Iranian Journal of Mathematical Sciences and Informatics Vol. 3, No. 2 (2008), pp. 55-67

The Polynomials of a Graph

S. Sedghi^{a,*}, N. Shobe^b and M. A. Salahshoor^c

^aDepartment of Mathematics, Islamic Azad University-Ghaemshar Branch, Iran ^bDepartment of Mathematics, Islamic Azad University-Babol Branch, Iran ^cDepartment of Mathematics, Islamic Azad University-Savadkooh Branch, Iran

> E-mail: sedghi gh@yahoo.com E-mail: nabi shobe@yahoo.com E-mail: msalahshour2000@yahoo.com

Abstract. In this paper, we are presented a formula for the polynomial of a graph. Our main result is the following formula:

$$
\sum_{u \in V(G)} d_u^{k} = \sum_{j=1}^{k} a_{kj} S_G^{(j)}(1).
$$

Keywords: Graph, polynomial, graphical sequence.

2000 Mathematics subject classification: P54E40; 54E35; 54H25.

1. INTRODUCTION

The graphs in this paper are connected and simple. Denote the vertex and edge sets of graph G by $V(G)$ and $E(G)$, respectively. For a simple graph $G(p,q)$, we

[∗]Corresponding Author

Received 20 January 2009; Accepted 20 April 2009 c 2008 Academic Center for Education, Culture and Research TMU

define the degree sequence of G as

$$
S: d_1, d_2, \cdots, d_p
$$

where $d_i = degv_i$, $1 \leq i \leq p$, and v_i 's are vertices of G. Suppose a_0 is number of vertices of degree 0, a_1 the number of vertices of degree 1, ..., and $a_{\Delta(G)}$ is number of number vertices of degree $\Delta(G)$, where $\Delta(G) = \max\{d_i\}$. The polynomial of G is defined as:

Definition 1.1. If $S: d_1, d_2, \dots, d_p$ is a degree sequence of graph G. Then the polynomial of graph G is

$$
S_G(x) = \sum_{j=0}^{\Delta(G)} a_j x^j
$$

Also a polynomial $p(x)$ is said to be graphical if there exists a graph G such that $p(x) = S_G(x)$.

Example 1.2. Suppose G is defined by the following diagram:

Then the degree sequence of G is S : 0, 1, 1, 2, 3, 3 and $\Delta(G) = 3$. Thus the polynomial of G is

$$
S_G(x) = \sum_{j=0}^{3} a_j x^j
$$

where $a_0 = 1, a_1 = 2, a_2 = 1$ and $a_3 = 2$. Hence we have

$$
S_G(x) = 1x^0 + 2x + 1x^2 + 2x^3 = 1 + 2x + x^2 + 2x^3.
$$

Remark 1.3. It is easy to see that

$$
S_G(x) = \sum_{j=0}^{\Delta(G)} a_j x^j = \sum_{u \in V(G)} x^{d_u}
$$

where d_u is the degree of u.

Corollary 1.4. If $G(p,q)$ is a graph with p vertices and q edges, then we have:

(1)
$$
S_G(1) = p
$$

 (2) $\sum_{j=0}^{\Delta(G)} ja_j = 2q$
 (3) $S'_G(1) = 2q = \sum_{u \in V(G)} d_u$

Suppose P_n, C_n, K_n denoted the path, cycle and complete graphs with exactly n vertices, respectively. Also a general k-regular graph is denoted by G_k . Then,

$$
S_{P_n}(x) = 2x + (n-2)x^2
$$

\n
$$
S_{R_n}(x) = nx^{n-1}
$$

\n
$$
S_{R_n}(x) = px^k
$$

\n
$$
S_{R_n}(x) = px^k
$$

Definition 1.5. Let G_1 and G_2 be two graphs. If $V(G_1) \cap V(G_2) = \phi$. Then

