Iranian Journal of Mathematical Sciences and Informatics Vol. 4, No. 2 (2009), pp. 49-54

A study of Nilpotent groups through right transversals

A.M. Tripathi^{*,a}, N. Mathur^b and S. Srivastava^c

^aDepartment of Mathematics, M. G. Kashi Vidya Peeth, Varansi, India b Department of Mathematics, Shambhunath Institute of Engineering and Technology, Allahabad, India ^cDepartment of Mathematics and Statistics, AAIDU, Allahabad, India

E-mail: amtripathi61@gmail.com

ABSTRACT. In group theory nilpotency of a group has a great importance. In this paper we have studied some concept of nilpotency through right transversals. We have also studied prime power groups and frattini subgroups through right transversals.

Keywords: Nilpotent group, Right transversal, Frattini subgroup, C-groupoid.

2000 Mathematics subject classification: 20A. Subject Class: GR

1. INTRODUCTION:

An extension of a group H is a group G, which contains H as a normal subgroup. We shall call a group G a general extension of a subgroup H if G contains H as a subgroup (not necessarily as a normal subgroup). A pair (G, H), where H is a subgroup of a group G, we will be called a **general extension**. We have a category *E,* whose objects are general extensions and a morphism from (G_1, H_1) to (G_2, H_2) is a group homomorphism ϕ from G_1 to G_2 such that ϕ (H₁) \subseteq H₂. The category *E* will be called the **category of general extensions**

[∗]Corresponding Author

Received 10 June 2009; Accepted 20 August 2009 -c 2009 Academic Center for Education, Culture and Research TMU

⁴⁹

Definition 1.1: A groupoid (S, o) (a nonempty set S with a binary operation o) is called a **right quasigroup** if $\forall x, y \in S$, the equation Xo $x = y$ where X is unknown in the equation, has a unique solution. If $\exists e \in$ Ssuch that $e\alpha x = x\alpha e = x \forall x \in S$, then (S, o) is called a right quasigroup with identity.

Throughout the Paper, a right quasigroup will always be assumed to be with identity.

Let G be a group and H a subgroup of G. A **right transversal** (right coset representative system) to H in G is a subset S of G obtained by selecting one and only one member from each right coset of G mod H.

Throughout the Paper, a right transversal will be assumed to contain the identity of the group.

Let S be a right transversal to H in G. Let $x, y \in S$. Define $\{xoy\} = S \cap$ Hxy. Then z, where $\{z\} = S \cap Hyx^{-1}$ is the unique solution of the equation $X\alpha x = y$, where X is unknown in the equation. Therefore (S, o) is a right quasigroup with identity. This right quasigroup structure on S is said to be the right quasigroup structure induced by the group G on the right transversal S.

2. C-groupoid and right quasi group

Definition 2.1: A quadruple (S, H, σ, f) , where S is a groupoid with identity *e*, H a group which acts on S from right through a given action θ , σ a map from S to H^H (the set of all maps from H to H) and f a map from $S \times S$ to H, is called a **c-groupoid** if it satisfies the following conditions:

C₁) $xoy = y \Rightarrow x = e$ $(C_2) \forall x \in S \exists x' \in S$ such that $x' \circ x = e$ C₃) $\forall x \in S$, let σ_x denote the image $\sigma(x)$ of x under the map σ . Then $\sigma_e = I_H$, the identity map on H. C_4) $f(x, e) = f(e, x) = 1$, the identity of H C₅) $\sigma_x (h_1 h_2) = \sigma_x (h_1) \sigma_{x \theta h_1} (h_2)$ C_6) $(xoy)oz = x\theta f(y, z) o(yoz)$ C_7) $(xoy)\theta$ h = $x\theta \sigma_y(h)$ oy θ h C_7) $(xoy)\theta$ h = $x\theta \sigma_y(h)$ oy θ h C₈) $f(x,y)f(xoy,z) = \sigma_x(f(y,z))f(x\theta f(y,z), yoz)$ C₉) $f(x, y)\sigma_{xoy}(h) = \sigma_x(\sigma_y(y))f(x\theta\sigma_y(h), y\theta\ h)$ where $x, y \in S$ and $h_1, h_2 \in H$

Remark 2.2 From the above definition it follows that if (S, H, σ, f) is a c-groupoid, then

 $(i) \sigma_x(1) = 1$ for all $x \in S$.

