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Abstract. This paper is devoted to the study of an eigenvalue second

order differential equation, supplied with homogenous Dirichlet conditions

and set on the real line. In the linear case, the equation arises in the study

of a reaction-diffusion system involved in disease propagation throughout

a given population. Under some relations upon the real parameters and

coefficients, we present some existence and nonexistence results. We use

a variational method and fixed point arguments.
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1. Motivation and introduction

The spread of an infectious disease within a population confined in a region
Ω ⊂ R

n may be represented by two components, one of infectives and the
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other one of susceptibles. If u and v denote respectively the spatial densities of
infectives and susceptibles in the position x and at the time t, then the system
reads

(1)
{

ut − Δu + λu = uvg(v)
vt − Δv = −uvg(v),

with initial conditions

u(x, 0) = u0(x); v(x, 0) = v0(x),

and Neumann boundary conditions

∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω,

where (x, t) ∈ Ω × [0, +∞[.
The nonlinear reaction term g is assumed to be a regular positive function.

The special case g = g0 ∈ R
+∗ corresponds to the so-called Kermack-McKendric

model; here g0 is the contact rate. The positive constant λ stands for the re-
moval rate. We refer to Baily, Britton and Murray (see [1, 4, 14]) for more
details on the biological meaning of the model. In [14], p. 652, various inter-
pretations of the removal rate λ are given.

In one dimensional space, the spatial spread of an epidemic wave is described
by traveling front solutions propagating with a speed c ∈ R

+
∗ , that is particular

solutions of the form u(x, t) = û(x + ct) and v(x, t) = v̂(x + ct); here, we have
assumed a wave to propagate from right to left. Substituting these expressions
into (1), we get the following system of differential equations where ′ = d

dξ

denotes the derivation with respect to the new variable ξ = x + ct and where
we have omitted the hats for simplicity of notations:

(2)
{ −u′′ + cu′ + λu = uvg(v)

−v′′ + cv′ = −uvg(v).

In reality, c is a new parameter while λ is viewed as an unknown of the problem.
It may be justified by physical motivations; a discussion along the same line can
be found in [5, 6, 7] where a model from combustion theory was considered.
Existence and nonexistence results for a boundary value problem associated
with System (2) are provided in [5, 6]. Arguments using the Leray-Schauder
degree are used. The case λ = 0 arises also in combustion theory and leads
to the classical Fisher-Kolmogorov model equation. The resulting equation is
extensively studied in the literature [2, 12, 13, 15, 16]. Sanchez [15] discussed
existence of solutions to the non-autonomous equation u′′ + cu′ + a(t)f(u) = 0
on the positive half-line subject to the boundary u(0) = u(+∞) = 0, with
positive function f and a non-degenerate coefficient a. The autonomous case
is considered in [16] where a shooting approach is used. Again in the positive
half-line, Malaguti [12] proved existence of bounded solutions to the variable-
coefficient Fisher Equation u′′ − c(x)u′ + b(x)g(u) = 0 where the nonlinearity

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


Qualitative Properties and Existence of Solutions ... 67

g has compact support and finitely many zeros. Using comparison-type argu-
ments, the more general equation u′′ − β(c, x, u)u′ + g(x, u) = 0 is treated in
[13] on the real line with the boundary conditions u(−∞) = 0, u(+∞) = 1.
When the reaction term is degenerate, a phase plane analysis is undertaken in
[2] for the equation u′′ + cu′ + f(u, u′; c) = 0 with certain restrictions on the
behavior of f . We notice that none of these works considered the perturbed
differential operator −u′′ + cu′ + λu. The difficulty is that the perturbation
term of order 0, namely λu, modifies the monotonicity of every solution u and
hence its a priori estimates and qualitative properties.