- (1) $G_1 \cup G_2$ is a graph that $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) =$ $E(G_1) \cup E(G_2)$
- (2) $G_1 \times G_2$ is a graph that $V(G_1 \times G_2) = V(G_1) \times V(G_2)$ and $\{(u, v), (u', v')\} \in$ $E(G_1 \times G_2)$ if and only if $u = u'$ and $\{v, v'\} \in E(G_2)$ or $v = v'$ and ${u, u' \} \in E(G_1)$
- (3) $G_1 + G_2$ is a graph that $V(G_1 + G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 + G_2) =$ $E(G_1) \cup E(G_2) \cup \{\{u,v\} \mid u \in V(G_1), v \in V(G_2)\}\$

Example 1.6. Suppose G_1 and G_2 are two graphs such that their diagrams are as follows:

then the diagram graph $G_1 \times G_2$ and $G_1 + G_2$ as follows:

Theorem 1.7. If $G_1(p_1, q_1)$ and $G_2(p_2, q_2)$ are two graphs, then the polynomial of graphs $G_1 \cup G_2$, $G_1 \times G_2$ and $G_1 + G_2$ are given by

(1)
$$
S_{G_1 \cup G_2}(x) = S_{G_1}(x) + S_{G_2}(x)
$$

\n(2) $S_{G_1 \times G_2}(x) = S_{G_1}(x) \cdot S_{G_2}(x)$
\n(3) $S_{G_1 + G_2}(x) = x^{p_2} S_{G_1}(x) + x^{p_1} S_{G_2}(x)$

Proof.

(1)
$$
S_{G_1 \cup G_2}(x) = \sum_{u \in V(G_1 \cup G_2)} x^{d_u} = \sum_{u \in V(G_1)} x^{d_u} + \sum_{u \in V(G_2)} x^{d_u}
$$

$$
= S_{G_1}(x) + S_{G_2}(x)
$$

(2)
$$
S_{G_1 \times G_2}(x) = \sum_{u \in V(G_1 \times G_2)} x^{d_u} = \sum_{u = (u_1, u_2) \in V(G_1 \times G_2)} x^{d_u}
$$

$$
= \sum_{u_1 \in V(G_1)} \sum_{u_2 \in V(G_2)} x^{d_{u_1} + d_{u_2}} = \sum_{u_1 \in V(G_1)} \sum_{u_2 \in V(G_2)} x^{d_{u_1}} x^{d_{u_2}}
$$

$$
= \sum_{u_1 \in V(G_1)} x^{d_{u_1}} \cdot \sum_{u_2 \in V(G_2)} x^{d_{u_2}}
$$

$$
= S_{G_1}(x) \cdot S_{G_2}(x)
$$

(3)
$$
S_{G_1+G_2}(x) = \sum_{u \in V(G_1+G_2)} x^{d_u} = \sum_{u \in V(G_1)} x^{d_u+p_2} + \sum_{u \in V(G_2)} x^{d_u+p_1}
$$

$$
= x^{p_2} \sum_{u \in V(G_1)} x^{d_u} + x^{p_1} \sum_{u \in V(G_2)} x^{d_u}
$$

$$
= x^{p_2} S_{G_1}(x) + x^{p_1} S_{G_2}(x)
$$

 \Box

Corollary 1.8. If $S_{G_1}(x)$ and $S_{G_2}(x)$ are graphical then

(1) $S_{G_1}(x) \cdot S_{G_2}(x)$ is graphical and conversely. (2) $x^{p_2}S_{G_1}(x) + x^{p_1}S_{G_2}(x)$ is graphical and conversely. (3) \sum $u\in V(G_1\times G_2)$ $d_u = 2(p_1 q_2 + p_2 q_1)$

(4)
$$
\sum_{u \in V(G_1 + G_2)} d_u = 2 (p_1 p_2 + q_1 + q_2)
$$

Example 1.9. The polynomial $S_G(x) = 4x^2 + 4x^3 + x^4$ is graphical, because

$$
S_G(x) = 4x^2 + 4x^3 + x^4 = (2x + x^2)^2
$$

On the other hand, we have the following graph for the polynomial $S_{G_1}(x)=2x+x^2$.

