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ABSTRACT. The character table of the fully nonrigid water cluster (cyclic
forms), (H20);, with C;; symmetry derived for the first time, for 2 <
i < 6. The group of all feasible permutations is the wreath product of
groups S;[S2] which consists of 12 operations for i = 2,...,6 divided
into ( w.r.t) 5, 10, 20, 36, 65 conjugacy classes and 5, 10, 20, 36, 65
irreducible representations respectively. We compute the full character
table of (H20)2,(H20)3, (H20)4,(H20)5 and (H20)s.
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1. INTRODUCTION

Although the extent of tunneling would depend on the actual barriers, there is a com-
pelling need to consider the molecular symmetry groups of the nonrigid cluster from semirigid
to fully nonrigid limits. Longuet-Higgins [1] has formulated the symmetry groups of nonrigid
molecules as permutation-inversion groups by including all feasible permutation of the nuclei
under such fluxional or tunneling motions. Up to now, the character table of the fully non-
rigid (H20); with C;; symmetry for ¢ = 2,...,6 has not been obtained. Balasubramanian
[2-8] has shown that the groups of nonrigid molecules can be expressed as wreath product
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and generalized wreath product groups. These groups have also been used in a number of
chemical applications such as enumeration of isomers [9-12], weakly bound van der Waals, or
hydrogen-bonded complexes such as (NH3)2, (NH3)a, (CsHg)2, etc. [1, 13-17], polyhedral
structures [18,19], spectroscopy [ 14-17,20], and cluster [21]. King [18,19] has applied the
wreath product groups to represent the symmetries of four-dimensional analogues of poly-
hedra, Thus, apart from the current motivation of calculating the fully nonrigid (H20O); for
2 < i < 6, there is considerable interest in wreath product groups of higher order and their
character tables. Balasubramanian [5] has applied combinatorial methods without the con-
struction of the character tables for the spin statistics of protonated forms of water cluster.
In this study, we have derived the character table of the nonrigid (H20); for 2 < ¢ < 6 in
its full nonrigid limit. The resulting group is shown to be the wreath product S;[S2], for
2 < i < 6 where the group S, is a permutation group of n! operation, and the square bracket
symbol stands for wreath products.

We show that the fully nonrigid (H20); with C;j, symmetry exhibits a group of 3!2% op-

FIGURE 1. (H20)g

erations for i = 2,...,6 divided into 5, 10, 20, 36, 65 conjugacy classes and 5, 10, 20, 36,
65 irreducible representations respectively. We have obtained the character tables of these
groups.

2. WREATH PRODUCT OF THE GROUP S;[S2] FOR WATER CLUSTERS (H20);, 2 <1 <6

Although the theory of wreath product groups and related mathematical details have
been described in sufficient details elsewhere [3, 6]. We provide the salient points so that
this work on (H20);, 2 < i < 6 is sufficiently self contained. Suppose that G is the group
of permutations of the oxygen nuclei in the fully nonrigid limit where they are allowed to
exchange and H is the group of permutations of the protons owing to the facile flipping
motion. Thus G is the set of i! permutations of i oxygen nuclei, and H is the group Sa of
protons on each Water molecule that corresponds to the flipping motion which exchanges
these protons. In general, the permutation group S, [22-24] consists of n! permutations of
n objects of a set of chosen nuclei, denoted by € to represent the rigid framework. Note
that the notation S, that we use here differs from the point group S, that corresponds to
n fold improper axis of rotation. All references to S, in this work mean the permutation
group of n! operations. As the oxygen atoms get permuted, they carry the protons attached
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to them, and so induce a permutation of the protons. Consequently, the overall group of
(H20); becomes the wreath product of G with H, denoted by G[H], which becomes S;[S2]
in this case. The wreath product group G[H] is defined as the set of permutations

{(g;m)|m™ is a mapping of Q into H,g € G}
and the product of two permutations is defined by
(g:m)(g' 7)) = (g9 s 7my)
where
7g(1) = w(g~t),Vi € Q
m (i) = (i) (3),Vi € Q
An element of G[H] is represented by (g;hi,h2,...,hn), where g € G and h; € H. Thus,

the group G[H| contains |G||H|™ elements where n is order of Q. In the case of (H20);, the
order of the full nonrigid permutation group is given by

|S;[S2]| = i!(2)°
The group S;[S2] is isomorphic with
Si[S2] = (S2 % ... x S2) A S,

where the symbols x and A stand for direct and semidirect product, respectively.