(*ii*) $e\theta h = e$ for all $h \in H$.

Example 2.3: Let S be a right transversal to a subgroup H of a group G. Let $x, y \in S$ and $h \in H$. Then $x, y = f(x, y)x \circ y$ for some $f(x, y) \in H$ and $x \circ y$ $∈$ S. Also $x.h = \sigma_x(h)x\theta$ h for some $\sigma_x(h) ∈$ H and $x\theta$ h∈ S. This gives us a map *f*: $S \times S \rightarrow H$ and a map $\sigma : S \rightarrow H^H$ defined by $f((x, y)) = f(x, y)$

and $\sigma(x)$ (h) = $\sigma_x(h)$. Then (S, H, σ , f) is a c-groupoid. Conversely we have the following result.

Theorem 2.4 Given a c-groupoid (S, H, σ, f) there is a group G which contains H as a subgroup and S as a right transversal of H in G such that the corresponding c-groupoid is (S, H, σ, f) . [Ref. 8]

The pair (G, H) where G is the group described in the above Theorem, will be termed as the general extension associated to the c-groupoid (S, H, σ, f) .

3. Right Quasigroups and General Extensions

Let S be a set and $Sym(S)$, the symmetric group on S (for the product in Sym(S) we adopt the convention $(r, s)(x) = s(r(x))$; $r, s \in Sym(S)$ and $x \in S$.

Now, let (S, o) be a right quasigroup with identity *e*. Let $y, z \in S$. Define a map $f^{s}(y, z)$ from S to S as follows: for $x \in S$, $f^{s}(y, z)(x)$ is the unique solution of the equation X o $(y \circ z) = (x \circ y) \circ z$. It can be checked that $f^{s}(y, z) \in$ $Sym(S)$.

Definition 3.1: The subgroup G_s of Sym(S) generated by the subset $\{f^s(y, z):$ $y, z \in S$ of Sym(S) will be called the **group torsion** (or **associator**) of S.

Remark 3.2 Since($e \circ y$) $\circ z = e \circ (y \circ z)$, for all $y, z \in S$, G_s is a subgroup of $Sym(S \setminus \{e\})$ also. Clearly, we have

Proposition 3.3: The group torsion G_s of a right quasigroup S is trivial if and only if S is a group.

Proposition 3.4 A subgroup H of a group G is normal if and only if group torsion of every transversal to H in G is trivial.

Proposition 3.5 Let S be a right quasigroup with identity *e*. Then, there exists a group G^S containing S as a right transversal such that if there is any group G containing S as a right transversal, then there is a unique homomorphism from G to G^s which is identity on S. **Proof:** By Theorems 2.5 and 2.10 it is sufficient to construct a c-groupoid (S, H^S, σ^S, f^S) , where S is the given right quasigroup such that given any c-groupoid (S, H, σ, f) , where S is again the given right quasigroup, there exists a unique c-homomorphism (p, q, g) from (S, H, σ, f) to (S, H^S, σ^S, f^S) such that $p = I_s$, the identity map on S. Take $H^s = Sym(S - \{e\})$, the symmetric group on S – {e}. We extend the natural action of H^S on $S - \{e\}$ to the action θ ^S of H^S on S defining $e \theta$ ^S $h = e$, $\forall h \in H^S$. Already, we have a map f^S : S \times S \rightarrow H^S defined by $f^{S}((x, y)) = f^{S}(x, y)$. Next we define a map $\sigma_y^{S}: S \to S$ by the equation

$$
\sigma_y^{\rm S}(h)(x) \circ (y\,\theta^{\rm S} \,h) = (x \circ y)\,\theta^{\rm S} \,h
$$

It can be seen that $\sigma_y^S(h) \in Sym(S - \{e\}) = H^S$. Finally, it can be checked that (S, H^S, σ^{S} , f^{S}) is a c-groupoid, which satisfies the required property. #

The group G^S described in the theorem 3.5 will be termed the **general extension** of $Sym(S - \{e\})$ by the right quasigroup S.

4. Nilpotent Group

A group G is said to be **nilpotent** if $Ln(G) = \{e\}$ or equivalently $Zn(G) =$ G for some n. A group G is said to be **nilpotent of class n** if $Ln(G) = \{e\}$ but Ln-1(G) \neq {e} or equivalently Zn(G) = G but Zn-1(G) \neq G.

