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Abstract. The Merrifield-Simmons index of a graph is defined as the

total number of the independent sets of the graph and the Hosoya index

of a graph is defined as the total number of the matchings of the graph.

In this paper, we give formula for Merrifield-Simmons and Hosoya indices

of some classes of cartesian product of two graphs K2 × H, where H is a

path graph Pn, cyclic graph Cn, or star graph Sn, with n vertices (These

are called: ladder graph, prism graph, and book graph).
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Introduction

Let G be a graph with vertex set V(G) and edge set E(G). A subset
C ⊆ V(G) is a minimal vertex cover of G if: (1) every edge of G is incident with
one vertex in C, and (2) there is no proper subset of C with the first property.
Note that C is a minimal vertex cover if and only if V(G) \ C is a maximal
independent set (two vertices of G are said to be independent if they are not
adjacent in G). The Merrifield-Simmons index of G, denoted by i(G), is defined
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as the total number of the independent sets of G. The Merrifield-Simmons in-
dex was introduced in 1982 in a paper of Prodinger and Tichy [11], although
it is called Fibonacci number of a graph there. The Merrifield-Simmons index
is one of the most popular topological indices in chemistry, which was exten-
sively studied in a monograph [9]. There have been many papers studying
the Merrifield-Simmons index. In [11], it is shown that, for n-vertex trees, the
star has the maximal Merrifield-Simmons index and the path has the mini-
mal Merrifield-Simmons index. In [7], Li et al characterized the tree with the
maximal Merrifield-Simmons index among the trees with given diameter. In
[10], Pedersen and Vestergaard studied the Merrifield-Simmons indices of the
unicyclic graphs. In [3], Deng, Chen and Zhang determined the upper bound
for the Merrifield-Simmons index in (n, n + 1)-graphs in terms of the order n

(recall that a (n, n + 1)-graph is a connected simple graph with n vertices and
n + 1 edges). In [14], H. Wang and Hua determined unicycle graphs with the
largest and smallest Merrifield-Simmons index. In [15], M. Wang, Hua and D.
Wang investigated the Merrifield-Simmons index for a tree with n vertices and
with k pendent vertices.

First we having a description of introduction of [13]:
The number of different structures with the formula C64H130 is more than

one hundred million billion times greater that the number of different molecules
of all types (and formulas) cataloged in all of human history. Therefore, it
is imperative that theoretical chemists develop methods to predict properties
of molecules from their structure so that synthetic chemists can identify on
which of the enumerable molecular structures they should expend their fi-
nite resources. This is one of the primary reasons for developing quantative
structure-property relationships.

The Hosoya index (Z) is an example of a graph invariant, called a topological
index, which may be calculated directly from the structure of a molecule [12].
Topological indices have proven to be very useful in QSPR models, especially
when a physical property such as the normal boiling point is modeled for a
specific family of molecular graphs [8].

Similarly, two edges of G are said to be independent if they are not adjacent
in G. A k-matching of G is a set of k mutually independent edges. Denote
by z(G, k) the number of the k-matchings of G. For convenience, we regard
the empty edge set as a matching. Then z(G, 0) = 1 for any graph G. The
Hosoya index of G, denoted by z(G), is defined as z(G) =

∑[n/2]
k=0 z(G, k).

Obviously, z(G) is equal to the total number of matchings of G. The Hosoya
index of a graph was introduced by Hosoya [6] and was applied to correlations
with boiling points, entropies, calculated bond orders, as well as for coding of
chemical structures [9]. Since then, many authors have investigated the Hosoya
index (e.g., see [1], [2], [4], [5]). In [16], Yu and Lv characterized the trees with
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maximal Merrifield-Simmons indices and minimal Hosoya indices, respectively,
among the trees with k pendant vertices.

In this paper we investigate the Merrifield-Simmons indices and the Hosoya
indices for the Cartesian graph product G = K2 × H in the following cases:

(1) H = Pn, where Pn is a path graph with n vertices (this is called ladder
graph of order n).

