), 01 : E(X) — V(X),and n : E(X) — E(X)
satisfying the conditions that n 9y = 01,7101 = 0y, and 7 is an involution fixing
some elements of E(X). For simplicity, if e € E(X), we write dy(e) = o(e),
01(e) = t(e), and n(e) = e. This implies that o(€) = t(e), () = o(e), and
e = e on which the case & = ¢ is allowed. We call the elements of V(X)) vertices
and those of E(X) edges. For e € E(X), we call o(e) the initial of e, t(e) the
terminal of e, and € the inverse of e. If A is a set of edges of X, define A to
be the set of inverses of the edges of A. That is, A = {g:y € A}.

There are obvious definitions of subgraphs, trees, morphisms of graphs and
Aut(X), the set of all automorphisms of the graph X which is a group under
the composition of morphisms of graphs. For more details we refer the readers
to Serre [6], or to Mahmud [5]. We say that a group G acts on a graph X,
if there is a group homomorphism ¢ : G — Aut(X). If z € X (vertex or
edge) and g € G, we write g(z) for (¢(g))(x). If y € E(X) and g € G, then
g9(o(y)) = o(g(v)), 9(t(y)) = t(9(y)), and g(y) = g(y). The case g(y) =y
for some g € G and some y € F(X) may occur. That is, G acts on X with
inversions.

We have the following notations related to the action of the group G on the
graph X.

(1) If 2 € X (vertex or edge), we define G(x) = {g(z) : g € G}, and this set is
called the orbit of z. (2) If z,y € X, we define G(x — y) = {g € G : g(x) = y}
and G(z — x) = G, the stabilizer of x. Thus G(z — y) # 0 if and only if
x and y are in the same orbit. It is clear that if v € V(X), y € E(X), and
u € {o(y),t(y)}, then G(v,y) =0, Gy = Gy, and G, < G, .

2. STRUCTURE OF GROUPS ACTING ON TREES WITH INVERSIONS

The aim of this section is to establish various notational conventions and
results that we shall use throughout the paper.

Let G be a group acting on a tree X with inversions. Let T and Y be two
subtrees of X, T C Y satisfying the conditions that T contains exactly one
vertex from each vertex orbit, and each edge of Y has at least one end in T and
Y contains exactly one edge y from each edge orbit such that G(y — ) = 0,
and exactly one pair z and Z from each edge orbit such that G(z — z) £ 0 .
The pair (TY) is called a fundamental domain for the action of G on X. It is
clear that the structure of Y implies that if e; and ey are two edges of Y such
that e; and ey are in tha same G—edge orbit, then e; = es, or e; = é5.

For the existence of T' and Y we refer the readers to [3].

For the rest of this section G, X,T and Y will be as above. We have the

following notations.
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(i) Let 4Y and —Y be the sets defined as follows. +Y = {y € E(Y) : o(y) €
VAT), t(y) € V(T),Gly — 5) = 0}, and Y = {z € B(Y) : ofx) € V(T), t(x) ¢
V(T),G(x — &) # 0}. It is clear that Y = E(T) U+Y U+Y U-Y U-Y.

(ii) For each vertex v of X, let v* be the unique vertex of T' such that G(v* —

v) # (. That is, v and v* are in the same vertex orbit.

(iil) For each edge e of E(T)U+Y U—Y define [e] be an element be an arbitrary

element of G(t(e) — (t(e)*). That is, [e]((¢(e))*) = t(e) to be chosen as follows.

[

i

[e] =1ifee€ E(T), and [e](e) =€ ife € Y.
It is clear that [e] "' G[e] is a subgroup of Gy, and if e € =Y, then [e]* € G..

Proposition 2.1. G is generated by the elements [e] and by the generators of
G, where e Tuns over the edges of Y and v runs over the vertices of T.

Proof. By Theorem 5.1 of [5].

3. QUASI UNIVERSAL COVERS FOR GROUPS ACTING ON TREES WITH
INVERSIONS

Throughout this section G will be a group acting on a tree X with inversions,
and (T;Y) be a fundamental domain for the action G on X. In [4], Mahmood
introduced the concept of a subfundamental domain (77;Y7) for the action of
G on X, and defined it is fundamental group 7(7T}; Y1), and then showed that

there exists a tree denoted (7T%; Y1) on which #(Ty; Y1) acts with inversions.
In this section we take T7 and Y7 of Definition 4.1 of [4] to be T3 = T and
Yi =Y, and G, = Gy, Gy = [y] 'G,[y] such that ¢, : [y]'Gyly] — Gy is
given by ¢,(g) = [ylgly]~* and ¢, (g9) = [ylg[y] " if G(y,y) # 0 for any vertex
v of T and any edge y of Y. Then by Proposition 5.2 of [4] implies that the
group 7(T,Y) has the presentation

T(T,Y) = (Gy, ty, ty| TelGy, G = G,
by )T Gylyl byt = Gyt Ga ity = Go, t2 = [y°)

where v € V(T), m € E(T), y € +Y, and x € Y.

