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Abstract. In this paper we try to put different practical aspects of the

general linear methods discussed in the papers [1,6,7] under one algorithm

to show more details of its implementation. With a proposed initial step

size strategy this algorithm shows a better performance in some problems.

To illustrate the efficiency of the method we consider some standard test

problems and report more useful details of step size and order changes,

and number of rejected and accepted steps along with relative global

errors.
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1. introduction

To design an efficient algorithm for the numerical solution of ordinary dif-
ferential equation

(1)

{
y′(x) = f(y(x)), x ∈ [x0, X ]

y(x0) = y0, y ∈ Rm

1Correspondence author

Received 26 October 2008; Accepted 26 November 2008

c©2008 Academic Center for Education, Culture and Research TMU

63

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


64 P. Mokhtary and S. Mohammad Hosseini

it is necessary to deal with two major issues. The first one is the selection of
the formula used to advance the computations. Many methods are available for
this purpose such as Runge-Kutta, linear multi step or general linear methods.
The second important issue is the efficient implementation of these formulas.
This paper is concerned with the second issue for general linear methods with
inherent Runge-Kutta stability(IRKS). These formulas have been introduced
by Butcher [3] and are written as

(2)

{
Y = h(A ⊗ I)F (Y ) + (U ⊗ I)y[n−1]

y[n] = h(B ⊗ I)F (Y ) + (V ⊗ I)y[n−1],

where I is the identity matrix of dimension m. h = xn−xn−1 the step size, and
F (Y ) = [f(Y1), ..., f(Ys)]T . The stages Yi approximate the solution y(xn−1 +
cih) at nodal points ci and Nordsieck vector y[n], y

[n]
i ≈ hi−1y(i−1)(xn), i =

1, ..., s. The order of the internal stages is denoted by q and the order of the
output approximation is denoted by p and s = p + 1. Since Runge-Kutta
methods have good stability properties it would be desirable to obtain general
linear methods with the same stability regions as some equivalent Runge-Kutta
methods. It is a complicated task to determine the conditions on the method
in order to ensure Runge-Kutta stability in its most general sense. Butcher
and Wright, [2,6](2002), have given a sufficient condition to ensure the gen-
eral linear method to have Runge-Kutta stability. This leads to a condition
known as inherent Runge-Kutta stability(IRKS). The IRKS conditions relate
the coefficient matrices of the method with a doubly companion matrix X to
satisfy

BA = XB BU ≡ XV − V X σ(V ) = {0, 1}.

Huang, [7](2005), implemented general linear methods for stiff ordinary differ-
ential equation with a fixed order using a fortran code.
Butcher and Podhaisky, [1](2006), investigated the special estimation of local
truncation errors for methods in variable order mode. In order to give the
details of implementation we need the following information that are presented
in the following sections. In section 2 a brief review on the topic and basic
definitions and facts related to IRKS is given. In section 3 the iteration scheme
for evaluation of stage values using some variant of Newton iteration is intro-
duced. In section 4 we describe starting procedures for constructing the initial
Nordsieck vector. Section 5 is devoted to some computable estimates of the
local truncation errors. In section 6 strategies for changing step size and order
is discussed. In section 7 we talk about a logical initial step size formula. Fi-
nally,in section 8, the results of some numerical experiments are presented and
discussed.
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2. Methods with inherent Runge-Kutta stability

Considering the scalar linear equation y′ = qy, the method (2) reduces to
the matrix recursion

y[n] = M(z)y[n−1], z = hq,

with the stability matrix M(z) = V + zB(I − zA)−1U . The method is said
to have Runge-Kutta stability if M(z) has only one non-zero eigenvalue R(z),
where R(z) is Runge-Kutta stability matrix. This property was introduced
in [6] and is a desirable property because a method with this structure forces
the computed results to behave like those produced by a one-step method.
Furthermore, by confining ourselves to methods with this property, it is possible
to draw upon the wealth of existing knowledge of stable Runge-Kutta methods.
Since the eigenvalue condition is very difficult to handle, Butcher and Wright
have introduced the concept of inherent Runge-Kutta stability [6]. Details of
the procedure to construct GLMS with inherent Runge-Kutta stability can be
found in [2,6].

3. Iteration scheme

Huang and Butcher [7] introduced an iteration scheme to solve stage values.
The stages can be expressed by the following equation

(3) Yi − λhf(Yi) =
i−1∑

j=1

aijhf(Yj) +
s∑

j=1

uijy
[n−1]
j , i = 1, 2, ..., s.