(2) H = Cn, where Cn is a cyclic graph with n vertices (this is called prism
graph of order n).

(3) H = Sn, where Sn is a star graph with n vertices (this is called book
graph of order n).

1. Main results

The Cartesian graph product G = G1 × G2, sometimes simply called the
graph product of graphs G1 and G2 with disjoint point sets V1 and V2 and edge
sets E1 and E2 is the graph with point set V1 × V2 and u = (u1, u2) adjacent
with v = (v1, v2 whenever (u1 = v1 and u2 adjacent v2) or (u1 adjacent v1 and
u2 = v2). The ladder graph of order n is defined as Ln = K2 × Pn, where Pn

is a path graph. The graph obtains via this definition has the advantage of
looking like a ladder, having two rails and rungs between them.

A prism graph of order n, Yn, is the graph Cartesian product Yn = K2×Cn,
where K2 is the complete graph on two vertices and Cn is the cycle graph on
n vertices. This graph is corresponding to the skeleton of an n-prism. Prism
graphs are therefore both planar and polyhedral. A prism graph of order n has
2n vertices and 3n edges.

The book graph of order n, Bn, is defined as the graph Cartesian product
Bn = K2 × Sn, where Sn is a star graph and K2 is the complete graph on two
vertices.
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The following theorem is one of the main result of this paper.

Theorem 1.1. Let Ln be a ladder graph, Yn prism graph, and Bn book graph
of order n. Then

(a) i(Ln) = 1/2(1 +
√

2)n+1 + 1/2(1−
√

2)n+1.

(b) i(Yn) = 3
√

2/2[(1 +
√

2)n−1 − (1 −
√

2)n−1] + (−1)n−1.
(c) i(Bn) = 2n + 3n−1.

Proof. (a) Note that Ln has four corner vertices. Let Hn be the graph comes
from Ln by removing one of a corner vertex (see Table 1). Let S be an in-
dependent set of Ln and let v be the corner vertex of Ln. We consider two
cases.

Case 1. Assume that v ∈ S. Clearly S \ v is an independent set of Hn−1.
Thus the number of independent sets of Ln is equal to i(Hn−1).

Case 2. Assume that v /∈ S. In this case S is an independent set of
Hn and so the number of independent sets of Ln is equal to i(Hn). Thus
i(Ln) = i(Hn) + i(Hn−1) for n > 1.

By a same argument we have i(Hn) = i(Hn−1)+ i(Ln−1) for n > 1. Thus by
solving equations system, we have i(Ln) = 2i(Ln−1) + i(Ln−2) with the initial
conditions i(L1) = 3 and i(L2) = 7. Now the assertion follows from solving
this system of equations.

(b) Set On be a graph obtained from Ln by removing two corner vertices
of opposite side (for example left below row and right above row) and Sn be a
graph obtained from Ln by removing two corner vertices of the same row (for
example left and right above row). Then from part (a) we have

i(Hn) = 1/2[i(Ln) + i(Ln−1)] =
√

2/2[(1 +
√

2)n+1 − (1 −
√

2)n+1].

In addition, we have i(On) = i(Hn−1)+i(Sn−1) and i(Sn) = i(Hn−1)+i(On−1).
Thus

i(On) − i(On−2) = i(Hn−1) + i(Hn−2) = (1 +
√

2)n + (1 −
√

2)n = 2i(Ln−1).

By solving the above non-homogenous linear recursion relation we conclude
that i(On) = C1 + C2(−1)n + C3(1 +

√
2)n + C4(1 −

√
2)n.

Now by solving this equation we have

i(On) = 1/4[(1 +
√

2)n+1 + (1 −
√

2)n+1] + (−1)n/2.
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Now clearly i(Yn) = i(Ln)−2i(Sn−2). Thus i(Yn) = 3
√

2/2[(1+
√

2)n−1 − (1−√
2)n−1] + (−1)n−1.
(c) Suppose that v and v′ are center of two copies of stars, and

E(Bn) = {vv′, vvi, v
′v′i, viv

′
i|1 ≤ i ≤ n − 1}.