In [6], a system stem from combustion theory with λ = 0 and no balance
reaction term, namely with −uv in both equations, is investigated. The method
of upper and lower solution is used to prove existence of positive solutions; the
solutions are shown to be monotonic; in epidemiology and combustion theory,
they are called front waves. When λ > 0, we rather obtain pulses vanishing
at infinity while v remains non-increasing. An attempt to adapt the upper
and lower solution method to System (2) has led to the investigation of the
following boundary value problem

(3)

{ −u′′ + cu′ + λu = f(x)g(u), −∞ < x < +∞.

lim
|x|→+∞

u(x) = 0.

Are given c, λ > 0 positive real numbers and f : R → R
+, g : R → R two

continuous functions. Indeed, for a given function v, the first equation in (2)
leads to −u′′ + cu′ + λu = f(x)u with f(x) = v(x)g(v(x)).

In this paper, we consider the polynomial growth case 0 < |g(u)| ≤ k|u|p for
some positive real numbers k and p. The case g(u) = u stems from epidemiol-
ogy: then the function f represents a density of susceptibles while u refers to
the one of infectives. We will see that even in the linear case, tackling Problem
(3) depends on whether it is considered on the half line or on the whole real line.
The aim of this paper is two-fold. We first consider the linear case in Section 2
where a variational approach is used to prove existence of positive solutions on
half-lines (−a, +∞) for any a > 0. The result of this section does not guarantee
existence of solutions which are defined on the full real line. We also discuss
how monotonicity of the function f affects existence or nonexistence of positive
solutions. In Section 3, we deal with a general right-hand source term h(x, u)
with polynomial growth up in terms of the second argument. Existence of solu-
tions, not necessarily positive and defined on the positive half-line is obtained
via Schauder’s fixed point theorem; this result complements a similar result
obtained in [9]. The cases p �= 1 or p = 1 are treated separately. An existence
result of solution defined on the full real line is also given in Section 4. To
illustrate the obtained results, some examples of applications are presented in
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Section 5. We end the paper by giving some remarks in section 6 where we
mention an open problem.

2. Problem on the negative half-line

Let X : = C1(R) ∩ W 1,∞(R), usually denoted C1
b (R), be the space of con-

tinuously differentiable functions with bounded derivatives. Equipped with the
sup-norm, ‖u‖X : = sup

x∈R
{|u(x)|, |u′(x)|}, it is a Banach space. In this section,

we investigate the question of existence and nonexistence of positive solution
u ∈ X to the following linear problem

(4)

{
Eu − u′′ + cu′ + λu = f(x)u, −∞ < x < +∞.

lim
|x|→+∞

u(x) = 0.

Here f : R → R
+ is a positive continuous function.

Despite its linearity, Problem (4) presents some difficulties due to the space
to which the solution is required to belong and to the fact that u is not allowed
to change sign. In this section, we are interested in questions of existence,
nonexistence, regularity, and positivity of solutions. We first give some simple
properties involving nonexistence results and regularity; this is the content
of the first subsection. Then, we prove, in the second one, an existence result
under some assumptions on the function f ; in particular, f will not be assumed
monotonic and boundary condition at positive infinity will not be derived.
However, we will rather show that lim

x→+∞u(x)e−
cx
2 = 0.

2.1. Case of nonexistence and qualitative properties. We briefly men-
tion three natural results; the first two results are concerned with simple
nonexistence criteria. The third one specifies the regularity of the solution
u with respect to that of the function f . Hereafter, C0(R, R) refers to the
Banach space of continuous functions vanishing at infinity with usual norm
‖u‖0 = supx∈R |u(x)|. The norm in the Banach space H1(R) is denoted by ‖.‖,
while the norm in the Lebesgue space Lp(R) for 1 ≤ p < ∞ will be referred to
as |.|p :

|u|p =
(∫ +∞

−∞
|u(x)|p dx

) 1
p

.