Hence the polynomial $S_G(x)$ is graphical, because $S_G(x) = S_{G_1}(x) \times S_{G_1}(x)$. Also its graph is as follows:

Example 1.10. The polynomial $S_G(x) = 3x^4 + 2x^3$ is graphical, because

 $S_G(x) = 3x^4 + 2x^3 = 2x^4 + x^4 + 2x^3 = x^3(2x) + x^2(x^2 + 2x)$

On the other hand, we have the following graphs for the polynomials $S_{G_1}(x)=2x$ and $S_{G_2}(x) = x^2 + 2x$, respectively:

Hence the polynomial $S_G(x)$ is graphical, because $S_G(x) = x^{p_2} S_{G_1}(x) + x^{p_1} S_{G_2}(x)$. Also its graph is as following:

Definition 1.11. Let G be a graph. The polynomial $H_G(x)$ is defined as follows:

$$
H_G(x) = \sum_{\{u,v\} \in E(G)} x^{d_u + d_v}
$$

Example 1.12. The polynomial $H_G(x) = x^3 + x^3 = 2x^3$ is the graph polynomial of the following graph:

Corollary 1.13. Let $G(p,q)$ is a graph with p vertices and q edges. Then we have:

$$
H_G(1) = q
$$

\n
$$
H_G'(1) = \sum_{\{u,v\} \in E(G)} d_u + d_v = \sum_{u \in V(G)} d_u^2
$$

\n
$$
H_{P_n}(x) = 2x^3 + (n-3)x^4
$$

\n
$$
H_{C_n}(x) = nx^4
$$

\n
$$
H_{K_n}(x) = \frac{n(n-1)}{2}x^{2n-2}
$$

\n
$$
H_{G_k}(x) = qx^{2k}
$$

Theorem 1.14. Let $G_1(p_1, q_1)$ and $G_2(p_2, q_2)$ be two graphs. Then

(1) $H_{G_1 \cup G_2}(x) = H_{G_1}(x) + H_{G_2}(x)$ (2) $H_{G_1 \times G_2}(x) = H_{G_1}(x)$. $S_{G_2}(x^2) + H_{G_2}(x)$. $S_{G_1}(x^2)$ (3) $H_{G_1+G_2}(x) = x^{2p_2}H_{G_1}(x) + x^{2p_1}H_{G_2}(x) + x^{p_1+p_2}S_{G_1}(x)$. $S_{G_2}(x)$

Proof. (1) is trivial. To prove (2) , we have:

$$
H_{G_1 \times G_2}(x) = \sum_{\{u,v\} \in E(G_1 \times G_2)} x^{d_u + d_v}
$$

\n
$$
= \sum_{u_1=v_1} \sum_{\{u_2,v_2\} \in E(G_2)} x^{2d_{u_1} + d_{v_2} + d_{u_2}}
$$

\n
$$
+ \sum_{\{u_1,v_1\} \in E(G_1)} \sum_{u_2=v_2} x^{d_{u_1} + d_{v_1} + 2d_{u_2}}
$$

\n
$$
= \sum_{\{u_2,v_2\} \in E(G_2)} x^{d_{u_2} + d_{v_2}} \sum_{u_1 \in V(G_1)} (x^2)^{d_{u_1}}
$$

\n
$$
+ \sum_{\{u_1,v_1\} \in E(G_1)} x^{d_{u_1} + d_{v_1}} \sum_{u_2 \in V(G_2)} (x^2)^{d_{u_2}}
$$

\n
$$
= H_{G_2}(x)S_{G_1}(x^2) + H_{G_1}(x)S_{G_2}(x^2)
$$

$$
H_{G_1+G_2}(x) = \sum_{\{u,v\} \in E(G_1+G_2)} x^{d_u+d_v}
$$

\n
$$
= \sum_{\{u,v\} \in E(G_1)} x^{d_u+d_v+2p_2} + \sum_{\{u,v\} \in E(G_2)} x^{d_u+d_v+2p_1}
$$

\n
$$
+ \sum_{u \in V(G_1), v \in V(G_2)} x^{d_u+d_v+p_1+p_2}
$$

\n
$$
= x^{2p_2} \sum_{\{u,v\} \in E(G_1)} x^{d_u+d_v} + x^{2p_1} \sum_{\{u,v\} \in E(G_2)} x^{d_u+d_v}
$$

