Iranian Journal of Mathematical Sciences and Informatics Vol.2, No.1 (2007),pp 39-45

ON QUASI UNIVERSAL COVERS FOR GROUPS ACTING ON TREES WITH INVERSIONS

R. M. S. MAHMOOD

NEW YORK INSTITUTE OF TECHNOLOGY, ABU DHABI, P.O. BOX 51216, UAE.

EMAIL: RASHEEDMSM@YAHOO.COM

ABSTRACT. In this paper we show that if G is a group acting on a tree X with inversions and if $(T; Y)$ is a fundamental domain for the action of G on X, then there exist a group \tilde{G} and a tree \tilde{X} induced by $(T; Y)$ such that \tilde{G} acts on \tilde{X} with inversions, G is isomorphic to \tilde{G} , and X is isomorphic to \tilde{X} . The pair $(\tilde{G}; \tilde{X})$ is called the quasi universal cover of $(G; X)$ induced by the $(T; Y)$.

Keywords: Groups acting on trees with inversions, Fundamental domains,Quasi universal cover, Isomorphic trees.

2000 Mathematics subject classification: Primary 20F65, 20E07, 20E08.

1. Introduction

The structure of groups acting on trees without inversions known as Bass-Serre theory obtained in [6], and the action with inversions obtained by Mahmud in [5]. Let G is a group acting on a tree X without inversions, T be a maximal tree of the quotient graph Y for the action of G on X, and $\tilde{G} = \pi(G, Y, T)$ be the fundamental group of the graph of groups associated with Y relative T as defined in [6, p 42]. Various trees \tilde{X} were constructed on which \tilde{G} acts on \tilde{X} without inversions, G is isomorphic to \tilde{G} , and X is isomorphic to \tilde{X} . For more details we refer the readers to $[1, p 419]$, or $[2, p 205]$, or $[6, p 55]$. In this case $(\tilde{G}; \tilde{X})$ is called the universal cover of $(G; X)$. In this paper we generalize such result to groups acting on trees with inversions as follows. Let G is a group acting on a tree X with inversions, $(T; Y)$ be a fundamental domain for the action of G on X, and $\tilde{G} = \pi(T; Y)$ be the fundamental group of $(T; Y)$ defined

c 2007 Academic Center for Education, Culture and Research TMU.

39

40 MAHMOOD

later. Then there exists a tree denoted $\tilde{X} = (T, Y)$ such that \tilde{G} acts on \tilde{X} with inversions, G is isomorphic to \tilde{G} , and X is isomorphic to \tilde{X} . The pair $(\tilde{G}; \tilde{X})$ is called the quasi universal cover of $(G; X)$ relative to $(T; Y)$.

We begin by giving preliminary definitions. By a $graph X$ we understand a pair of disjoint sets $V(X)$ and $E(X)$ with $V(X)$ non-empty, together with three functions $\partial_0 : E(X) \to V(X), \partial_1 : E(X) \to V(X)$, and $\eta : E(X) \to E(X)$ satisfying the conditions that $\eta \partial_0 = \partial_1$, $\eta \partial_1 = \partial_0$, and η is an involution fixing some elements of $E(X)$. For simplicity, if $e \in E(X)$, we write $\partial_0(e) = o(e)$, $\partial_1(e) = t(e)$, and $\eta(e) = \overline{e}$. This implies that $o(\overline{e}) = t(e)$, $t(\overline{e}) = o(e)$, and $\bar{e} = e$ on which the case $\bar{e} = e$ is allowed. We call the elements of $V(X)$ vertices and those of $E(X)$ edges. For $e \in E(X)$, we call $o(e)$ the *initial* of e, $t(e)$ the terminal of e, and \bar{e} the *inverse* of e. If A is a set of edges of X, define \bar{A} to be the set of inverses of the edges of A. That is, $\overline{A} = {\overline{y} : y \in A}.$