Proposition 4.1: Let G be a nilpotent group and H a subgroup of G then for every transversal S to H in G there exits $x \in S - \{e\}$ such that $x\theta \ h = x \ \forall h \in H$. In particular $x\theta f(y, z) = x \ \forall y, z \in S$ and $G_S \subseteq Sym (S - \{e, x\})$ and $G_S \subset$ $N_{G_S S} (G_S)$.

Proof: Let G be a nilpotent group, take H be any subgroup of G then $H \subset N_G(H)$

 $\exists g \in N_G(H) - H$ such that $gHg^{-1} = H$ i.e.; $\exists g \in G - H$ such that $ghg^{-1} \in H$ i.e.

 $ghg^{-1} = h'$ for all $h \in H$ and h' is an element of H.

Since $g \in G = HS \Rightarrow g = h_1x$ where $h_1 \in H$, $x \in S - \{e\}$ Since $g \notin H$ so that $(h_1x) h (h_1x)^{-1} = h'$

$$
h_1 x h x^{-1} h_1^{-1} = h'
$$
 or $x h x^{-1} = h''$ for some $h'' \in H$

$$
\Rightarrow xh = h''x
$$

$$
\Rightarrow x\theta \; h = x \; \; \forall h \in H
$$

i.e. $\exists x \in S - \{e\}$ such that $x\theta$ $h = x$ In particular $x\theta f(y, z) = x \ \forall y, z \in S$

Since $f(S \times S) \subseteq H$

If q be the permutation representation of $f(S \times S)$ on S defined by $q(f(y, z)) =$ $f^S(y, z)$ then ∃ a homomorphism $\psi : f(S \times S)S \to G_S S$ defined by $\psi(hx) = q(h)x$. Then we see that

$$
x\theta^S f^S(y, z) = x \ \forall y, z \in S
$$

i.e.
$$
f^S(y, z)(x) = x \ \forall y, z \in S
$$

so that $f^S(y, z) \in Sym (S - \{e, x\}) \quad \forall y, z \in S$

$$
\Rightarrow G_S \subseteq Sym (S - \{e, x\})
$$

Now

 $xf^S(y,z)x^{-1}$ $=$ $\frac{S}{x}$ f S (y, z) x S f S (y, z) x $^{-1}$ $=$ $\frac{S}{x}$ f ^S (y, z) x f ^S x', x $^{-1}$ x' $=$ $\frac{S}{x}$ f S (y, z) $\frac{S}{x}$ f S x', x $\frac{-1}{1}$ f S x S f S x', x $\frac{-1}{1}$, x' x S f S x', x $\frac{-1}{0}$ x' $=$ $\frac{S}{x}$ f S (y, z) $\frac{S}{x}$ f S x', x $\frac{-1}{x}$ f S x, x ' xox' $=$ $\frac{S}{x}$ f S (y, z) $\frac{S}{x}$ f S x', x $\frac{-1}{x}$ f S x', x $\in G_S$

(R.Lal, Journal of algebra-1996, Transversals in group-3.6)

$$
G_S \subset N_{G_S S} (G_S).
$$

Proposition 4.2: Let G be a group of order p^{m+1} , where p is a prime. (i) If G has a nilpotent classc > 1, then all transversals of $Z_{c-1}(G)$ in G are isomorphic with trivial group torsion and their order is at least p^2 . (ii) For every divisor of G, G has a proper transversal of that order.

Proof: (i) To prove this it is sufficient to prove that $G/_{Z_{c-1}}(G)$ is not cyclic

(i.e. not prime cyclic). Suppose $G/_{Z_{c-1}}(G) = p$ Then $Z \quad G/_{Z_{c-1}(G)} = G/_{Z_{c-1}(G)}$ ----(1) Consider ${}^{G}/Z_{c-2}(G)$ $Z_{c-1}(G)/Z_{c-2}(G) \approx {}^{G}/Z_{c-1}(G)$ ----(2) But $Z_{c-1}(G)$ $\Big| Z_{c-2}(G) = Z \Big| G \Big| Z_{c-2}(G)$ ---- (3) \Rightarrow $G/Z_{c-2}(G)$ Z $G/Z_{c-2}(G)$ is cyclic \Rightarrow $G/Z_{c-2}(G)$ is abelian such that $Z_{c-1}(G)/Z_{c-2}(G) = Z \frac{G}{Z_{c-2}(G)} = \frac{G}{Z_{c-2}(G)} \Rightarrow Z_{c-1}(G) = G$, a contradiction