\n
$$
+ x^{p_1+p_2} \sum_{u \in V(G_1)} x^{d_u} \sum_{v \in V(G_2)} x^{d_v}
$$

\n
$$
= x^{2p_2} H_{G_1}(x) + x^{2p_1} H_{G_2}(x) + x^{p_1+p_2} S_{G_1}(x) S_{G_2}(x)
$$

Example 1.15. Consider the following diagrams for graphs G_1 and G_2 :

then, we have:

$$
H_{G_1}(x) = 2x^3
$$
 $S_{G_1}(x) = 2x + x^2$
 $H_{G_2}(x) = 3x^4$ $S_{G_2}(x) = 3x^2$

Thus:

$$
H_{G_1+G_2}(x) = x^6(2x^3) + x^6(3x^4) + x^6(2x + x^2)(3x^2)
$$

=
$$
2x^9 + 3x^{10} + 6x^9 + 3x^{10} = 8x^9 + 6x^{10}
$$

Hence the diagram ${\cal G}_1 + {\cal G}_2$ is:

 \Box

Corollary 1.16.

$$
\sum_{u \in V(G_1 \times G_2)} d_u^2 = p_2 \sum_{u \in V(G_1)} d_u^2 + p_1 \sum_{u \in V(G_2)} d_u^2 + 8q_1 q_2
$$

Proof. We know that

$$
H_{G_1 \times G_2}(x) = H_{G_1}(x)S_{G_2}(x^2) + H_{G_2}(x)S_{G_1}(x^2)
$$

Hence,

$$
H'_{G_1 \times G_2}(x) = H'_{G_1}(x)S_{G_2}(x^2) + 2xH_{G_1}(x)S'_{G_2}(x^2)
$$

+
$$
H'_{G_2}(x)S_{G_1}(x^2) + 2xH_{G_2}(x)S'_{G_1}(x^2)
$$

Therefore

$$
H'_{G_1 \times G_2}(1) = H'_{G_1}(1)S_{G_2}(1) + 2H_{G_1}(1)S'_{G_2}(1)
$$

+
$$
H'_{G_2}(1)S_{G_1}(1) + 2H_{G_2}(1)S'_{G_1}(1)
$$

On the other hand, we know that $H_G(1) = q$, $H'_G(1) = \sum$ $u\in V(G)$ d_u^2 , $S_G(1) = p$ and $S'_G(1) = 2q$. Thus

$$
\sum_{u \in V(G_2 \times G_1)} d_u^2 = p_2 \sum_{u \in V(G_1)} d_u^2 + 4q_1 q_2 + p_1 \sum_{u \in V(G_2)} d_u^2 + 4q_1 q_2
$$

= $p_2 \sum_{u \in V(G_1)} d_u^2 + p_1 \sum_{u \in V(G_2)} d_u^2 + 8q_1 q_2$

 \Box

Definition 1.17. Let G be a graph. The polynomial $F_G(x)$ is defined as follows:

$$
F_G(x) = \sum_{u \in V(G)} d_u x^{d_u}
$$

Example 1.18. The polynomial of the graph G defined by the following graph is $H_G(x) = 2x + 2x^2$.

Corollary 1.19. We have:

$$
F_G(1) = S'_G(1)
$$

\n
$$
F_{P_n}(x) = 2x + 2(n-2)x^2
$$

\n
$$
F_{R_n}(x) = n(n-1)x^{n-1}
$$

\n
$$
F_{R_n}(x) = k p x^k
$$

\n
$$
F_{R_n}(x) = k p x^k
$$

Theorem 1.20. Let $G_1(p_1, q_1)$ and $G_2(p_2, q_2)$ be two graphs. Then

(1) $F_{G_1 \cup G_2}(x) = F_{G_1}(x) + F_{G_2}(x)$ (2) $F_{G_1 \times G_2}(x) = F_{G_1}(x)$. $S_{G_2}(x) + F_{G_2}(x)$. $S_{G_1}(x)$ (3) $F_{G_1+G_2}(x) = x^{p_2}F_{G_1}(x) + p_2x^{p_2}S_{G_1}(x) + x^{p_1}F_{G_2}(x) + p_1x^{p_1}S_{G_2}(x)$