3. CoNnJuGACcYy CLASSES

Let Sp[H] be the group under consideration and (g;7) be an element of Sy[H]. If we
adopt the convention to begin each cyclic factor with the least symbol included in the cycle
decomposition of g, then we can associate with each cyclic factor [§;g(5), 9%(5), -, 9" (5)] of
g the unique element 7mgm 2...mgr (j) = 7(f)wlg=1(G)]...7[g7"(5)] in Sn. Let us call this
element the cyclic product associated with [4;g(4), g%(4), ..., 9" (j)] with respect to 7. Let the
permutation g € Sy, be of the type Ty = (a1, a2,...,an) ( where a; denotes cycles of length
i ). There are ay, cycle products (defined above) associated with the the aj cycles of length
k of g with respect to w. Let C1,C>,...,Cs be the conjugacy classes of H. If exactly a;p of
these cycle products belong to C;, then the s X n matrix defined below is the cycle type of
an element (g; 7) of the wreath product T'(g;7) = a;,(1 <7< s,1 <k <n).

Let P(m) denote the number of partitions of the integer m, with the convention that P(0) =
1. Let n be partitioned into the ordered s-tuples (n) = (n1,n2,...,ns) such that Y n; =n.
(Recall that s is the number of conjugacy classes of H). Then the number of conjugacy
classes of Sy [H] is

> P(n1)P(nz)...P(ns).

(n)
For a proof see Kerber [25]. The order of the conjugacy class whose matrix type is (a;x) [26]
is given by

| Sw[H]]|

IT; 5, aan! (k.| H|/|Ci])2ir”
Therefore, we can compute the conjugacy classes of S;[S2] for i = 2,3,4, 5,6 which are shown
in the following Tables .

Table 1: conjugacy classes of S2[Ss]
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No | Class Representation | Order | Symbole
1 Identity 1 la
2 (3,4) 2 2a
3 (1,2)(3,4) 1 2b
4 (1,3)(2,4) 2 2c
5 (1,3,2,4) 2 4a

Table 2: conjugacy classes of S3[S2]

No | Class Representation | Order | Symbole
1 Identity 1 la
2 (5,6) 3 2a
3 (3,4)(5,6) 3 2b
4 (3,5)(4,6) 6 2c
5 (3,5,4,6) 6 2d
6 (1,2)(3,4)(5,6) 1 2e
7 (1,2)(3,5)(4,6) 6 2f
8 (1,2)(3,5,4,6) 6 4a
9 (1,3,5)(2,4,6) 8 3a
10 (1,3,5,2,4,6) 8 6a

Table 3: conjugacy classes of S4[S2]

No | Class Representation | Order | Symbole
1 Identity 1 la
2 (7,8) 4 2a
3 (5,6)(7,8) 6 2b
4 (5,7)(6,8) 12 2c
5 (5,7,6,8) 12 4a
6 (3,4)(5,6)(7,8) 4 2d
7 (3,4)(5,7)(6,8) 24 2e
8 (3,4)(5,7,6,8) 24 4b
9 (3,5,7)(4,6,8) 32 3a
10 (3,5,7,4,6,8) 32 3b
11| (1,2)(3,4)(5,6)(7,8) 1 2f
12 (1,2)(3,4)(5,7)(6,8) 12 2g
13 (1,2)(3,4)(5,7,6,8) 12 2h
14 (1,2)(3,5,7)(4,6,8) 32 6a
15 (1,2)(3,5,7,4,6,8) 32 6b
16 (1,3)(2,4)(5,7)(6,8) 12 2i
17 (1,3)(2,4)(5,7,6,8) 24 4c
18 (1,3,2,4)(5,7,6,8) 12 4d
19 (1,3,5,7)(2,4,6,8) 48 4e
20 (1,3,5,7,2,4,6,8) 48 8a
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Table 4: conjugacy classes of S5[S2]