There are obvious definitions of subgraphs, trees, morphisms of graphs and $Aut(X)$, the set of all automorphisms of the graph X which is a group under the composition of morphisms of graphs. For more details we refer the readers to Serre [6], or to Mahmud [5]. We say that a group G acts on a graph X , if there is a group homomorphism $\phi : G \to Aut(X)$. If $x \in X$ (vertex or edge) and $g \in G$, we write $g(x)$ for $(\phi(g))(x)$. If $y \in E(X)$ and $g \in G$, then $g(o(y)) = o(g(y)), g(t(y)) = t(g(y)), \text{ and } g(\bar{y}) = g(y).$ The case $g(y) = \bar{y}$ for some $g \in G$ and some $y \in E(X)$ may occur. That is, G acts on X with inversions.

We have the following notations related to the action of the group G on the $graph X$.

(1) If $x \in X$ (vertex or edge), we define $G(x) = \{g(x) : g \in G\}$, and this set is called the orbit of x. (2) If $x, y \in X$, we define $G(x \to y) = \{g \in G : g(x) = y\}$ and $G(x \to x) = G_x$, the stabilizer of x. Thus $G(x \to y) \neq \emptyset$ if and only if x and y are in the same orbit. It is clear that if $v \in V(X)$, $y \in E(X)$, and $u \in \{o(y), t(y)\}\$, then $G(v, y) = \emptyset$, $G_{\bar{y}} = G_y$, and $G_y \leq G_u$.

2. Structure of groups acting on trees with inversions

The aim of this section is to establish various notational conventions and results that we shall use throughout the paper.

Let G be a group acting on a tree X with inversions. Let T and Y be two subtrees of $X, T \subseteq Y$ satisfying the conditions that T contains exactly one vertex from each vertex orbit, and each edge of Y has at least one end in T and Y contains exactly one edge y from each edge orbit such that $G(y \to \bar{y}) = \emptyset$, and exactly one pair x and \bar{x} from each edge orbit such that $G(x \to \bar{x}) \neq \emptyset$. The pair $(T; Y)$ is called a *fundamental domain* for the action of G on X. It is clear that the structure of Y implies that if e_1 and e_2 are two edges of Y such that e_1 and e_2 are in tha same G−edge orbit, then $e_1 = e_2$, or $e_1 = \overline{e}_2$. For the existence of T and Y we refer the readers to [3].

For the rest of this section G, X, T and Y will be as above. We have the following notations.

(i) Let +Y and -Y be the sets defined as follows. $+Y = \{y \in E(Y) : o(y) \in$ $V(T)$, $t(y) \notin V(T)$, $G(y \to \bar{y}) = \emptyset$, and $-Y = \{x \in E(Y) : o(x) \in V(T)$, $t(x) \notin$ $V(T), G(x \to \bar{x}) \neq \emptyset$. It is clear that $Y = E(T) \cup +Y \cup \overline{+Y} \cup -Y \cup \overline{-Y}$. (ii) For each vertex v of X, let v^* be the unique vertex of T such that $G(v^* \rightarrow$ $(v) \neq \emptyset$. That is, v and v^{*} are in the same vertex orbit.

(iii) For each edge e of $E(T) \cup +Y \cup -Y$ define [e] be an element be an arbitrary element of $G(t(e) \to (t(e)^*)$. That is, $[e]((t(e))^*) = t(e)$ to be chosen as follows. $[e] = 1$ if $e \in E(T)$, and $e = \overline{e}$ if $e \in -Y$.

It is clear that $[e]^{-1}G_e[e]$ is a subgroup of $G_{(t(e))^*}$, and if $e \in -Y$, then $[e]^2 \in G_e$.

Proposition 2.1. G is generated by the elements $[e]$ and by the generators of G_v , where e runs over the edges of Y and v runs over the vertices of T.

Proof. By Theorem 5.1 of [5].