Applying the Newton method here, one then solves an iterative linear system
in which the iteration matrix is

I − hλJ = LU

where the matrices L and U are its LU factors and J is the jacobian matrix.
In the Newton iteration process, one needs a starting guess (vector) Y [0] as an
approximation to Y . In [7] there were discussed three different stage predictors
to estimate the value of Y [0] that are explained here.

3.1. Taylor expansion predictor. We use here the known values from the pre-
vious step without any additional computational cost. For the Taylor expansion
the higher order derivatives are obtained from the Nordsieck vector y[n−1] of
the previous step. Therefore, for ith stage, we have

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


66 P. Mokhtary and S. Mohammad Hosseini

(4)

Yi = y(xn−1 + cih) + O(hp+1)

= y(xn−1) +
p∑

j=1

cj
i

j!
hjy(j)(xn−1) + O(hp+1)

=
p∑

j=0

cj
i

j!
y
[n−1]
j+1 + O(hp+1)

≈
p∑

j=0

cj
i

j!
y
[n−1]
j+1 .

3.2. Newton interpolation predictor. To improve the accuracy of the predic-
tion, an alternative stage predictor uses the Newton interpolation to find values
of Y

[0]
i . Newton interpolation has the following general formula:

φ(t) ≈ φ(t1) + (t − t1)φ(t1, t2) + (t − t1)(t − t2)φ(t1, t2, t3),

where φ(.), φ(., .), and φ(., ., .) are defined recursively by divided difference
formula.

We first compute Y1, Y2 from Taylor expansion predictor. Then Y
[0]
3 is com-

puted from Y1, Y2 and hf(Y2) that are already obtained from previous two
stages. This means that we can find φ(c3), using the given values φ(c1), φ(c2), φ′(c2).
This leads to the general form

(5) Y
[0]
i = Yi−2 + ci h f(Yi−1).

3.3. Hermite interpolation predictor. Another predictor is based on Her-
mite interpolation formula. In this predictor, we use Yi−2, hf(Yi−2), Yi−1 and
hf(Yi−1)(i > 2) to predict the value of Y

[0]
i . For the first two stages the Taylor

expansion predictor is used and for 3rd and more one uses

(6) Y
[0]
i = aYi−2 + bhf(Yi−2) + cYi−1 + dhf(Yi−1).

where a, b, c, d can be obtained by solving the following system of equation

a + c = 1,

ac1 + b + cc2 + d = c3,

a
c2
1

2!
+ bc1 + c

c2
2

2!
+ dc2 =

c2
3

2!
,

a
c3
1

3!
+ b

c2
1

2!
+ c

c3
2

3!
+ d

c2
2

2!
=

c2
3

3!
.

that is obtained by expanding both sides of the equation (4) about xn. The
numerical experiments for these three predictors will be presented in section 8.
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4. Starting procedure

For the IRKS methods it is necessary to approximate the initial Nordsieck
vector

y[0] =




y(x0)

hy′(x0)

h2y′′(x0)

...

hpy(p)(x0)




+ O(hp+1).

Huang [7] used special starting procedure based on modified singly implicit
Runge-Kutta methods with p+1. Huang obtained matrix coefficients by solving
some linear systems, that in this algorithm matrix A is lower triangular but in
[6] Butcher and Wright obtained an algorithm for starting procedure that have
abstract form with matrix relations and the same as that of the general linear
method in which the matrix A is full. In this algorithm we have

U = eeT
1 , V = e1e

T
1 .

The coefficients of the method are

(7)

U = C − ACK

V = I − BCK

AC = CJ

BC = J,

where K = [0 e1 e2 · · · ep−1 ep] and J = K ′, C = [1 c c2

2! · · · cp−1

(p+1)!
cp

p! ].
The numerical results for these two algorithms don’t differ basically. But as in
the Wright’s algorithm there is an explicit formula for matrix coefficients we
use this formula for our starting procedure.