No Class Representation Order | Symbole
1 Identity 1 la
2 (9,10) 5 2a
3 (7,8)(9,10) 10 2b
4 (5,6)(7,8)(9,10) 10 2c
5 (3,4)(5,6)(7,8)(9,10) 5 2d
6 (1,2)(3,4)(5,6)(7,8)(9,10) 1 2e
7 (7,9)(8,10) 20 2f
8 (7,10,8,9) 20 4a
9 (5,6)(7,9)(8,10) 60 2g
10 (5,6)(7,10,8,9) 60 4b
11 (3,4)(5,6)(7,9)(8,10) 60 2h
12 (3,4)(5,6)(7,10,8,9) 60 4c
13 | (1,2)(3,4)(5,6)(7,9)(8,10) 20 2i
14 (1,2)(3,4)(5,6)(7,10,8,9) 20 4d
15 (5,7,9)(6,8,10) 80 3a
16 (5,7,10,6,8,9) 80 6a
17 (3,4)(5,7,9)(6,8,10) 160 6b
18 (3,4)(5,7,10,6,8,9) 160 6c
19 (1,2)(3,4)(5,7,9)(6,8,10) 80 6d
20 (1,2)(3,4)(5,7,10,6,8,9) 80 6e
21 (3,5)(4,6)(7,9)(8,10) 60 2j
22 (3,5)(4,6)(7,10,8,9) 120 4e
23 (3,6,4,5)(7,10,8,9) 60 4f
24 | (1,2)(3,5)(4,6)(7,9)(8,10) 60 2k
25 (1,2)(3,5)(4,6)(7,10,8,9) 120 4g
26 (1,2)(3,6,4,5)(7,10,8,9) 60 4h
27 (3,5,7,9)(4,6,8,10) 240 4i
28 (3,5,7,10,4,6,8,9) 240 8a
29 (1,2)(3,5,7,9)(4,6,8,10) 240 4j
30 (1,2)(3,5,7,10,4,6,8,9) 240 8b
31 (1,3)(2,4)(5,7,9)(6,8,10) 160 6f
32 (1,3)(2,4)(5,7,10,6,8,9) 160 6g
33 (1,4,2,3)(5,7,9)(6,8,10) 160 12a
34 (1,4,2,3)(5,7,10,6,8,9) 160 12b
35 (1,3,5,7,9)(2,4,6,8,10) 384 5a
36 (1,3,5,7,10,2,4,6,8,9) 384 10a

17
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Table 5: conjugacy classes of Sg[S2]

No Class Representation Order | Symbole
1 0 1 1a
2 (11,12) 6 2a
3 (9,10)(11,12) 15 2b
4 (7,8)(9,10)(11,12) 20 2¢
5 (5,6)(7,8)(9,10)(11,12) 15 2d
6 (3,4)(5,6)(7,8)(9,10)(11,12) 6 2e
7 (1,2)(3,4)(5,6)(7,8)(9,10)(11,12) 1 2f
8 (9,11)(10,12) 30 2g
9 (9,12,10,11) 30 4a
10 (7,8)(9,11)(10,12) 120 2h
11 (7,8)(9,12,10,11) 120 4b
12 (5,6)(7,8)(9,11)(10,12) 180 2i
13 (5,6)(7,8)(9,12,10,11) 180 4c
14 (3,4)(5,6)(7,8)(9,11)(10,12) 120 2j
15 (3,4)(5,6)(7,8)(9,12,10,11) 120 ad
16 | (1,2)(3,4)(5,6)(7,8)(9,11)(10,12) 30 2k
17 | (1,2)(3,4)(5,6)(7,8)(9,12,10,11) 30 de
18 (7,9,11)(8,10,12) 160 3a
19 (7,9,12,8,10,11) 160 6a
20 (5,6)(7,9,11)(8,10,12) 480 6b
21 (5,6)(7,9,12,8,10,11) 480 6c
22 (3,4)(5,6)(7,9,11)(8,10,12) 480 6d
23 (3,4)(5,6)(7,9,12,8,10,11) 480 6e
24 | (1,2)(3,4)(5,6)(7,9,11)(8,10,12) 160 6f
25 (1,2)(3,4)(5,6)(7,9,12,8,10,11) 160 6g
26 (5,7)(6,8)(9,11)(10,12) 180 21
27 (5,7)(6,8)(9,12,10,11) 360 af
28 (5,8,6,7)(9,12,10,11) 180 4g
29 (3,4)(5,7)(6,8)(9,11)(10,12) 360 2m
30 (3,4)(5,7)(6,8)(9,12,10,11) 720 4h
31 (3,4)(5,8,6,7)(9,12,10,11) 360 4i
32 | (1,2)(3,4)(5,7)(6,8)(9,11)(10,12) 180 2n
33 (1,2)(3,4)(5,7)(6,8)(9,12,10,11) 360 4j
34 (1,2)(3,4)(5,8,6,7)(9,12,10,11) 180 4k
35 (5,7,9,11)(6,8,10,12) 720 41
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Continue of Table 5

