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Abstract. This paper is concerned with the effect of pure shear on the
reflection from a plane boundary of infinitesimal plane waves propagating
in a half-space of incompressible isotropic elastic material.

For a special class of constitutive laws it is shown that an incident
plane harmonic wave propagating in the considered plane gives rise to a
surface wave in addition to a reflected wave (with angle of reflection equal
to the angle of incidence) although its amplitude may vanish at certain
discrete angles but is independent of the state of deformation. Reflected
wave amplitude is exactly equal to one in this case.

For a second class of constitutive laws similar behavior is found for
certain combinations of angle of incidence, material properties and de-
formations, but additional possibilities also arise. In particular, there
may be two reflected waves instead of one reflected wave and a surface
wave. Here surface wave amplitude depends upon the pure shear and the
reflected wave amplitude is not equal to one in general.

The dependence of the amplitudes of the reflected, and surface waves
on the angle of incidence, the states of deformation is illustrated graphi-
cally.
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2 W. HUSSAIN

1. Introduction

Wave propagation characteristics of elastic materials are used exten-
sively for the determination of material properties. The effect of finite defor-
mation on the propagation of surface waves in elastic solids was first discussed
by Hayes and Rivlin [8] and Biot [1]. Surface waves in pre-stressed compress-
ible elastic solids were also examined by Chadwick and Jarvis [2], while aspects
of surface wave propagation and their connection with stability of the finite
deformation were analyzed by Dowaikh and Ogden [6] and Connor and Ogden
[3] for incompressible materials and by Dowaikh and Ogden [7] for compressible
materials.These papers contain detailed references to other contributions.

Some basic aspects of plane wave propagation and reflection in pre-stressed
solids have been examined in the paper by Sidhu and Singh [13], while Norris
[10] has pointed to errors in several earlier papers by a number of authors.
Inhomogeneous ‘longitudinal’ plane waves in a deformed elastic solid is done
by Destrade and Hayes [4], and recently Destrade and Ogden [5] studied surface
waves in a stretched and sheared incompressible elastic materials. Santosa and
Symes [12] gave the analysis of dispersive effective medium for wave propagation
in periodic composites.

In [9] the effect of finite strain on wave reflections by considering a half-space
of incompressible isotropic elastic material subject to simple shear is studied.
The direction of shear is taken to be parallel to the half-space boundary and
the effect of principal axes orientation on waves and deformations in a half-
space has been exemplified. Here one principal axes of primary deformation
is no longer normal to the boundary and in general Cartesian axes are not
coincident with the principal axes of deformation.

The purpose of this paper is to analyze the effect of pure shear deformation
on the reflection of plane waves from the plane boundary of a half-space. The
considered finite deformation is a pure homogeneous strain so that the orienta-
tion of the principal axes of strain is fixed whatever the magnitude of the strain.
In general, the principal axes of deformation are aligned (one normal to the
boundary) with the Cartesian axes. Specifically, we illustrate the results which
typify the influence of finite strain by considering incompressible materials, so
that plane waves are necessarily transverse. We restrict attention to a finite
homogeneous deformation which corresponds to pure shear and to the propa-
gation of plane waves in a principal plane of deformation with polarization in
that plane. The influence of the finite deformation on the reflection of plane
waves at a plane boundary is the primary concern. It is shown, in particular,
that for a given incident SV wave two separate reflected SV waves with dif-
ferent speeds (and directions) are in general required to satisfy the boundary
conditions. The reflection coefficients of two waves are obtained. Conditions
under which (a) one of the reflected waves is replaced by a surface wave, and
(b) two plane harmonic waves may be reflected when the angle of incidence lies
within certain ranges of values (which depend on the pure shear deformation)
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THE EFFECT OF PURE SHEAR ... 3

are found. Outside this range there is in general a single reflected wave, and a
surface wave is generated.

The required equations and notations are summarized in Section 2. In Sec-
tion 3 the propagation of plane harmonic waves is discussed with reference to
the slowness curves in respect of two distinct classes of strain-energy functions.