5. Error estimation

Suppose that Cp is the error constant for a method of order p. Then
variable step size requires the estimation of hp+1y(p+1)(xn) so that En =‖
Cph

p+1y(p+1)(xn) ‖ can be calculated as an approximation to the local trun-
cation error. Wright [6] uses special form for local error estimate that is

(8) hp+1y(p+1)(xn) = φT hf(Y [n]),

where φ is the solution of the following linear system

φT C = ep+1.
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But Butcher and Podhaisky consider the local error estimate based on a linear
combination of the form

(9) δ0y
[n−1]
2 +

p+1∑

i=1

δihFi ,

where δ0 = −
p+1∑
i=1

δi. The calculation details of δi , i = 0, 1, ..., p + 1 can be

found in [1]. Since we want to implement the method in variable order mode
then we must estimate hp+2y(p+2). To estimate hp+2y(p+2) Wright in [6] and
Butcher in [1] use the various difference between En and a suitably scaled
value of En−1. Details of local estimators for variable order mode can be found
in [1,6]. The numerical experiments for these two error estimators will be
presented in section 8.

6. Changing step size and order control

To obtain an effective implementation of any numerical method, step size
change is a necessary requirement. Let hn = xn − xn−1 denote the step size of
step n. The new Nordsieck vector corresponding to step size hn+1 = rhn can be
obtained from y[n] just by multiplication with a diagonal matrix, (D(r)⊗I)y[n]

with D(r) = diag(1, r, ..., rp). This is equivalent to replace B by D(r)B and V

by D(r)V in the method. Butcher and Podhaisky [1] use this formula for step
size and order changing:
while we have a estimates for the leading error term hp+1

n Cpy
(p+1)(xn), after

nth step using order p, the new step size hn+1,q to continue the integration
with order q ∈ {p− 1, p, p+1} is computed by the following formula, using the
error estimation (9) for q = p and q = p + 1, see Butcher [1]:
(10)

hn+1,q = max
(

0.5, min(2, 0.85
(

s − 1
s

‖ hq+1
n,p Cqy

(q+1)
est ‖wrms

)−1/(q+1)

)
)

hn,p,

where

(11) ‖ x ‖wrms=

√√√√
m∑

i=1

(
xi

Atol + Rtol × abs(y[n]
1,i)

)2

.

that Atol and Rtol respectively were absolute and relative tolerances.
Huang [7] uses another step size formula, using the error estimation (8) for
q = p and q = p + 1, that is written as

(12) hn+1,q = min
(

2, max(0.9 (
Tolerance

‖ hq+1
n,p Cqy

(p+1)
est ‖

)
(1/(q + 1)))

)
hn,p ,

where y
(q+1)
est denotes the estimate to y(q+1)(xn) which is the last component

of the Nordsieck vector y
[n]
p for q = p− 1. Infinity norm or 2-norm can be used
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in Huang formula.
In the Huang’s step size formula to have an optimal step size we require the
norm of local error to be approximately equal to the given Tolerance while in
the Butcher’s step size approach, at each step the ith component of the error,
E, of the solution must satisfy

|E(i)| ≤ max(Rtoll × |y(i)| , Atoll) ,

where Rtoll, the Tolerance of relative accuracy, controls the number of correct
digits in the approximate solution and Atoll, the tolerance for the absolute er-
ror, controls the absolute error in the approximate solution. Roughly speaking,
this means that Rtoll correct digits in all the solution components except those
smaller than thresholds Atoll(i) is requested.
For order changing the proper step size hn+1 is not chosen as the largest of
hn+1,p−1, hn+1,p, hn+1,p+1, but rather that one which minimizes the compu-
tational cost. The standard strategy for the order change is to choose the
order q is such a way that step size hn+1,d per unit of computational cost is
maximized,i.e.,

hn+1,q

ωd
→ max

where q ∈ p − 1, p, p + 1 and ωd is computational cost. Computational cost
depends on the size and complexity of the differential equation system. The
number of Newton iterations and general nature of the system have significant
effect. For IRKS methods the computational cost is often measured by s = p+1.
But they have mistakenly assumed that each stage has the same cost and then
for order changing consider the ratios

hn+1,p−1

s − 1
,

hn+1,p

s
,

hn+1,p+1

s + 1
.

So, in order to balance the effects of computational costs the safety factors
δp−1, δp , δp+1 are included. We then put δp = s−1

s and the new order is chosen
to maximize

(s − 2)hn+1,p−1

(s − 1)2
, α

(s − 1)hn+1,p

s2
, and

s hn+1,p+1

(s + 1)2
,

where α = 1.2 is a safety factor to avoid frequent order changes.
The numerical experiments for these two step sizes chosen will be presented in
section 8.