Suppose that S is an independent set of Bn. If v ∈ S, then S \ v is an
independent set of K̄n−1, which in this case we have 2n−1 independent set.

Now suppose that v /∈ S, then we consider two cases.
Case 1 If v′ ∈ S, then again S \ {v′} is an independent set of K̄n−1. Hence

we have 2n−1 independent set.
Case 2 If v′ /∈ S, then S is an independent set of n − 1 parallel edges

and hence we have 3n−1 independent set in this case. This implies, i(Bn) =
2n + 3n−1.

�

The following theorem is the second main result of this paper.

Theorem 1.2. Let Ln be a ladder graph, Yn prism graph, and Bn book graph
of order n. Then

(a) z(Ln) = 3z(Ln−1) + z(Ln−2) − z(Ln−3)
(b) z(Yn+1) − z(Yn−1) = 3z(Hn+1) + z(Hn−3).
(c) z(Bn) = 2n−3(n2 + 3n + 4).

Proof. (a) Consider one of the right edge of Ln (an edge of Ln with two end
of degree 2). Suppose that M is any matching in Ln. If e /∈ M , then M is
a matching in the graph Tn. So in this case the number of matching will be
Z(Tn). If e ∈ M , then M \ {e} is a matching in Ln−1, and so in this case the
number of matching is Z(Ln−1). Thus Z(Ln) = Z(Ln−1) + Z(Tn).

Now let e be an edge of Tn with an end vertex of degree 1. Suppose that M

is a matching in Tn. No matter that e does or does not belong to M we have
that Z(Tn) = Z(Cn) + Z(Hn). Therefore

Z(Ln) = Z(Ln−1) + Z(Cn) + Z(Hn).

By a same argument we can show that

Z(Hn) = Z(Ln−1) + Z(Hn−1) (1)
Z(Cn) = Z(Hn−1) + Z(Ln−2) (2)

By considering the above recursive relations, we obtain

Z(Ln) = 3Z(Ln−1) + Z(Ln−2) − Z(Ln−3) (3)

This is a recursive relations of order 3 and by solving these equations we
have Z(Ln) = c1r

n
1 + c2r

n
2 + c3r

n
3 . But Z(L1) = 2, Z(L2) = 7, and Z(L3) = 22.

Therefore we can find the coefficient ci.
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(b) Consider two consecutive vertices v1 and v2 in the cycle Cn and suppose
that v′1, v

′
2 are the corresponding vertices of v1, v2 in the copy of Cn, respec-

tively. Set v1v2 = e and v′1v
′
2 = e′. Suppose that M is a matching of Yn.

Consider the following three cases:
Case 1. Let e, e′ ∈ M . Then M \ {e, e′} is a matching in the ladder Ln−2.

So the number of matching in this case is equal to Z(Ln−2).
Case 2. Let e, e′ /∈ M . Then M is a matching in the ladder Ln and so the

number of matching is equal to Z(Ln).
Case 3. e /∈ M and e′ ∈ M . Then M \ {e′} is a matching of Sn. Thus the

number of matching is equal to z(Sn).
Therefore

Z(Yn) = Z(Ln) + Z(Ln−2) + 2Z(Sn) (4)

By the same argument we have that

Z(Sn) = Z(Hn−1) + Z(On−1) (5)
Z(On) = Z(Hn−1) + Z(Sn−1) (6)

By (1) and the recursive relations of Z(Ln), we conclude that

Z(Hn+1) = 4Z(Hn) − 2Z(Hn−1) − 2Z(Hn−2) + Z(Hn−3) (7)

and hence Z(Hn) = c′1r1 + c′2r2 + c′3r3 + c′4, where r1, r2, r3 are the roots of
recursive relation of Z(Ln). Now by considering Z(H1) = 1, Z(H2) = 3,
Z(H3) = 10, and Z(H4) = 32, we can find the coefficient c′i. By combination
of recursive relations 4, 5, 6, we conclude that

Z(Yn+1) − Z(Yn−1) = 2Z(Hn−1) + 2Z(Hn) + Z(Ln+1) − Z(Ln−3) (8)

Now from 1 and 8 we have

Z(Yn+1) − Z(Yn−1) = 3Z(Hn+1) + Z(Hn−3).