No Class Representation Order | Symbole
36 (5,7,9,12,6,8,10,11) 720 8a
37 (3,4)(5,7,9,11)(6,8,10,12) 1440 4m
38 (3,4)(5,7,9,12,6,8,10,11) 1440 8b
39 (1,2)(3,4)(5,7,9,11)(6,8,10,12) 720 4n
40 (1,2)(3,4)(5,7,9,12,6,8,10,11) 720 8c
41 (3,5)(4,6)(7,9,11)(8,10,12) 960 6h
42 (3,5)(4,6)(7,9,12,8,10,11) 960 61
43 (3,6,4,5)(7,9,11)(8,10,12) 960 12a
44 (3,6,4,5)(7,9,12,8,10,11) 960 12b
45 (1,2)(3,5)(4,6)(7,9,11)(8,10,12) 960 6j
46 (1,2)(3,5)(4,6)(7,9,12,8,10,11) 960 6k
a7 (1,2)(3,6,4,5)(7,9,11)(8,10,12) 960 12¢
48 (1,2)(3,6,4,5)(7,9,12,8,10,11) 960 12d
49 (3,5,7,9,11)(4,6,8,10,12) 2304 5a
50 (3,5,7,9,12,4,6,8,10,11) 2304 10a
51 (1,2)(3,5,7,9,11)(4,6,8,10,12) 2304 10b
52 (1,2)(3,5,7,9,12,4,6,8,10,11) 2304 10¢
53 | (1,3)(2,4)(5,7)(6,8)(9,11)(10,12) 120 20
54 | (1,3)(2,4)(5,7)(6,8)(9,12,10,11) 360 40
55 (1,3)(2,4)(5,8,6,7)(9,12,10,11) 360 4p
56 (1,4,2,3)(5,8,6,7)(9,12,10,11) 120 4q
57 (1,3)(2,4)(5,7,9,11)(6,8,10,12) 1440 Ar
58 (1,3)(2,4)(5,7,9,12,6,8,10,11) 1440 8d
59 (1,4,2,3)(5,7,9,11)(6,8,10,12) 1440 4s
60 (1,4,2,3)(5,7,9,12,6,8,10,11) 1440 8e
61 (1,3,5)(2,4,6)(7,9,11)(8,10,12) 640 3b
62 (1,3,5)(2,4,6)(7,9,12,8,10,11) 1280 61
63 (1,3,6,2,4,5)(7,9,12,8,10,11) 640 6m
64 (1,3,5,7,9,11)(2,4,6,8,10,12) 3840 6n
65 (1,3,5,7,9,12,2,4,6,8,10,11) 3840 12e

4. CHARACTER TABLES OF WREATH PRODUCT GROUPS OF S;[S2], 2 <i<6

We compute character tables of above groups by GAP[27], and developed following pro-
gramm for GAP, and we run this programm for i = 2,3,4,5,6, and we obtained character
table of any nonrigid group

gap> si := SymmetricGroup(i);

gap>s2 := SymmetricGroup(2);

gap> g := WreathProduct(s2,si);
gap> Display(CharacterTable(g));

Table 6: character table of S2[S5]
la 2a 2b 2c 4a

xt | 1 1 1 1 1
x2| 1 -1 1 1 -1
xs| 1 1 1 -1 -1
xa| 1 -1 1 -1 1
xs| 2 0 -2 0 0
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Table 7: character table of S3[S2]

2a 2b 2c 4a 2d 2 4b 3a ©6a

la

3

X1

X2

X3

X5

X6

X7

X8

X9

X10

Table 8: character table of S4[S>]

2a 2b 2c 4a 2d 2 4b 3a 6a 2f 2g 4c 6b 6¢c 2h 4d 4e 4f 8a

la

4

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10
X11

X12
X13
X14
X15
X16
X17
X18
X19
X20



www.sid.ir
www.sid.ir

21

Nonrigid Group Theory of Water Clusters ...

Table 9: character table of S5[S2]

2a 2b  2c 2d 2e 2f 4a 2 4b 2h 4c 2i 4d 3a 6a 6b 6¢c 6d 6e 2j 4de 4f

la

5

0

10
10
10
10
10
10
10
10
10
10
15
15
15
15
20
20
20
20

-10

10

15
-15

20

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10
X11

X12
X13
X14

X16
X17
X18
X19
X20
X21
X22
X23
X24
X25
X26
X27
X28
X29
X30
X31
X32
X33
X34
X35
X36
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Continue of Table 9

4g 4h 41 8a 4j 8b 6f 6g 12a 12b 5a 10a

2k

-1

X3

X4

X9

X10

X11

X13

X14

X15

X18

X19

X20

X21

X26

X271

X35

X36
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Table 10: character table of Sg[S2]