7. Initial step size

In any efficient implementation a bad initial choice for h should be quickly
repaired by the step size control. Nevertheless, when this happens too often
and when the choices are too bad, much computing time can be wasted. We
take up an idea of Gladwell, Shampine and Brankin (1987)[4] which is based
on the hypothesis that
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localerror ≈ Chp+1y(p+1)(x0).

Since y(p+1)(x0) is unknown we shall replace it by approximations of the
first and second derivatives of the solution. The resulting algorithm is then
follows:

a) evaluate the function value f(x0, y0) at the initial point. Then put d0 =‖
y0 ‖ and d1 =‖ f(x0, y0) ‖, where the norm is the same as (11),

b) As a first guess for the step size let

h0 = 0.01 (d0/d1
).

So that the increment of an explicit Euler step is small compared to the size
of the initial value. If either d0 or d1 is smaller than 10−5 we put h0 = 10−6.

c) Perform one explicit Euler step, y1 = y0 + h0f(x0, y0) , and compute
f(x0 + h0, y1),

d) Compute d2 = ‖ f(x0 + h0, y1) − f(x0, y0) ‖/h0
, as an estimate of the

second derivative of the solution. The norm being the same as in a)
e) Compute a step size h1 from the relation

hp+1
1 . max(d1, d2) = 0.01.

if max(d1, d2) ≤ 10−15 we put h1 = max(10−6, h0 10−3).
f) Finally to use some scales of h0, h1 we propose as initial step size

(13) h = min(100 h0, h1).

Note that this algorithm does not try to provide a sharp satisfactory initial
step size in each problem, but usually gives a reasonably good guess for it or
at least avoids a very bad choice. The Numerical experiments for this initial
step size will be presented in section 8.

8. Numerical experiments

In this section we consider some numerical examples and apply IRKS method
using different ideas mentioned above to show their numerical merits. Clearly,
an efficient implementation would be emerged by putting together the well be-
haved strategies of doing different jobs in an algorithm. We used here methods
with free parameters assigned as follows: (see[1,5,6])
For the method of order 1 we have chosen

λ = 0.3, c1 = [λ 1],
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for the method of order 2 we have chosen

λ =
4
9

, c = [
1
3

2
3

1] , β1 = 0,

for the method of order 3 we have chosen

λ =
9
40

, c = [
1
4

1
2

3
4

1] , β1 = 0 , β2 = 0 , T = I,

and for the method of order 4 we have chosen

λ =
2
7

, c = [−0.63 0.67 0.95 −0.82 1] , β1 = 0 , β2 = 0 , β3 = 0 , T = [e2 e1 e3].

The test problems that we consider are

Bruss [4] : The(nonstiff) Brusselator equation

y′
1 = 1 + y2

1y2 − 4y1,

y′
2 = 3y1 − y2

1y2,

with initial values y(0) = [1.5, 3]T and x ∈ [0, 20].

Hires [5] : A stiff ODE with m = 8 equations.

Oreg [5] : The Oregonator system,

y′
1 = 77.27(y2 + y1(1 − 8.375× 10−6y1 − y2)),

y′
2 =

1
77.27

(y3 − (1 + y1)y2),

y′
3 = 0.161(y1 − y3),

with y(0) = [1, 2, 3]T and x ∈ [0, 30].

VPOL [4] : The Vanderpol system,

y
′

1 = y2

y
′

2 = 106((1 − y2
1)y2 − y1)

with initial vector y(0) = [2, 0]T and x ∈ [0, 2].
In the following we show the performance of constant step size against variable
step size, initial step size, stage predictors, local error estimators (8) and (9),
step size choosing strategies (12) and (10). At the end some comparison results
are also presented for variable order method.
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8.1. Constant step size. To understand how IRKS methods perform, we first
use constant (fixed) step size. The test problem used here is the Vpol problem

Table 1: The error and total steps versus step size by a method of order 3

Tolerance=1e-5 total steps relative global error
variable step size 3863 1.5295e-005

nstep=100 NAN

constant step size nstep=1000 2.3031e+256
nstep=10000 1.1480e+038

This confirms the need of variable step size algorithms for solving ordinary
differential equations for an efficient computation.

8.2. Effect of the initial step size. In a variable step size algorithm the
choice of an appropriate initial step size h0 has much affect on the total num-
ber of required steps. We investigate the effect of our proposed initial step size
(13) on the Hires problem, using a method of order 4 with different tolerances.