The notations of the presentation of 7(7T,Y") are defined as follows.

(i) (G, | relGy) is any presentation of G,.
(ii) Gy = Gy, is the set of relations w(g) = w'(g), where w(g) and w'(g) are
words in the generating symbols of Gy(,,) and G, respectively of value g,
where g is an element in the set of the generators of G,,.
(iii) t,.[y]"'Gylyl. t, ' = G, is the set of relations t,w([y]~'gly] ) t,;' = w(g)
, where w([y]~tg[y]) and w(g) are words in the sets of generating symbols of
G1(y)) and G, (y) of values [y]~tg[y] and g respectively , where g is an element
in the set of the generators of G
(iv) ty .Gy . t; 1 = G, is the set of relations t, w(g)t;! = w'(g), where w(g)
and w’(g) are words in the set of generating symbols of G (,) of values g and
[z] g [] 7! respectively, where g is an element in the set of the generators of G.
(v) t2 = [x]? is the relation 22 = w([x]?), where w([z]?) is a word in the set of
the generating symbols of G,(,) of value [x]
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By Theorem 7.14 of [4], we have the tree (T, Y") defined as follows. V((T,/\}7)) =
{lg,v] : g € 7(T,Y),v € V(T)}, and E((T,Y)) = {lg,y] : g € n(T,Y),y €
E(T)U+Y U+Y U =Y}, where [g,v] is the ordered pair (¢G,,v) and [g,y] is
the ordered pair (9G, y). (Note that if g € G, or g € Gy, then [g,v] = [1,],
and [g,y] = [1,y]). Define the ends and the inverse of the edge [g,y] of (T,Y)
to be as follows. o([g,y]) = [g, (o(y))"]; t(lg, y]) = lgty, (¢(y))"], and

o] = { gty Jlify € E(T)U+Y U+Y

’ gty ylify € =Y
Proposition 7.4 of [4], implies that 7(7T,Y") acts on (7,Y") with inversions as
follows. If f € n(T,Y), [g,v] € V((T,Y)), and [g,v] € E((T,Y)), then f[g,v] =
[fg,v], and flg,y] = [fg,y].
We note that Corollary 7.5 of [4], implies that if y € =Y, then n(T, Y') inverts
all edges [g,y] in (T, Y).
For example, the element ¢, takes the edge [1,y] into its inverse [t,, y], because
Now we show that 7(7T,Y) is isomorphic to G and 7(7,Y") is isomorphic to X.
First we start by the following definitions and propositions.

Definition 3.1. Define the mapping 6 : 7(7,Y) — G by the identity mapping
on G, and by the mapping t, — [y], t; — [z], where v € V(T), y € +Y, and
re-Y.

Proposition 3.2. 6 is an onto homomorphism.

Proof. It is clear that the images [y] and [z] of y and z respectively under
the given mapping t, — [y], t — [z], where y € +Y, and « € —Y satisfy the
defining relations t,.[y]"'Gy[y]. t,;' = Gy, t.. G, . t;' = Ga, and {2 = [z]? of
7(T,Y). So, by Dyck‘'s Theorem [2, Th.14. p.19] the given mapping defines
the given homomorphism 6 : 7(7,Y) — G. Since by Proposition 2.1, G is
generated by G, and by [y] and [z], where v € V(T), y € +Y, and z € Y,
therefore 6 is an onto homomorphism. This completes the proof.

Definition 3.3. Define o : (T,Y) — X by o([g,v]) = (8(g))(v) , and

_{ 0()(y) if oly) € V(T)
7(lo. y]‘{ O l(y) if oly) & V(T)
where v € V(T),andy € E(T)U+Y U+Y U-Y}.

Proposition 3.4. ¢ is an onto morphism.

Proof. It is clear that o maps vertices to vertices and edges to edges. If [f, u]

—_~—

and [g,v] are two vertices of (T,Y") such that [f,u] = [g,v], then uv = v and
JGy = gG.
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Then f = gh, h € G,, and

o([f,ul)

[
S 2

Il
—~

v) because 0 is a homomorphism

becauseh € G,

I
I DD D

Similarly, if [f, z] and [g,y] are two edges of (T,Y") such that [f,z] = [g, ],
then o[f, z] = olg,y].
This implies that o is a well-defined mapping.