$$
G/_{Z_{c-1}}(G) \ge p^2.
$$

(ii) since $Z_{c-1} \trianglelefteq G$. Hence the result. *(ii)* Since for every divisor of G, G has a subgroup of that order. Hence if $|G| = dd_1$ Since d_1 divides $|G|$, G has a subgroup H of order d_1 so that $[G:H] = d \Rightarrow G$ has a proper transversal of order d.

Definition 4.3: Let G be a group. If G has no maximal subgroups, then define the **Frattini subgroup** of G denoted by $\Phi(G)$ to be G itself. If G has maximal subgroups then the Frattini subgroup $\Phi(G)$ of G is defined to be the intersection of all maximal subgroups of G.

(Wielandt)4.4: Let G be a finite group. Then G is nilpotent $\Leftrightarrow G' \subseteq$ $frat(G).$

Proposition 4.5: Let G be a finite group. Then $G' \subseteq \text{frat}(G)$ if and only if each right transversal of $frat(G)$ is contained in some right transversal of G' , where G' is the commutator subgroup of G .

Proof: $G' \subseteq \text{frat}(G)$, thus

$$
G'g_1 = G'g_2
$$

\n
$$
\Rightarrow g_1g_2^{-1} \in G'
$$

\n
$$
\Rightarrow g_1g_2^{-1} \in \text{frat}(G)
$$

\n
$$
\Rightarrow \text{frat}(G) g_1 = \text{frat}(G) g_2
$$

This shows that $frat(G) g_1 \neq frat(G) g_2 \Rightarrow G'g_1 \neq G'g_2$. Let S be any right transversal of $frat(G)$. Let $1 \neq g \in S$, then \Rightarrow $frat(G)$ $g \neq frat(G)$ \Rightarrow $G'g \neq G'$. $\Rightarrow g \in S_1$ for some right transversal of G'. Since $g_1 \neq g_2 \in S \Rightarrow$ $frat(G) g_1 \neq frat(G) g_2$

$$
\Rightarrow G'g_1 \neq G'g_2
$$

 \Rightarrow we have a right transversal S_1 of G' containing g_1 and g_2 . This shows that every right transversal of $frat(G)$ is contained in some right transversal of G'. Conversely, let every right transversal of $frat(G)$ is contained in some right transversal of G . From this it immediately follows that

$$
frat(G) g_1 \neq frat(G) g_2 \Rightarrow G'g_1 \neq G'g_2
$$

i.e. $G'g_1 = G'g_2 \Rightarrow \text{frat}(G)g_1 = \text{frat}(G)g_2$ Let $g \in G' \Rightarrow G'g = G' \Rightarrow$ $frat(G)$ g = frat (G)

$$
\Rightarrow g \in \text{frat}(G)
$$

$$
\Rightarrow G' \subseteq \text{frat}(G).
$$

From this result it immediately follows that:

Proposition 4.6: Let G be a finite group. G is nilpotent ⇔every right transversal of $frat(G)$ is contained in some right transversal of G' .

REFERENCES

- [1] R. Lal, Some problems on Dedekind type groups, J. Algebra , 181 (1996), 223-234.
- [2] R. Lal and R. P. Shukla, Perfectly stable subgroups of finite groups, Com. Alg. , 24 (2) (1996), 643-657.
- [3] R. Lal and R. P. Shukla, Transversals in non-discrete groups, Proc. Ind. Acad. Sc. , 115 (4) (2005), 429-435.
- [4] R. Lal and R. P. Shukla, A characterization of Tarski Monsters, Indian J. Pure & Appl. Math. , 36 (12) (2005), 673-678.
- [5] MacLane, Categories for the working Mathematician , Second edition,GTM-5, pringer.
- [6] D. J. S.Robinson, A course in the theory of groups, Second edition, Springer- Verlag, 1996.
- [7] R. Lal, Algebra, Vol I & II, Shail, 2002.
- [8] Swapnil Srivastava and Esther Christoffer, General extentions in groups through right transversals, To be appear in South East Asian Journel of Mathematics and Mathematical Sciences.