Table 2: The effects of initial step size, h0, for a method of order 4

Tolerance h0 Total steps reject steps function evaluation
1e-4 706 48 3530

1e-5 1e-3 709 39 3545
1.04e-2 by (13) 701 32 3505

1e-4 590 21 2950
1e-10 1e-5 578 19 2890

1.60e-3 by (13) 591 21 2955

It is seen that the smaller the tolerance is, The smaller the initial stepsize
should be with less rejected steps and less function evaluation, therefore we
choose a slightly larger initial stepsize for bigger tolerance.

8.3. Performance of stage predictors. Huang [7] proposed three predictors
discussed in chapter 3. For an order 2 method, we only have three stages, the
Taylor expansion predictor is good enough. For the methods of orders 3, 4, we
try all three predictors on the Hires problem [5]. Here ”Tay-expan” stands for
Taylor expansion, ”Newt-interp” stands for Newton interpolation, and ”Herm-
interp” stands for Hermite interpolation.
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Table 3: Results for an order 3 method

Tolerance Predictor Total steps Reject steps
Tay-expan 904 12

1e-5 Newt-interp 888 5
Herm-interp 891 6
Tay-expan 1042 3

1e-8 Newt-interp 899 1
Herm-interp 897 0

Table 4: Results for an order 4 method

Tolerance Predictor Total steps Reject steps
Tay-expan 705 33

1e-5 Newt-interp 701 32
Herm-interp 701 32
Tay-expan 751 26

1e-8 Newt-interp 664 49
Herm-interp 653 39

Numerical results show that when the Tolerance is bigger, the second predic-
tor performs slightly better than the other two predictors in terms of the total
and reject numbers for the methods of orders 3, 4. When Tolerance is small,
the third predictor performs better with a fewer total steps and a reasonable
number of rejects.

8.4. Effect of the error estimate and step size chosen approaches.
In sections 5,6 we discussed about Wright’s and Butcher’s schemes for the
local error estimates and Huang’s and Butcher’s schemes for variable step size
approaches respectively. In this section we apply these schemes to Hires and
Oreg problems[5]:

Table 5: Results for an order 3 on Hires problem

Tolerance step size - error estimator total steps reject steps relative global error
1e-5 (10)- (9) 888 5 7.900e-03

(12)- (8) 888 5 1.450e-02
1e-8 (10)- (9) 897 0 7.311e-06

(12)- (8) 906 1 1.421e-05
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Table 6: Results for a method of order 3 on Oreg problem

Tolerance step size - error estimator total steps reject steps relative global error
1e-6 (10)- (9) 1400 6 8.515e-06

(12)- (8) 2315 12 1.153e-06
1e-8 (10)- (9) 1783 1 2.805e-07

(12)-(8) 4973 9 4.034e-08

The numerical results show that Butcher’s scheme for the local error esti-
mator with Butcher’s step size scheme for variable step size approach performs
better with fewer total and reject numbers of steps and works better that
Wright’s scheme for the local error estimate with Huang’s step size scheme
for variable step size approach. Then according to the above experiments one

could suggest the following simple algorithm for implementation of GLMs:
1: use the smaller initial stepsize for small tolerance, and slightly larger initial
stepsize for bigger tolerance,
2: use Newton interpolation predictor for a relatively large Tolerance and
Hermite interpolation predictor for a relatively small Tolerance,
3: use Wright’s starting procedure to approximate the initial Nordsieck vec-
tor,
4: use Butcher’s local error estimate scheme to estimate hp+1y(p+1),
5: use Butcher and Podhaisky’s scheme for variable step size and variable
Order approach.

8.5. Variable order results. In section 6 we discussed about variable order
approach. We in this section test this approach on Bruss, Hires, and Oreg
problems [4,5] and give order changing figures

Table 7: Results with Tolerance = 1e − 6

Test problem total steps reject steps relative global error
Bruss 158 7 4.857e-04
Hires 874 9 4.000e-03
Oreg 620 67 7.138e-05

9. Conclusions

This paper showed different practical aspects of the IRKS methods discussed
in the papers [1,6,7] under one algorithm with a proposed initial step size
algorithm that performed well on some classical test problems.
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Figure 1. Order changing - Tolerance = 1e − 6 - Bruss Problem
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Figure 2. Variable order - Tolerance = 1e − 6 - Hires Problem
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Figure 3. Variable order - Tolerance = 1e − 6 - Oreg Problem
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