Proof. (1) is trivial. Prove (2) , we have:

$$
F_{G_1 \times G_2}(x) = \sum_{u \in V(G_1 \times G_2)} d_u x^{d_u}
$$

\n
$$
= \sum_{(u_1, u_2) \in V(G_1) \times V(G_2)} (d_{u_1} + d_{u_2}) x^{d_{u_1} + d_{u_2}}
$$

\n
$$
= \sum_{u_1 \in V(G_1)} \sum_{u_2 \in V(G_2)} (d_{u_1} + d_{u_2}) x^{d_{u_1} + d_{u_2}}
$$

\n
$$
= \sum_{u_2 \in V(G_2)} x^{d_{u_2}} \sum_{u_1 \in V(G_1)} d_{u_1} x^{d_{u_1}} + \sum_{u_1 \in V(G_1)} x^{d_{u_1}} \sum_{u_2 \in V(G_2)} d_{u_2} x^{d_{u_2}}
$$

\n
$$
= F_{G_1}(x) . S_{G_2}(x) + F_{G_2}(x) . S_{G_1}(x)
$$

$$
F_{G_1+G_2}(x) = \sum_{u \in V(G_1+G_2)} d_u x^{d_u}
$$

\n
$$
= \sum_{u \in V(G_1)} (d_u + p_2) x^{d_u + p_2} + \sum_{u \in V(G_2)} (d_u + p_1) x^{d_u + p_1}
$$

\n
$$
= x^{p_2} \sum_{u \in V(G_1)} d_u x^{d_u} + p_2 x^{p_2} \sum_{u \in V(G_1)} x^{d_u}
$$

\n
$$
+ x^{p_1} \sum_{u \in V(G_2)} d_u x^{d_u} + p_1 x^{p_1} \sum_{u \in V(G_2)} x^{d_u}
$$

\n
$$
= x^{p_2} F_{G_1}(x) + p_2 x^{p_2} S_{G_1}(x) + x^{p_1} F_{G_2}(x) + p_1 x^{p_1} S_{G_2}(x)
$$

 \Box

Definition 1.21. Let G be a graph. The polynomial $W_G(x)$ is defined as following:

$$
W_G(x) = \sum_{\{u,v\} \in E(G)} (d_u + d_v) x^{d_u + d_v}
$$

Example 1.22. Consider the following diagram for the graph G. Then $W_G(x)$ = $3x^3 + 3x^3 = 6x^3$.

Corollary 1.23. We have:

$$
W_G(1) = \sum_{\{u,v\} \in E(G)} d_u + d_v = \sum_{u \in V(G)} d_u^2 \qquad W_G(1) = H'_G(1)
$$

$$
W_{P_n}(x) = 6x^3 + 4(n-3)x^4 \qquad W_{C_n}(x) = 4nx^4
$$

$$
W_{K_n}(x) = n(n-1)^2 x^{2n-2} \qquad W_{G_k}(x) = 2kqx^{2k}
$$

Theorem 1.24. Let $G_1(p_1, q_1)$ and $G_2(p_2, q_2)$ be two graphs. Then

- (1) $W_{G_1\cup G_2}(x) = W_{G_1}(x) + W_{G_2}(x)$
- (2) $W_{G_1 \times G_2}(x) = 2F_{G_1}(x^2) \cdot H_{G_2}(x) + S_{G_1}(x^2) \cdot W_{G_2}(x) + 2F_{G_2}(x^2) \cdot H_{G_1}(x) +$ $S_{G_2}(x^2)$. $W_{G_1}(x)$
- (3) $W_{G_1+G_2}(x) = x^{2p_2}W_{G_1}(x) + 2p_2x^{2p_2}H_{G_1}(x) + x^{2p_1}W_{G_2}(x) + 2p_1x^{2p_1}H_{G_2}(x) +$ $x^{p_1+p_2}F_{G_1\times G_2}(x)+(p_1+p_2)x^{p_1+p_2}S_{G_1\times G_2}(x)$