In Section 4 the reflection coefficients (or amplitudes in case of a surface
wave) for the two categories of strain-energy functions are calculated. For a
certain class of constitutive laws it is shown that for each angle of incidence a
single reflected wave, with angle of reflection equal to the angle of incidence, is
generated when a homogeneous plane (SV) wave is incident on the boundary of
the half-space, and it is accompanied by a surface wave (whose amplitude may
vanish for certain discrete angles of incidence). For a second class of constitutive
laws, two reflected (homogeneous plane SV) waves may be generated instead
of one reflected and one surface wave.

The theory in Section 4 is illustrated in Section 5 using graphical results to
show the dependence of the amplitudes of the waves on the angle of incidence
for representative values of the material and deformation parameters.

2. Basic equations

We identify the undeformed configuration of the material, B0 say, and
let a material particle in B0 be labelled by its position vector X. Let x be
the position vector of the same particle in the deformed configuration, B say.
We write the deformation of the material from B0 to B, χ say, as

(2.1) x = χ(X), X ∈ B0.

The deformation gradient tensor A is defined as

(2.2) A = Gradχ,

where Grad denotes the gradient with respect to X, and is subject to the usual
condition

(2.3) detA > 0.

The polar decomposition theorem enables A to be written as

(2.4) A = VR,

where R is a proper orthogonal tensor and V is the symmetric and positive
definite left stretch tensor.

For a volume preserving deformation we have

(2.5) detA ≡ λ1λ2λ3 = 1,

where λi (> 0) (i = 1, 2, 3) are the principal stretches.
Let S denote the nominal stress tensor. Then, the equilibrium equation, in

the absence of body forces, is

(2.6) DivS = 0,
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4 W. HUSSAIN

where Div is the divergence operator in the reference configuration. For a
(homogeneous) elastic material with strain-energy function W = W (A) per
unit volume, subject to the incompressibility constraint (2.5), we have

(2.7) S =
∂W

∂A
− pA−1,

where p is a Lagrange multiplier. In addition, if the material is isotropic, W
depends symmetrically on λ1, λ2, λ3 subject to (2.5) and we write W (λ1, λ2, λ3).

Since the material is isotropic, the principal Cauchy stresses are given by

(2.8) σi = λi
∂W

∂λi
− p, i ∈ {1, 2, 3}.

For (plane strain) deformations confined to the (1, 2)-plane, we may set
λ3 = 1, so that (2.5) reduces to

(2.9) λ1λ2 = 1.

Homogeneous pure shear deformation is defined by

(2.10) λ1 = λ �= 1, λ2 = λ−1, λ3 = 1 with σ1 �= 0, σ2 = 0,

where a non-vanishing stress σ3 is required to maintain λ3 = 1.
Superimposed on the deformation just described we consider incremental

motions in the (x1, x2)-plane with displacement vector v having components

v1(x1, x2, t), v2(x1, x2, t), v3 = 0.

The (linearized) incremental incompressibility condition divv = 0 enables
v1, v2 to be expressed in terms of a scalar function, ψ(x1, x2, t) say, so that

(2.11) υ1 = ψ,2, υ2 = −ψ,1,

where ,i denotes ∂/∂xi, i ∈ {1, 2}.
The incremental nominal stress tensor is denoted by Σ when referred to the

deformed configuration. Its components are given by

(2.12) Σji = A0jilkvk,l + pvj,i − πδij ,

where π is the increment in p and A0jilk are the components of the fourth-order
tensor A0 of instantaneous elastic moduli (see, for example, Ogden [11]).

The components of A0 in terms of the derivatives of the strain-energy
function W are given by

A0iijj = λiλjWij ,

A0ijij =
(λiWi − λjWj)λ2

i

(λ2
i − λ2

j)
i �= j, λi �= λj ,

A0ijij =
1
2
(A0iiii −A0iijj + λiWi) i �= j, λi = λj ,

(2.13) A0ijji = A0jiij = A0ijij − λiWi i �= j,

where Wi = ∂W/∂λi, Wij = ∂2W/∂λi∂λj and there is no summation over
repeated indices. Here, the components A0jilk are constants because the de-
formation under consideration is homogeneous.
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The equation of motion is given by

(2.14) A0jilkvk,jl − π,i = ρv̈i, i ∈ {1, 2},
where ρ is the mass density of the material and there is summation from 1 to
2 over repeated indices.