The function φ+ = max(φ, 0) (respectively φ− = −min(φ, 0)) stands for the
positive part (respectively the negative part) of the function φ. Recall that
Lp(R) is the Banach space of pth power integrable functions on R; and H1(R)
is the Sobolev space of all functions in L2(R) with distribution derivatives up to
the first order also in L2(R). In addition, the notation : = means throughout
this article to be defined equal to.
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Proposition 2.1. Let f ∈ C1(R) be a nondecreasing function. Then Problem
(4) has only the trivial solution in X .

Proof. First, note that u ∈ X implies u′(±∞) = 0; for this, it suffices to
check that they exist as finite limits; we do it at positive infinity. Let

� : = lim inf
x→+∞ u′(x) ≤ �̄ : = lim sup

x→+∞
u′(x).

Then, by a classical fluctuation lemma (see Lemma 4.2 in [10]), there exist two
sequences (xn)n∈N and (yn)n∈N tending to +∞ such that � = lim

n→∞u′(xn) and

�̄ = lim
n→∞u′(yn) whereas lim

n→∞ u′′(xn) = lim
n→∞u′′(yn) = 0.

Inserting into Equation Eu, we find cl = cl̄ = 0; hence � = �̄ = 0 for c > 0.
The fact that u′′ vanishes at positive infinity follows directly from Equation Eu

itself.
Now, multiply Equation Eu by u′ and then integrate by parts over R; we

find the identity

(5)
0 < c

∫ +∞
−∞ |u′|2(x)dx =

∫ +∞
−∞ f(x)(u2 (x)

2 )′ dx

= − 1
2

∫ +∞
−∞ f ′(x)|u|2(x) dx.

A contradiction with f ′ ≥ 0 is then reached.

Proposition 2.2. Let u ∈ X be a positive solution of Problem (4) correspond-
ing to an eigenvalueλ and assumef ∈ L∞(R). Then, it holds that

(6) 0 ≤ inf
x∈R

f(x) < λ < sup
x∈R

f(x).

Proof. A straightforward integration of Equation Eu on the full real line
yields: ∫ +∞

−∞
(λ − f(x))u(x) dx = 0.

Since u is a nontrivial solution which does not change sign, the result follows.

Proposition 2.3. Let u ∈ X be a solution and setm : = inf(1, λ). We have:
(a) If f is L1(R), then u ∈ H1

0 (R) and

(7)
√

m‖u‖ ≤ ‖u‖0

√
|f |1.

(b) Moreover, whenf ∈ L2(R)∩L1(R), the following estimate holds true

(8) m‖u‖ ≤ ‖u‖0|f |2.
Proof. (a) Given f in L1(R), multiply equation Eu by u and integrate over

R; we get the identity:

(9)
∫ +∞

−∞
|u′|2(x) dx + λ

∫ +∞

−∞
|u|2(x) dx =

∫ +∞

−∞
f(x)|u|2(x) dx.
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Hence, m‖u‖2 ≤ ‖u‖2
0|f |1. Then u ∈ H1(R) = H1

0 (R) and the estimate in part
(a) follows.
(b) If further f ∈ L2(R)∩L1(R), then the Cauchy-Schwartz Inequality applied
in (9)

m‖u‖2 ≤ ‖u‖0

∫ +∞

∞
f(x)u(x) dx ≤ ‖u‖0|f |2|u|2,

providing estimate (8).

2.2. Existence of solutions. The main result in this section is

Theorem 2.4. Assume the following conditions are ful“lled

(10)

c2

4 − f ∈ L1(R), (a)

∫ +∞
−∞

(
c2

4 − f(x)
)

dx < 0. (b)

There existsa > 0 such that f(x) ≤ c2

4 ; ∀x, |x| ≥ a. (c)

Then, Equation Eu admits a nontrivial positive solution u such that ue−
cx
2 ∈

H1(R).

In order to use a variational method, we first begin by writing Equation Eu

under its normal form, by setting v(x) = e−
cx
2 u(x). We thus integrate out

the damping term so that Problem (4) reduces to the one of seeking a positive
solution v of the problem:

(11)

{
v ∈ H1(R), v ≥ 0

Ev − v′′ + (λ + c2

4 )v = f(x)v, −∞ < x < +∞.