—_~—

Now let [g,y] be an edge of (T,Y). We need to prove the following.
(i) a(olg, y]) = o(alg, ),
(i) o(tlg, y]) = t(olg, y]), and

(iii) o([g, y]) = olg, yl-

Now
a(o(lg,y])) = o(lg,(o(y))"])
= (0(9))(o(y))")
= (0(9))(o(y)")
_ { (0(9))(o(y))  ifoly) € V(T)
(0(9)[yl(o(y)) ifoly) & V(T)
_ { o((0(9)(y))  ifoly) € V(T)
o((8(9)wl(y)) ifoly) ¢ V(T)
= o(olg,y]).
a(t(lg,y]) = o(lgty, t(y))"])
= (0(9)ty)((t(y)")
= (0(9)[y)((t(¥)")
_ { ((9)y]lgl(t(v)) ifoly) € V(T)
(0(9)ll(t(y)  ifoly) ¢ V(T)
:{ t((0(9))(y))  ifoly) € V(T)
t((0(9)[yl(y) ifoly) & V(T)
= t(olg, yl),
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lgty, 4] if ye€ E(T)U+Y U+Y
gtyv} if ye =Y

m )Wl(y) if ye E(T)U+Y
0(gt,)) if ye E(T)U+Y
gty))( ifye =Y
])ifyGEUUUjK
7))  ifyeB(T)U+Y
y)() ifye-Y

7) ifye E(T)U+Y

Yy

\'/Ql._.

)
)
)
m
gly]

(3]
()
y
)l
)(

m<
=< O ifye E(T)U+Y
ﬁ if ye =Y

(y) if ye E(T)U+Y

)
y
)

09 +Y
Oy (y) if ye E(T)UFY
©(9) () if ye =Y

Thus o is a well-defined morphlsm. Since 6 is onto, therefore o is onto. This
completes the proof.

—~—

The following concept is needed in order to show that o : (T,Y) — X is an
isomorphism.

If I'y and I's are two graphs, and f : I'y — I's is a morphism, then locally
injective if for every two edges e; and ey of T’y such that o(e;) = o(e2), and
fler) = f(e2), then e; = es.

The following proposition is essential to prove the main theorem of this
section.

Proposition 3.5. ¢ is locally injective.

Proof. Let [a1,e1] and [ag,e2] be two edges of (T,Y) such that olai,e;] =
olag, es] and olaq, ea] = olas, ea]. We need to show that e; = ey, and al_lag €
G, . It is clear that (o(e1))* = (0(e2))* , aj 'as € G(o(er))+» and O(aj 'as)(er) =
eo. This implies that e; and es are in the same G—edge orbit on X. Since e;
and ey are in Y, therefore the properties of Y imply that e; = es, or e; = és.
If e; = e5, then it is clear that 9(al_1a2) € Ge,. Since G, < Gg(e,))+, and 0 is
the identity on G(,(e,))«, therefore ¢ is the identity on G.,. This implies that
ajytay € G,,. Consequently [a1,e1] = [as, €.

If e; = &5, then G(ey,&1) # (. This implies that e, is in —Y;. This contradicts
the fact that the edges of (T,Y") are of the forms [g, ], where g € 7(T,Y), and
y € E(T)U+Y U+Y U-Y. This completes the proof.

For the proof of the following lemma we refer the readers to [6, Lemma 5, p
39].

Lemma 3.6. IfT'; is a connected graph,I's is a tree, and f : 'y — 'y is locally
injective, then f is injective.
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Now we state the main result of this section.

Theorem 3.7. Let G, X,T,Y, 0, and 0 be as above such that X is a tree. Then
(1) o : (T,Y) — X is an isomorphism. (2)0 : n(T,Y) — G is an isomorphism.

Proof. (i) By Proposition 3.4, ¢ is an onto morphism, and by Proposition
3.5, o is locally injective. Since X is a tree, therefore by Lemma 3.6.0 is an
isomorphism.

(ii) Suppose that h € ker(f), and v be any vertex of T. Then o[l,v] =
(0(1))(v) = v, because 6 is a homomorphism, and o[h,v] = (0(h))(v) = v,
since h € ker(#). Then we have olh,v] = o[l,v]. Since ¢ is an isomorphism,
therefore [h,v] = [1,v]. This implies that h € G,. Since 0 restricted to G,
is an isomorphism, therefore h = 1. Since by Proposition 3.2, # is an onto
homomorphism, therefore # is an isomorphism. This completes the proof.
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