The equations of motion (2.14) yield, on restriction to the considered plane
motion,

(2.15) (A01111−A01122+p)υ1,11−π,1+A02121υ1,22+(A02121−σ2)υ2,12 = ρϋ1,

(2.16) (A02222−A02211+p)υ2,22−π,2+A01212υ2,11+(A02121−σ2)υ1,12 = ρϋ2,

where a superposed dot indicates the material time derivative.
Elimination of π between (2.15) and (2.16), and use of (2.11) yields an

equation for ψ, namely

(2.17) αψ,1111 + 2βψ,1122 + γψ,2222 = ρ(ψ̈,11 + ψ̈,22),

as given in [3], where the constants α, β, γ are defined by

(2.18) α = A01212, γ = A02121, 2β = A01111 +A02222−2A01122−2A01221.

From (2.12), on use of (2.11), the shear and normal components of the in-
cremental nominal traction Σ21, Σ22 on a plane x2 = constant are expressible
in terms of ψ through

(2.19) Σ21 = γψ,22 − (γ − σ2)ψ,11,

(2.20) −Σ22,1 = (2β + γ − σ2)ψ,112 + γψ,222 − ρ p̈si,2,

in the latter of which the incremental hydrostatic pressure π has been elimi-
nated by differentiating Σ22 with respect to x1 and then using (2.15).

3. Plane waves

We consider time-harmonic homogeneous plane waves of the form

(3.1) ψ = A exp[ik(x1 cos θ + x2 sin θ − ct)],

where A is a constant, c (> 0) the wave speed, k (> 0) the wave number and
(cos θ, sin θ) the direction cosines of the direction of propagation of the wave
in the (x1,x2)-plane. Substitution of (3.1) into (2.17) gives

(3.2) α cos4 θ + 2β sin2 θ cos2 θ + γ sin4 θ = ρc2.

Equation (3.2) is a relationship between the wave speed and the propagation
direction in the (x1,x2)-plane and is called the propagation condition. The
material constants are taken to satisfy the strong ellipticity inequalities

(3.3) α > 0, γ > 0, β > −√
αγ,

and it is clear from (3.2) that ρc2 > 0 if and only if (3.3) hold.
Similarly, from (2.17), for an inhomogeneous plane wave of the form

(3.4) ψ = Â exp[ik′(x1 − imx2 − c′t)],
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we obtain

(3.5) α− 2βm2 + γm4 = ρ(1 −m2)c′2,

which relates the wave speed c′ to the ‘inhomogeneity factor’ m. Note that
the wave decays exponentially as x2 → −∞ provided m has positive real part.

We now consider a half-space of incompressible isotropic elastic material.
The half-space is subjected to pure shear deformation in such a way that the
principal directions of strain are aligned, one direction being normal to the
boundary. In rectangular Cartesian coordinates we take the boundary to be
x2 = 0.

Let λ1, λ2, λ3 be the stretches associated with the half-space x2 < 0 with
strain-energy function W, and the material constants α, β, γ defined by (2.13)
with (2.18).

Two distinct strain-energy functions are now examined since these exemplify
the range of possible behavior encountered. For these either 2β = α + γ or
2β �= α+ γ, in x2 < 0.

3.1. Case A: 2β = α+γ. For this case equations (3.2) and (3.5) reduce
to

(3.6) α cos2 θ + γ sin2 θ = ρc2

and

(3.7) (m2 − 1)(α− γm2 − ρc′2) = 0

respectively.
In terms of the slowness vector (s1, s2) defined by

(3.8) (s1, s2) = (cos θ, sin θ)/c

equation (3.6) becomes the slowness curve

(3.9) λ4s1
2 + s2

2 = ρ, x2 < 0,

in the (s1, s2)-space, where ρ is defined by

(3.10) ρ = ρ/γ,

and α/γ = λ4 follows from (2.13) and (2.18).
By using the dimensionless notation defined (s1, s2) defined by

(3.11) (s1, s2) ≡ (s1, s2)/
√
ρ,

we can write (3.9) as

(3.12) λ4s1
2 + s2

2 = 1, x2 < 0.