Remark 2.1. (a) When f is uniformly continuous, we know that Assumption
(10)(a) implies lim

x→±∞ f(x) = c2

4 ·
(b) It would be interesting to consider, instead of Assumption (10)(b), the
rather weaker one:∃x0 ∈ R, c2

4 − f(x0) < 0.

(c) Assumption (10)(c) is veri“ed whenever lim
x→±∞ f(x) : = f± < c2

4 ·

Remark 2.2. With Hypotheses (10)(b), (c), Problem (11) has no positive so-
lution whenever f ∈ C1(R) is a non-increasing function; this is easily seen as
in Proposition 2.1, showing that the case in whichf is monotonic is not covered
by this theorem. Notice further that Problems (4) and (11) are not equivalent.

Proof of Theorem 2.4. Let us introduce the functional

(12) �n(φ) : =
∫ +∞

−∞
|φ′(x)|2 dx +

∫ +∞

−∞

(
c2

4
− f(x)

)
|φ(x)|2 dx,

as well as the set of constrains

(13) S : = {φ ∈ H1(R),
∫ +∞

−∞
|φ(x)|2 dx = 1}.
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Problem (11) then amounts to seeking critical points for the functional � on
the set S; let μ : = inf

φ∈S
�(φ). In the sequel, we seek for a negative Lagrange

multiplier μ which is achieved for some v ∈ H1(R), that is satisfying Euler’s
Equation (see [11]): �(v) = μF′(v) with F(v) =

∫
R |v(x)|2 dx − 1. Then

λ = −μ will be an eigenvalue to Problem (11). However, the remainder of the
proof relies heavily on the following two lemmas:

Lemma 2.5. Under Assumptions (10)(a) and (b), we have thatμ < 0.

Lemma 2.6. Assumeμ < 0 and (10)(c) holds true. Then μ is achieved.

Proof of Lemma 2.5. Consider the test function φβ(x) = e−β|x| with

some β > 0. Then, �(φβ) = β +
∫ +∞
−∞

(
c2

4 − f(x)
)

e−2β|x| dx. Assumption

(10)(b) implies that
∣∣∣( c2

4 − f(x)
)∣∣∣ e−2β|x| ≤

∣∣∣ c2

4 − f(x)
∣∣∣ ∈ L1(R). Moreover,

we can pass to the limit as β → 0+ and find lim
β→0+

∫ +∞
−∞

(
c2

4 − f(x)
)

e−2β|x|dx =∫ +∞
−∞

(
c2

4 − f(x)
)

dx < 0.

Therefore, lim
β→0+

�(φβ) < 0; and by continuity, we infer the existence of some

β0 > 0 such that �(φβ0 ) < 0. Furthermore, since �(kφ) = k2�(φ), ∀ k ∈ R, the
function φ̃β0 = φ� 0

|φ� 0 |2
lies in S and still satisfies �(φβ0 ) < 0, proving that μ < 0.

Proof of Lemma 2.6. Consider a minimizing sequence vn ∈ S, that is such
that lim

n→+∞�(vn) = μ. Up to a new subsequence, we may assume, without loss

of generality, vn ≥ 0, ∀ n ∈ N. Since μ < 0, we may also suppose �(vn) ≤ 0
for sufficiently large n. Therefore, with (12), we find the estimate∫ +∞

−∞
|v′n(x)|2 dx −

∣∣∣∣∣
(

c2

4
− f

)−∣∣∣∣∣
∞

≤ �(vn) ≤ 0.

Then, ∫ +∞

−∞
|v′n(x)|2 dx ≤

∣∣∣∣∣
(

c2

4
− f

)−∣∣∣∣∣
∞

.