Proof. (1) is trivial. To prove (2), we consider the following equation:

$$
W_{G_1 \times G_2}(x) = \sum_{\{u,v\} \in E(G_1 \times G_2)} (d_u + d_v) x^{d_u + d_v}
$$

\n
$$
= \sum_{u_1 = v_1} \sum_{\{u_2, v_2\} \in E(G_2)} (2d_{u_1} + d_{u_2} + d_{v_2}) x^{2d_{u_1} + d_{u_2} + d_{v_2}}
$$

\n
$$
+ \sum_{u_2 = v_2} \sum_{\{u_1, v_1\} \in E(G_1)} (2d_{u_2} + d_{u_1} + d_{v_1}) x^{2d_{u_2} + d_{u_1} + d_{v_1}}
$$

\n
$$
= 2 \sum_{u_1 \in V(G_1)} d_{u_1}(x^2)^{d_{u_1}} \sum_{\{u_2, v_2\} \in E(G_2)} x^{d_{u_2} + d_{v_2}}
$$

\n
$$
+ \sum_{u_1 \in V(G_1)} (x^2)^{d_{u_1}} \sum_{\{u_2, v_2\} \in E(G_2)} (d_{u_2} + d_{v_2}) x^{d_{u_2} + d_{v_2}}
$$

\n
$$
+ 2 \sum_{u_2 \in V(G_2)} d_{u_2}(x^2)^{d_{u_2}} \sum_{\{u_1, v_1\} \in E(G_1)} x^{d_{u_1} + d_{v_1}}
$$

\n
$$
+ \sum_{u_2 \in V(G_2)} (x^2)^{d_{u_2}} \sum_{\{u_1, v_1\} \in E(G_1)} (d_{u_1} + d_{v_1}) x^{d_{u_1} + d_{v_1}}
$$

\n
$$
= 2F_{G_1}(x^2). H_{G_2}(x) + S_{G_1}(x^2). W_{G_2}(x)
$$

\n
$$
+ 2F_{G_2}(x^2). H_{G_1}(x) + S_{G_2}(x^2). W_{G_1}(x)
$$

$$
W_{G_1+G_2}(x) = \sum_{\{u,v\} \in E(G_1+G_2)} (d_u + d_v) x^{d_u + d_v}
$$

\n
$$
= \sum_{\{u,v\} \in E(G_1)} (d_u + d_v + 2p_2) x^{d_u + d_v + 2p_2}
$$

\n
$$
+ \sum_{\{u,v\} \in E(G_2)} (d_u + d_v + 2p_1) x^{d_u + d_v + 2p_1}
$$

\n
$$
+ \sum_{u \in V(G_1), v \in V(G_2)} (d_u + d_v + p_1 + p_2) x^{d_u + d_v + p_1 + p_2}
$$

\n
$$
= x^{2p_2} \sum_{\{u,v\} \in E(G_1)} (d_u + d_v) x^{d_u + d_v} + 2p_2 x^{2p_2} \sum_{\{u,v\} \in E(G_1)} x^{d_u + d_v}
$$

\n
$$
+ x^{2p_1} \sum_{\{u,v\} \in E(G_2)} (d_u + d_v) x^{d_u + d_v} + 2p_1 x^{2p_1} \sum_{\{u,v\} \in E(G_2)} x^{d_u + d_v}
$$

\n
$$
+ x^{p_1 + p_2} \sum_{u \in V(G_1), v \in V(G_2)} (d_u + d_v) x^{d_u + d_v}
$$

\n
$$
+ (p_1 + p_2) x^{p_1 + p_2} \sum_{u \in V(G_1), v \in V(G_2)} x^{d_u + d_v}
$$

\n
$$
= x^{2p_2} W_{G_1}(x) + 2p_2 x^{2p_2} H_{G_1}(x) + x^{2p_1} W_{G_2}(x) + 2p_1 x^{2p_1} H_{G_2}(x)
$$

\n
$$
+ x^{p_1 + p_2} F_{G_1 \times G_2}(x) + (p_1 + p_2) x^{p_1 + p_2} S_{G_1 \times G_2}(x)
$$