Slowness curves for x2 < 0 are shown in Figure 1 for illustrative values of λ.
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Figure 1. Slowness curves in (s1, s2)-space for 2β = α + γ
with the following values of λ : (a), 1; (b), 1.6; (c), 2.2.

3.2. Case B: 2β �= α+γ. In this case we take the strain-energy function
to satisfy β =

√
αγ which was used by Hussain and Ogden in [9]. Then (3.2)

takes the form

(3.13) [
√
α cos2 θ +

√
γ sin2 θ]2 = ρc2

and (3.5) becomes

(3.14) (
√
α−√

γm2)2 = ρ(1 −m2)c′2.

The slowness curve corresponding to (3.13) is given by

(3.15) [λ2s21 + s22]
2 = s1

2 + s2
2, x2 < 0

in dimensionless form with the notation (3.11) and ρ defined by (3.10).
As in Case A we illustrate the slowness curves for particular values of λ for

x2 < 0 in Figure 2.

4. Reflection from a plane boundary

We now consider a wave incident on the boundary x2 = 0 from the
region x2 < 0 with direction of propagation (cos θ, sin θ) in the (x1, x2)-plane
and speed c. Because of the symmetry with respect to the normal direction
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Figure 2. Slowness curves in (s1, s2)-space for β =
√
αγ

with the following values of λ : (a), 0.9; (b), 1.4; (c), 2.

to the boundary we henceforth, without loss of generality, restrict attention to
the values of θ in the interval [0, π/2].

We write the solution comprising the incident wave, a reflected wave (with
angle of reflection equal to the angle of incidence) and a surface wave in x2 < 0
as

ψ = A exp[ik(x1 cos θ + x2 sin θ − ct)] +AR exp[ik(x1 cos θ − x2 sin θ − ct)]

(4.1) + AR′ exp[ik′(x1 − imx2 − c′t)],

where R is the reflection coefficient and R′ measures the amplitude of the
surface wave. The notations k′,m, c′ are as used in (3.4) and m has positive
real part, so that the surface wave, decays as x2 → −∞.

According to Snell’s law we have k cos θ = k′ or, equivalently,

(4.2) cos θ/c = 1/c′.

The coefficients R,R′ will be determined by application of the boundary
conditions Σ21 = 0 and Σ22,1 = 0 on x2 = 0, where expressions for Σ21 and
Σ22,1 are given by Eqs. (2.19) and (2.20). Again we consider Cases A and B
separately.
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4.1. Case A: 2β = α + γ. In this case we see from Eq.(3.7) that m =
±1, which yields a surface wave in the half-space x2 < 0 for m = 1. The
zeros of the other quadratic factor in (3.7) correspond to m = i tan θ and
m = −i tan θ, which are associated, respectively, with the incident and reflected
waves in x2 < 0. Thus, in x2 < 0 the solution (4.1) applies with m = 1.

With the specialization 2β = α+ γ, for the case of pure shear, use of Eqs.
(2.19) and (2.20) enables the boundary conditions Σ21 = 0 and Σ22,1 = 0 on
x2 = 0 to be expressed in the form

(4.3) ψ,11 = ψ,22 on x2 = 0,

(4.4) (λ4 + 2)ψ,112 + ψ,222 − ρψ̈,2 = 0, on x2 = 0,

where ρ is given by (3.10).
Using (4.1) (with m = 1)appropriately specialized in Eqs.(4.3) and (4.4),

we obtain

(4.5) (1 +R)(1 − t2) + 2R′ = 0,

(4.6) 2i(R− 1)t+R′(t2 − 1) = 0.