3. Quasi universal covers for groups acting on trees with inversions

Throughout this section G will be a group acting on a tree X with inversions, and $(T; Y)$ be a fundamental domain for the action G on X. In [4], Mahmood introduced the concept of a subfundamental domain $(T_1; Y_1)$ for the action of G on X, and defined it is fundamental group $\pi(T_1; Y_1)$, and then showed that there exists a tree denoted $(T_1; Y_1)$ on which $\pi(T_1; Y_1)$ acts with inversions. In this section we take T_1 and Y_1 of Definition 4.1 of [4] to be $T_1 = T$ and $Y_1 = Y$, and $\tilde{G}_v = G_v$, $\tilde{G}_y = [y]^{-1} G_y[y]$ such that $\phi_y : [y]^{-1} G_y[y] \to G_y$ is given by $\phi_y(g) = [y]g[y]^{-1}$ and $\phi_y(g) = [y]g[y]^{-1}$ if $G(y, \bar{y}) \neq \emptyset$ for any vertex v of T and any edge y of Y. Then by Proposition 5.2 of $[4]$ implies that the group $\pi(T, Y)$ has the presentation

$$
\pi(T, Y) = \langle G_v, t_y, t_x | \operatorname{rel} G_v, G_m = G_{\bar{m}},
$$

$$
t_y.[y]^{-1}G_y[y].t_y^{-1} = G_y, t_x.G_x.t_x^{-1} = G_x, t_x^2 = [y]^2 \rangle
$$

where $v \in V(T)$, $m \in E(T)$, $y \in +Y$, and $x \in -Y$.

The notations of the presentation of $\pi(T, Y)$ are defined as follows.

(i) $\langle G_v | relG_v \rangle$ is any presentation of G_v .

(ii) $G_m = G_{\bar{m}}$ is the set of relations $w(g) = w'(g)$, where $w(g)$ and $w'(g)$ are words in the generating symbols of $G_{t(m)}$ and $G_{o(m)}$ respectively of value g, where g is an element in the set of the generators of G_m .

(iii) t_y .[y]⁻¹ $G_y[y]$. $t_y^{-1} = G_y$ is the set of relations $t_y w([y]^{-1} g[y])$ $t_y^{-1} = w(g)$, where $w([y]^{-1}g[y])$ and $w(g)$ are words in the sets of generating symbols of $G_{(t(y))^*}$ and $G_{o(y)}$ of values $[y]^{-1}g[y]$ and g respectively, where g is an element in the set of the generators of G_y .

(iv) $t_x \tcdot G_x \tcdot t_x^{-1} = G_x$ is the set of relations $t_x w(g) t_x^{-1} = w'(g)$, where $w(g)$ and $w'(g)$ are words in the set of generating symbols of $G_{o(x)}$ of values g and $[x] g [x]^{-1}$ respectively, where g is an element in the set of the generators of G_x . (v) $t_x^2 = [x]^2$ is the relation $x^2 = w([x]^2)$, where $w([x]^2)$ is a word in the set of the generating symbols of $G_{o(x)}$ of value $[x]^2$.

42 MAHMOOD

By Theorem 7.14 of [4], we have the tree (T, Y) defined as follows. $V ((T, Y)) =$ $\{[g, v] : g \in \pi(T, Y), v \in V(T)\}, \text{ and } E((T, Y)) = \{[g, y] : g \in \pi(T, Y), y \in V(T)\}$ $E(T) \cup +Y \cup \overline{+Y} \cup -Y$, where $[g, v]$ is the ordered pair (gG_v, v) and $[g, y]$ is the ordered pair (gG_y, y) . (Note that if $g \in G_v$, or $g \in G_y$, then $[g, v] = [1, v]$, and $[g, y] = [1, y]$. Define the ends and the inverse of the edge $[g, y]$ of (T, Y) to be as follows. $o([g, y]) = [g, (o(y))^*], t([g, y]) = [gt_y, (t(y))^*],$ and

$$
\overline{[g,y]} = \begin{cases} [gt_y,\bar{y}] if y \in E(T) \cup +Y \cup \overline{+Y} \\ [gt_y,y] if y \in -Y \end{cases}
$$

.