In the end of this paper, we define a new triangle A as follows:

1
\n1 1
\n1 3 1
\n
$$
A = \begin{bmatrix} 1 & 7 & 6 & 1 \\ 1 & 15 & 25 & 10 & 1 \\ 1 & 31 & 90 & 65 & 15 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}
$$

that entry a_{ij} of triangle ${\mathcal A}$ is:

$$
a_{ij} = \begin{cases} 1 & j = 1 \text{ or } j = i \\ a_{(i-1)(j-1)} + j \ a_{(i-1)j} & 1 < j < i \end{cases}
$$

Theorem 1.25. If G is a graph with the polynomial $S_G(x)$, then

$$
\sum_{u \in V(G)} d_u^k = \sum_{j=1}^k a_{kj} S_G^{(j)}(1)
$$

where $k \in \mathbb{N}$ and $a_{kj} \in \mathcal{A}$.

Example 1.26. Let G is a graph, such that its diagram is as following:

Hence the degree sequence and the polynomial $S_G(x)$ are "1, 1, 2" and $2x + x^2$, respectively. Thus for $k = 3$ we have:

$$
\sum_{u \in V(G)} {d_u}^3 = 1^3 + 1^3 + 2^3 = 10
$$

On the other hand, we have $S'_{G}(1) = 4$, $S''_{G}(1) = 2$, $S^{(3)}_{G}(1) = 0$, $a_{31} = 1$, $a_{32} = 3$ and $a_{33} = 1$. Therefore

$$
\sum_{j=1}^{3} a_{3j} S_G^j(1) = 1 \times 4 + 3 \times 2 + 1 \times 0 = 10
$$

Proof of Theorem 1.25. According to remark (1.3) $S_G(x) = \sum_{u \in V(G)} x^{d_u}$. Hence,

(1.1)
$$
S'_{G}(x) = \sum_{u \in V(G)} d_{u} x^{d_{u}-1}
$$

therefore

$$
S'_G(1) = \sum_{u \in V(G)} d_u
$$

On the other hand, according to table of A for $k = 1$, we have:

$$
\sum_{j=1}^{1} a_{1j} S_G^{(j)}(1) = a_{11} S_G'(1) = S_G'(1)
$$

From above relations, we obtain that the theorem (1.25) for $k = 1$ is true. Now from the relation (1.1), we have $xS_G'(x) = \sum_{u \in V(G)} d_u x^{d_u}$ then

(1.2)
$$
S'_{G}(x) + xS''_{G}(x) = \sum_{u \in V(G)} d_{u}^{2} x^{d_{u}-1}
$$

therefore

$$
S'_G(1) + S''_G(1) = \sum_{u \in V(G)} d_u^2
$$

On the other hand, according to table of A for $k = 2$, we have:

$$
\sum_{j=1}^{2} a_{2j} S_G^{(j)}(1) = a_{21} S_G'(1) + a_{22} S_G''(1) = S_G'(1) + S_G''(1)
$$

From two relations before, we obtain that the theorem (1.25) for $k = 2$ is true. Similarly from the relation (1.2), we can prove the theorem (1.25) for $k = 3$. Therefore, if we continue the above process, then the proof is completed.

REFERENCES

- [1] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, Elsevier Science Publishing Co., Inc., New York, 1976.
- [2] M. Eliasi, B. Taeri, Schultz polynomials of composite graphs, *Appl. Anal. Discrete Math.*, **2** (2008), 285-296.
- [3] I. Gutman, Some relations between distanc-based polynomials of trees, *Bulletin de l'Academie Serbe des Sciences et des Arts (Classe des Sciences Mathematiques et Naturelles)*, **131** (2005) 1-7.
- [4] B. E. Sagan, Y.-N. Yen and P. Zhang, The Wiener polynomial of a graph, *International Journal of Quantum Chemistry*, **60** (5) (1996), 959-969.

[5] H. Wiener, Structural determination of paraffin boiling points, *J. Am. Chem. Soc.*, **69** (1974), 17-20.