Eqs. (4.5) and (4.6) are solved to give

(4.7) R =
−(t2 − 1)2 + 4it
(t2 − 1)2 + 4it

,

(4.8) R′ =
4it(t2 − 1)

(t2 − 1)2 + 4it
,

and the notation

(4.9) t = tan θ

has been introduced. Note that t should be distinguished from the time variable
t used earlier.

From (4.7) it follows that |R| = 1 for all angles on incidence and |R| does
not vanish for any angle of incidence. In addition both |R| and |R′| are
independent of the material parameters and the stretch λ.

Graphical result showing the dependence of |R′| on θ is described in Section
5.1.

4.2. Case B: β =
√
αγ. In this case, from (3.14), after using α/γ = λ4

and Snell’s law cos θ/c = 1/c′,we have

(4.10) (1 + t2)(λ2 −m2)2 = (1 −m2)(λ2 + t2)2,

which can be organized as

(4.11) (m2 + t2)[m2(1 + t2) − t2 + λ2(λ2 − 2)] = 0.

Note that m = +it and m = −it are the solutions of (4.11) corresponding to
the incident and reflected waves respectively. The other solutions are

(4.12) m = ±
√

1 − (λ2 − 1)2/(1 + t2).
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If λ ≤ √
2 then m is real for all θ and the positive solution of (4.12)

corresponds to a surface wave in x2 < 0. If λ >
√

2 then there is a critical
value of θ, θc say, for which m = 0 and this is given by

(4.13) tc
2 = λ2(λ2 − 2),

where the notation tc = tan θc is used. It follows that m is real for θc ≤ θ ≤
π/2. For θc < θ ≤ π/2 there is a reflected wave accompanied by a surface
wave and for θ = θc the surface wave becomes a plane shear (body) wave
propagating parallel to the boundary in x2 < 0 (grazing reflection). When
0 < θ < θc the surface wave is replaced by a second reflected wave with angle
of reflection, θ′ say, obtained from (4.12) by replacing m by −i tan θ′ to give

(4.14) t′2 = {λ2(λ2 − 2) − t2}/(1 + t2),

where t′ = tan θ′. The speed c′ of the second reflected wave is obtained from
Snell’s law in the form c′ = c cos θ′/ cos θ together with (4.14).

The two reflected waves coincide when the angle of incidence, θ0 say, is
given by

(4.15) t20 = λ2 − 2,

where t0 = tan θ0. Clearly, this gives a non-trivial real angle only if λ >
√

2.
As in Case A, the solution ψ may be written in the form (4.1), with m

in (4.1) given by the positive solution of (4.12) when real and replaced by
−i tan θ′ when imaginary.

The coefficients R, R′ are determined by using the boundary conditions
(4.3) and (4.4), with (4.4) taking the form

(4.16) (2λ2 + 1)ψ,112 + ψ,222 − ρψ̈,2 = 0

in this case. By substituting the value of ψ from (4.1) in (4.3), and (4.16) we
obtain

(4.17) (R + 1)(1 − t2) +R′(1 +m2) = 0,

(4.18) (R − 1)it(m2 + 1) +R′m(t2 − 1) = 0,

respectively. In the latter equation use has been made of Eq. (4.12) in order
to simplify the coefficients.

The solutions of (4.17) and (4.18) may be written in the form

(4.19) R =
t(1 +m2)2 + im(t2 − 1)2

t(1 +m2)2 − im(t2 − 1)2
,

(4.20) R′ =
2(m2 + 1)(t2 − 1)t

t(1 +m2)2 − im(t2 − 1)2
.

In these equations, for given t, m is obtained from Eq. (4.12) so as to have
positive real part. Note that the Eqs. (4.19) and (4.20) reduce to (4.7) and
(4.8) when m is set equal to 1.

From (4.19) it follows that |R| = 1 provided m is real for all angles on
incidence. In addition |R′| does depend upon the stretch λ.
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Figure 3. Plot of |R′| (surface wave amplitude) against
θ (0 ≤ θ ≤ π/2) for 2β = α+ γ.

In Section (5.2) graphical results for R and R′ (when real) and their abso-
lute values (when complex) are given for illustration.