Proposition 7.4 of [4], implies that $\pi(T, Y)$ acts on (T, Y) with inversions as follows. If $f \in \pi(T, Y)$, $[g, v] \in V((\widetilde{T, Y})$, and $[g, v] \in E((\widetilde{T, Y}))$, then $f[g, v] =$ $[fg, v]$, and $f[g, y] = [fg, y]$.

We note that Corollary 7.5 of [4], implies that if $y \in -Y$, then $\pi(T, Y)$ inverts all edges $[g, y]$ in (T, Y) .

For example, the element t_y takes the edge [1, y] into its inverse [t_y , y], because $[1, y] = [t_y, y] = t_y[1, y].$

Now we show that $\pi(T, Y)$ is isomorphic to G and $\pi(T, Y)$ is isomorphic to X. First we start by the following definitions and propositions.

Definition 3.1. Define the mapping $\theta : \pi(T, Y) \to G$ by the identity mapping on G_v and by the mapping $t_y \to [y], t_x \to [x]$, where $v \in V(T)$, $y \in +Y$, and $x \in -Y$.

Proposition 3.2. θ is an onto homomorphism.

Proof. It is clear that the images $[y]$ and $[x]$ of y and x respectively under the given mapping $t_y \to [y], t_x \to [x]$, where $y \in Y$, and $x \in Y$ satisfy the defining relations t_y . $[y]^{-1}G_y[y]$. $t_y^{-1} = G_y$, t_x . G_x . $t_x^{-1} = G_x$, and $t_x^2 = [x]^2$ of $\pi(T, Y)$. So, by Dyck's Theorem [2, Th.14. p.19] the given mapping defines the given homomorphism $\theta : \pi(T, Y) \to G$. Since by Proposition 2.1, G is generated by G_v and by [y] and [x], where $v \in V(T)$, $y \in +Y$, and $x \in -Y$, therefore θ is an onto homomorphism. This completes the proof.

Definition 3.3. Define $\sigma : \widetilde{(T, Y)} \to X$ by $\sigma([g, v]) = (\theta(g))(v)$, and $\sigma([g, y] = \begin{cases} (\theta(g))(y) & \text{if } o(y) \in V(T) \\ (\theta(g))(g)(g)(g) & \text{if } g(g) \notin V(T) \end{cases}$ $(\theta(g))y$ if $o(y) \notin V(T)$ where $v \in V(T)$, and $y \in E(T) \cup +Y \cup \overline{+Y} \cup -Y$.

Proposition 3.4. σ is an onto morphism.

Proof. It is clear that σ maps vertices to vertices and edges to edges. If $[f, u]$ and $[g, v]$ are two vertices of (T, Y) such that $[f, u] = [g, v]$, then $u = v$ and $fG_v = gG_v.$

Then $f = gh$, $h \in G_v$, and

$$
\sigma([f, u]) = \sigma([gh, v])
$$

\n
$$
= (\theta(gh))(v)
$$

\n
$$
= (\theta(g)\theta(h))(v)
$$
 because θ is a homomorphism
\n
$$
= \theta(g)(\theta(h))(v)
$$

\n
$$
= \theta(g)(\sigma[h, v])
$$

\n
$$
= \theta(g)(\sigma[1, v])
$$
 because $h \in G_v$
\n
$$
= \theta(g)(\theta(1))(v)
$$

\n
$$
= \theta(g)(1)(v)
$$

\n
$$
= \sigma([g, v]).
$$

Similarly, if $[f, x]$ and $[g, y]$ are two edges of $\widetilde{(T, Y)}$ such that $[f, x] = [g, y],$ then $\sigma[f, x] = \sigma[g, y]$.

This implies that σ is a well-defined mapping.