Since vn belongs to the set S defined by (13), the sequence (vn)n∈N is bounded
in H1(R). Extracting, if necessary, a new subsequence, we infer the following
convergence (see [3]):

(14)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vn ⇀ v, weakly in H1(R). (a)
vn → v, strongly in C0

loc(R). (b)
vn → v, strongly in L2

loc(R). (c)
vn → v, a.e. (d)

The remaining of the proof will be carried over in two steps:
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Step 1. To check v �≡ 0, rewrite, in (12), the functional �(vn) as

(15)

�(vn) =
∫ +∞
−∞ |v′n(x)|2 dx +

∫ +∞
−∞

(
c2

4 − f(x)
)+

|vn(x)|2 dx

− ∫ +∞
−∞

(
c2

4 − f(x)
)−

|vn(x)|2 dx.

Assumption (10)(c) tells us that
(

c2

4 − f(x)
)−

= 0, for |x| ≥ a and hence we
obtain the lower bound

(16) �(vn) ≥ −
∫ +a

−a

(
c2

4
− f(x)

)−
|vn(x)|2 dx.

Therefore, v �≡ 0 as claimed; otherwise, passing to the lim inf in (16), as n goes
to infinity, and making use of (14)(c), we find that μ ≥ 0, which is a contradic-
tion.

Step 2. Owing to (14)(a), we have the upper bound

(17) �(v) ≤ lim inf
n→+∞�(vn) = μ;

which, thanks to (15), may be expanded as follows

(18)

μ = lim inf
n→+∞ �(vn) ≥ ∫ +∞

−∞ |v′(x)|2 dx

+
∫ +∞
−∞

(
c2

4 − f(x)
)+

|v(x)|2 dx

− ∫ +a

−a

(
c2

4 − f(x)
)−

|v(x)|2 dx.

Moreover, the equality μ = �(v) holds true. To see this, we first obtain, with
the aid of (14)(a), the estimate

(19)
∫ +∞

−∞
|v(x)|2 dx ≤ lim inf

n→+∞

∫ +∞

−∞
|vn(x)|2 dx = 1.

We claim that
∫ +∞
−∞ |v(x)|2 dx = 1. On the contrary, assume that∫ +∞

−∞
|v(x)|2 dx < 1

and set ṽ : = v
|v|2 which lies in S. Therefore,

μ ≤ �(ṽ) =
�(v)
|v|22

≤ μ

|v|22
·

Hence μ
(
1 − 1

|v|22

)
≤ 0 which implies |v|2 ≥ 1, contradicting our assumption.

This shows that v ∈ S, and then μ ≤ �(v); with (17), we finally deduce the
needed equality μ = �(v), ending thereby the proof of Lemma 2.6.

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


Qualitative Properties and Existence of Solutions ... 73

To end the proof of Theorem 2.4, it remains to check that v is positive. To this
end, rewrite Equation εv as

−v′′ +

((
c2

4
− f

)+

− μ

)
v = (

c2

4
− f)−v.

The right-hand side is nonnegative. The positivity of v then follows from the
Maximum Principle because μ < 0. Moreover, v �≡ 0 for

∫ +∞
−∞ v2(x) dx = 1.

Finally, assume v(x0) = 0 for some x0 ∈ R; then v′(x0) = 0 since v ≥ 0 (as
will be seen in the remark below, notice that v belongs to C1(R)). As for
v′′(x0) = 0, it follows from equation Ev itself, contradicting uniqueness to the
initial value problem. Therefore, v(x) > 0 for any x ∈ R.

Remark 2.3. (a) Since v ∈ H1(R), we have thatv ∈ C0(R). In addition
v′′ ∈ C0(R) for f is continuous; we infer that v′ ∈ C0(R) [3] whencev ∈ C2(R).
(b) When f ∈ L∞(R), we can argue as in part (a) to deduce thatv ∈ H2(R).
(c ) Finally, we deduce from parts (a) and (b) thatu ∈ C2(R) ∩ H2(]−∞, a[)
∩ W 2,∞(] −∞, a[), for any a ∈ R.