(c) Suppose that v and v′ are center of two copies of stars, and

E(Bn) = {vv′, vvi, v
′v′i, viv

′
i|1 ≤ i ≤ n − 1}.

Also suppose that M is a matching of Bn. If e = vv′ ∈ M , then M \ {e}
is a supset of {viv

′
i|1 ≤ i ≤ n − 1}. Hence in this case we have 2n−1 dif-

ferent matching. If e = vv′ /∈ M , then M is a matching in the edge set
{vvi, v

′v′i, viv
′
i|1 ≤ i ≤ n − 1}. but S = |M ∩ {vvi|1 ≤ i ≤ n − 1}| ≤ 1 and

S′ = |M ∩ {v′v′i|1 ≤ i ≤ n − 1}| ≤ 1. Now consider the following cases:
Case 1. Let S = S′ = 0. Then M is a supset of {vvi|1 ≤ i ≤ n− 1} and so

we have 2n−1 different matchings.
Case 2. Let S = 1 and S′ = 0. Assume that vvj ∈ M . Then M \ {vvj}

is subset of {viv
′
i|1 ≤ i ≤ n − 1, i 6= j}. So we have 2n−2 different matchings.

Since 1 ≤ j ≤ n we have (n − 1)2n−2 different matchings.
Case 3. Let S = 0 and S′ = 1. This is the same as Case 2.

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


The Merrifield-Simmons indices and Hosoya indices ... 47

Case 4. Let S = 1 and S′ = 1. Assume that vvi, v
′v′j ∈ M . If i = j, then

M \ {vvi, v
′v′j} ⊆ {vkv′k|1 ≤ k ≤ n − 1, k 6= i}. Hence we have 2n−2 different

matchings. In addition, we have (n − 1) choice for i, and so we have (n)2n−2

different matchings. If i 6= j, then M \ {vvi, v
′v′j} ⊆ {vkv′k|1 ≤ k ≤ n, k 6= i}.

Hence we have 2n−3 different matchings for a fixed i and j. Since we have
(n−1)(n−2) choice for i and j, we have (n−1)(n−2)2n−3 different matchings.

Therefore

Z(Bn) = 2.2n−1 + (n − 1)2n−2 + (n − 1)2n−2 + (n − 1)2n−2 + (n − 1)(n − 2)2n−3

= 2n−3(n2 + 3n + 4).

�

Remark 1.3. Note that in Theorem 1.2, the solving of the recursive relations
of Z(Ln) and Z(Hn) deduced that r1 = 2r1/3 cos(ϕ/3) + 1, r2 = 2r1/3 cos(ϕ +
2π/3) + 1, and r3 = 2r1/3 cos(ϕ + 4π/3) + 1, where cosϕ = 3

√
3/8, and r =

8/3
√

3. By applying the primary conditions, we can find the coefficient ci’s. In
addition,

Z(Yn) = d1r
n
1 + d2r

n
2 + d3r

n
3 + d4 + d5(−1)n.

Ln

q q q1 2 3

1′ 2′ 3′

n

n′

q qq q q q q. . .

. . . Hn

q q2 3

1′ 2′ 3′

n

n′

q qq q q q q. . .

. . .

Tn

q q q1 2 3

1′ 2′ 3′

n

n′

q qq q q q q. . .

. . . Sn

q q2 3

1′ 2′ 3′ n′

qq q q q q. . .

. . .

On

q q2 3

1′ 2′ 3′

nq qq q q q. . .

. . . Cn

q3
1′ 2′ 3′

n

n′

q qq q q q q. . .

. . .

Table 1
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