Now let $[q, y]$ be an edge of (T, Y) . We need to prove the following. (i) $\sigma(o[g, y]) = o(\sigma[g, y]),$ (ii) $\sigma(t[g, y]) = t(\sigma[g, y])$, and (iii) $\sigma(\overline{[g, y]}) = \overline{\sigma[g, y]}$. Now $\sigma(o([g, y])) = \sigma([g, (o(y))^*])$ $= (\theta(g))(o(y))^*)$ $= (\theta(g))(o(y)^*)$ $=\begin{cases} (\theta(g))(o(y)) & if o(y) \in V(T) \\ (0(a))\cup(a(a)) & if o(a) \notin V(T) \end{cases}$ $(\theta(g))[y](o(y))$ if $o(y) \notin V(T)$ $=\begin{cases}o((\theta(g))(y))& \text{if } o(y)\in V(T),\end{cases}$ $o((\theta(g))y)$ if $o(y) \notin V(T)$ $= o(\sigma[g, y]).$ $\sigma(t([g, y])) = \sigma([gt_y, (t(y))^*)]$ $= (\theta(g)t_y)((t(y))^*)$

$$
= (\theta(g)[y])((t(y))^*)
$$

\n
$$
= \begin{cases}\n(\theta(g))[y][\overline{y}](t(y)) & if o(y) \in V(T) \\
(\theta(g))[y](t(y)) & if o(y) \notin V(T)\n\end{cases}
$$

\n
$$
= \begin{cases}\nt((\theta(g))(y)) & if o(y) \in V(T) \\
t((\theta(g))y & if o(y) \notin V(T)\n\end{cases}
$$

\n
$$
= t(\sigma[g, y]),
$$

44 MAHMOOD

$$
\sigma(\overline{[g,y]}) = \begin{cases}\n[gt_y,\overline{y}] & \text{if } y \in E(T) \cup +Y \cup \overline{+Y} \\
[gt_y,y] & \text{if } y \in -Y\n\end{cases}
$$
\n
$$
= \begin{cases}\n(\theta(gt_y))\overline{y} & \text{if } y \in E(T) \cup +Y \\
(\theta(gt_y))(\overline{y}) & \text{if } y \in E(T) \cup \overline{+Y} \\
(\theta(gt_y))(y) & \text{if } y \in -Y\n\end{cases}
$$
\n
$$
= \begin{cases}\n(\theta(g[y]))\overline{y} & \text{if } y \in E(T) \cup \overline{+Y} \\
(\theta(g[y]))(\overline{y}) & \text{if } y \in E(T) \cup \overline{+Y} \\
(\theta(g[y]))(\overline{y}) & \text{if } y \in -Y\n\end{cases}
$$
\n
$$
= \begin{cases}\n(\theta(g))(\overline{y}) & \text{if } y \in E(T) \cup \overline{+Y} \\
(\theta(g))(\overline{y}) & \text{if } y \in E(T) \cup \overline{+Y} \\
(\theta(g))(\overline{y}) & \text{if } y \in -Y\n\end{cases}
$$
\n
$$
= \begin{cases}\n(\overline{\theta(g)})(y) & \text{if } y \in E(T) \cup \overline{+Y} \\
(\overline{\theta(g)})(y) & \text{if } y \in E(T) \cup \overline{+Y} \\
(\overline{\theta(g)})(y) & \text{if } y \in -Y\n\end{cases}
$$
\n
$$
= \overline{\sigma[g, y]}.
$$

Thus σ is a well-defined morphism. Since θ is onto, therefore σ is onto. This completes the proof.

The following concept is needed in order to show that $\sigma : \widetilde{(T, Y)} \to X$ is an isomorphism.

If Γ_1 and Γ_2 are two graphs, and $f : \Gamma_1 \to \Gamma_2$ is a morphism, then locally injective if for every two edges e_1 and e_2 of Γ_1 such that $o(e_1) = o(e_2)$, and $f(e_1) = f(e_2)$, then $e_1 = e_2$.

The following proposition is essential to prove the main theorem of this section.

Proposition 3.5. σ is locally injective.