5. Numerical results

In Sections 5.1 and 5.2 some graphical results are given for Cases A and
B, respectively.

5.1. Case A: 2β = α + γ. Recalling (4.8) it is convenient to display
|R′| as a function of θ for the range 0 ≤ θ ≤ π/2. In Fig. 3, |R′| is plotted
and it is easily seen that |R′| vanishes where the numerator in (4.8) becomes
zero i.e. at θ = 0 and θ = π/4. As well as in the case of normal incidence
(θ = π/2), the amplitude of the surface wave becomes zero.

There is no non-trivial result for grazing incidence since |R| = 1 and R′ = 0
when θ = 0. In this case there is only one reflected wave and one surface wave
for each angle of incidence.
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5.2. Case B: β =
√
αγ. For this case graphical results are given in

Figs. 4-7. In Figs. 4(a-c), with reference to the slowness curves in Figs. 2(a-b),
there is one reflected wave accompanied by a surface wave in x2 < 0 for each
angle of incidence. As in Case A, there are no non-trivial results for grazing
incidence.

In Figs. 4(a-c), we have |R| = 1 since λ ≤ √
2 as discussed in Section 4

and the character of surface wave amplitude |R′| (against different stretches)
for m to be real and positive is shown and is very similar to that shown in
Fig. 3 which is independent of the stretch λ. Note that the value of |R′| varies
prominently with λ when 0 < θ < π/4.

With reference to the slowness curves in Fig. 2(c) we have two intervals,
namely 0 ≤ θ ≤ θc with two reflected waves and θc ≤ θ ≤ π/2 with one
reflected wave accompanied by a surface wave, where θc, approximately 1.1
here, is the critical value identified in Eq. (4.13). Note that for θ = θ0,
approximately 0.995, the two reflected waves coincide and then |R′| = 1 and
R = 0.

As for the previous examples it is convenient to display results on the interval
(0, π/2) when there are two reflected waves, R and R′ are real. Otherwise,
they are complex. We therefore plot the results by showing R and R′ for the
interval (0, θc) (in Figs. 5 and 6(a)) and |R′| only for (θc, π/2), (in Fig. 6(b))
by bearing in mind that |R| = 1 and further |R| and |R′| are continuous across
the boundaries between intervals. Note that the horizontal scales in Fig. 6(a)
and Fig. 6(b) are very different and, in particular, the interval corresponding
to Fig. 6(b) is very short. The fine detail of the behavior exemplified would not
show up clearly on a smaller scale.

The results in Fig. 6 are combined as plots of |R′| on the single interval
(0, π/2) in Fig. 7 in order to facilitate comparison with the results shown in
Fig. 4. In Figs. 4(a-c) |R′| vanishes at three values of θ, we find, by contrast,
that here it can vanish at 4 points. 4th point is the critical angle ≈ 1.1. The
differences arise for λ = 2 as compared with λ ≤ √

2 are due essentially to
conversion of a surface wave into a second reflected wave.

In Fig. 7 note that the maximum value of |R′| increases with λ, and the
strength of the surface wave is focussed more and more in a narrow band of
incident angles as λ increases. This latter effect is less marked than for the
surface wave amplitudes in Figs. 4(a-c). The changes in the vertical scale of
Fig. 7 with each of Figs. 4 should be noted.

The above results show the general character of the effect of pure shear on
the reflection of plane waves at the boundary of an elastic half-space. All the
figures have been produced using Mathematica [14].
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Figure 4. Plots of |R′| (surface wave amplitude) against
θ (0 ≤ θ ≤ π/2) for β =

√
αγ and the following values of

λ: (a) 1.4 (b) 0.9 (c) 0.05.
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Figure 5. Plot of R (reflection coefficient) against θ (0 ≤ θ ≤
1.1) for β =

√
αγ and λ = 2.
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Figure 6. Plot of R′ (reflected wave) against θ in (a) and of
|R′| (surface wave amplitude) in (b) for β =

√
αγ with λ = 2.
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Figure 7. Plot of |R′| against θ (0 ≤ θ ≤ π/2) for β =
√
αγ

with λ = 2.
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