ST Y HOC OO A A A AT T TG
Sl Tadad T YT T7o0c00 T YR A AT AT AT T Voo
ST Tl a T T RPn P o000 T T A AR 0D P oo
Sl r AN T T T TN NM MO0 0 O A A A mMmmm®mmn Mmoo
T TR T T AT TN Va0 0000
Rt T TP T AT TPV afa® Yool er~oow®
ot e faaf?fesfaganiass sy Tooy
[T 7R 7 7 a0 -7 w77 ~000
IFTF T RN T Y o000 aVaT AT Poo o
Q=7 79T 70000 aTammPRN——F TFTooo0
e I R e R o B o B R R B R R I I BB IE)
ST T e T T A AT AR 0PN Ta T A AT ST Y000
ST T o T A T T P00 RPaTarE N w0000
Fe et T TN T AT AT TR0 a0~ o0 ®
Sle PR EEeeeer0002 252888223888 8R
T TeRe YR TsT 030233229 nReYnido
o= mwwwownwe 3 0dococa g 3837777777728«
2c141J5u_u5u_uu_uu_u5500009@9@%%NW33333333M%0
%11115555555522229999_nl.v_nl.v_nl.v_nl.u_l_._|_._|_._|_._|_A_|_A_|_A_|_Aww.u_»A
rTmTeReReRoreTeTe203 332390 R0 do
B Y R R e R e e e B ]
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Continue of Table 10

2a 2b 2c 2d 2e 2f 2g 4a 2h 4b 21 4c 2j 4d 2k 4e 3a 6a 6b 6¢
-20

la

20
20
20
24
24
24
24
30
30
30
30
30
30
30
30
36
36
40

-20

-24

-16
16
-16
16
-20

16
-16

-24

-24

16
-16
20
-20
20
-20
-10
-10

-24

-30

-10
-10
-10
-10

10
10
10
10

-30

20
-20

-30
-30

20
-10
-10

30
30
30
30
-36

10
10
-24
24

10

10

24
-24

-12
-12

12
12

-36

40

40

-40

40

0

0

45
-80

15

15 - -

45
80

16

-16

X36
X37
X38
X39
X40
X40
X42
X43
X44
X45
X46
X471
X48
X49
X50
X51
X52
X53
X54
X55
X56

X64
X65
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Continue of Table 10

6e o6f 6g 21 4f 4g 2m 4h 4 2n 4] 4k 4 8a 4m 8b 4n 8¢ 6h 6i 12a  12b

6d

-1
-1
-1
-1
-1
-1
-1

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10
X11

X12
X13
X14
X15

X16

X18
X19
X20
X21
X22
X23
X24
X25
X26
X27
X28
X29
X30
X31
X32
X33
X34
X35
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Continue of Table 10

6e 6f 6g 21 4f 4g 2m 4h 4i 2n 4j 4k 4 8 4m 8b 4n 8c 6h 6i 12a 12b

6d

X36
X371
X38
X39
X40
X41
X42
X43
X44
X45
X46
X471
X48
X49
X50
X51
X52
X53
X54
X55
X56
X57
X58
X59
X60
X61
X62
X63
X64
X65
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Continue of Table 10

10b 10c 20 40 4p 4q 4r 8d 4s 8e 3b 61 6m 6n 12e

10a

6k 12c 12d

6j

-1

-1

X2

X3

X4

X5

X6

X7

X8

X9

X10
X11

X12
X13
X14
X15

X16
X17
X18
X19
X20
X21
X22
X23
X24
X25
X26
X27

X29

X31
X32
X33
X34
X35



www.sid.ir
www.sid.ir

M. Dabirian and A. Iranmanesh

28

Continue of Table 10

6k 12¢ 12d 5a 10a 10b 10c 20 40 4p 4q  4r 8d 4s 8e 3b 61 6m 6n 12e

6j

X36
X371
X38
X39
X40
X41
X42
X43
X44
X45
X46
X471
X48
X49
X50
X51
X52
X53
X54
X55
X56
X57
X58
X59
X60
X61
X62
X63
X64
X65
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5. CONCLUSION

The present character table for water clusters (cyclic forms) has been deduced from:
— the structure of group:

Si[S2] = (S2 x Sa... X S2) A S;. fori=2,3,...6
— The group of all feasible permutations is the wreath product S;[S2] which consists of
i!(2)? operations for i = 2,...,6 divided into ( w.r.t) 5, 10, 20, 36, 65 conjugacy classes and
5, 10, 20, 36, 65 irreducible representations respectively.
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