Proof. Let $[a_1, e_1]$ and $[a_2, e_2]$ be two edges of (T, Y) such that $o[a_1, e_1] =$ $o[a_2, e_2]$ and $\sigma[a_1, e_2] = \sigma[a_2, e_2]$. We need to show that $e_1 = e_2$, and $a_1^{-1}a_2 \in$ G_{e_1} . It is clear that $(o(e_1))^* = (o(e_2))^*$, $a_1^{-1}a_2 \in G_{(o(e_1))^*}$, and $\theta(a_1^{-1}a_2)(e_1) =$ e₂. This implies that e_1 and e_2 are in the same $G-\overset{\sim}{\text{edge}}$ orbit on X. Since e_1 and e_2 are in Y, therefore the properties of Y imply that $e_1 = e_2$, or $e_1 = \overline{e}_2$. If $e_1 = e_2$, then it is clear that $\theta(a_1^{-1}a_2) \in G_{e_1}$. Since $G_{e_1} \leq G_{(o(e_1))^*}$, and θ is the identity on $G_{(o(e_1))*}$, therefore θ is the identity on G_{e_1} . This implies that $a_1^{-1}a_2 \in G_{e_1}$. Consequently $[a_1, e_1] = [a_2, e_2]$.

If $e_1 = \overline{e}_2$, then $G(e_1, \overline{e}_1) \neq \emptyset$. This implies that e_2 is in $\overline{-Y_1}$. This contradicts the fact that the edges of (T, Y) are of the forms $[g, e]$, where $g \in \pi(T, Y)$, and $y \in E(T) \cup +Y \cup \overline{+Y} \cup -Y$. This completes the proof.

For the proof of the following lemma we refer the readers to [6, Lemma 5, p 39].

Lemma 3.6. If Γ_1 is a connected graph, Γ_2 is a tree, and $f : \Gamma_1 \to \Gamma_2$ is locally injective, then f is injective.

ON QUASI UNIVERSAL COVERS... 45

Now we state the main result of this section.

Theorem 3.7. Let G, X, T, Y, σ , and θ be as above such that X is a tree. Then $(1) \sigma : (T, \overline{Y}) \to X$ is an isomorphism. $(2) \theta : \pi(T, Y) \to G$ is an isomorphism.

Proof. (i) By Proposition 3.4, σ is an onto morphism, and by Proposition 3.5, σ is locally injective. Since X is a tree, therefore by Lemma 3.6. σ is an isomorphism.

(ii) Suppose that $h \in \text{ker}(\theta)$, and v be any vertex of T. Then $\sigma[1, v] =$ $(\theta(1))(v) = v$, because θ is a homomorphism, and $\sigma(h, v) = (\theta(h))(v) = v$, since $h \in \text{ker}(\theta)$. Then we have $\sigma[h, v] = \sigma[1, v]$. Since σ is an isomorphism, therefore $[h, v] = [1, v]$. This implies that $h \in G_v$. Since θ restricted to G_v is an isomorphism, therefore $h = 1$. Since by Proposition 3.2, θ is an onto homomorphism, therefore θ is an isomorphism. This completes the proof.

REFERENCES

- [1] I. M. Chiswell, Embedding theorems for groups with an integer-valued length function, Math. Proc. Camb. Phil. Soc. 85 (1979), 417-429.
- [2] D. E. Cohen, Combinatorial Group Theory, a topological approach (London Mathematical Society Lecture Notes 4, Cambridge University Press, Cambridge), (1989).
- [3] M. Khanfar, and R. M. S. Mahmud, A note on groups acting on connected graphs, J. Univ. Kuwait Sci. 16 (1989), no. 2, 205-208.
- [4] R. M. S. Mahmood, Groups acting on graphs with inversions. Submitted.
- [5] R. M. S. Mahmud, Presentation of groups acting on trees with inversions, Proc. Roy. Soc. Edinburgh Sect. A 113 (1989), no. 3-4, 235-241.
- [6] J. P. Serre, Arbres, Amalgames, SL_2 , Aste' risque No. 46, Socie' te' Mathe' matique France. Paris, (1977) (French), English translation, Trees, Springer-Verlag, Berlin (1980).