Remark 2.4. (a) Theorem 2.4 tells us thatu = o(e
cx
2 ) as x → −∞ but gives

no information about the behavior ofu at positive in“nity; in particular, we do
not know whether or notu(+∞) = 0; the latter remains an open question. In
this respect, we can say that Problem (4) has only been solved on the negative
half line.
(b) Assume lim

x→+∞ f(x) : = f+ exists. Then, from linearity of Equation Eu,

a straightforward argument yields the following behavior of positive solutions,
near positive in“nity:

u(x) ∼ K exp
(
x
( c

2
−
√

λ +
c2

4
− f+

))
,

for some positive constantK. Note that, from Assumption (10)(c), the function
c2

4 − f+ is nonnegative and so is the functionλ + c2

4 − f+. Therefore

lim
x→+∞u(x) = 0 ⇐⇒ λ > f+.

Unfortunately, we ignore the position of μ, and thus the one ofλ, with respect
to f+, except in the case in whichf+ = 0. However, the latter is ruled out
whenever for instance lim

x→+∞ f(x) = c2

4 (see Remark 2.1(a)).

3. Problem on the positive half-line

3.1. Setting of the problem. Consider the boundary value problem with
general right-hand term:

(20)
{ −u′′ + cu′ + λu = h(x, u(x)), x ∈ I

u(0) = u(+∞) = 0.
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Here h : I × R → R is a continuous function not necessarily positive. The
interval I denotes ]0, +∞[, the set of positive real numbers. Setting k : =√

λ + c2

4 , Problem (20) is rewritten for the function v(x) = e
� c
2 xu(x):

(21)

{
−v′′ + k2v = e

� c
2 xh(x, e

c
2 xv(x)), x ∈ I

v(0) = v(+∞) = 0.

Equivalently, the new unknown v satisfies the integral equation:

v(x) =
∫ +∞

0

G(x, s)e
� c
2 sh(s, e

c
2 sv(s)) ds

with Green’s function

(22) G(x, s) =
1
2k

{
e−ks(ekx − e−kx) x ≤ s

e−kx(eks − e−ks) x ≥ s.

The unknown u is then solution of the integral equation:

u(x) =
∫ +∞

0

e
c
2 (x−s)G(x, s)h(s, u(s)) ds.

The following lemma provides estimates of the Green function G and will
play an important role in the sequel; we omit the proof:

Lemma 3.1. For any x, s ∈ I, we have that

(23) 0 < G(x, s) ≤ 1
2k and 0 < G(x, s)e−μx ≤ G(s, s)e−ks, ∀μ ≥ k.

Under suitable assumptions on the nonlinear function h, we shall prove the
existence of a solution to Problem (20). The proof relies on Schauder’s fixed
point theorem and Zima’s compactness criterion (see [17]); but first of all, let
us recall some

3.2. Preliminaries. Let p : I −→]0, +∞[ be a continuous function. Denote
by X the Banach space consisting of all weighted functions u continuous on I

and satisfying

sup
x∈I

{p(x)|u(x)|} < ∞,

equipped with the norm ‖u‖ = supx∈I{p(x)|u(x)|}. We have

Definition 3.1. A set of functions u ∈ Ω ⊂ X are said to be almost equi-
continuous on I if they are equi-continuous on each interval[0, T ] , 0 < T <

+∞.

Lemma 3.2. ([18]) If the functions u ∈ Ω are almost equi-continuous onI

and uniformly bounded in the sense of the norm

‖u‖q = sup
x∈I

{q(x)|u(x)|}
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where the function q is positive, continuous on I and satis“es

lim
x→+∞

p(x)
q(x)

= 0,

then Ω is relatively compact in X .

Finally, recall Schauder’s Fixed Point Theorem for the reader’s convenience.

Theorem A. Let E be a Banach space and C ⊂ E a bounded, closed and
convex subset of E. Let F : C −→ C be a completely continuous mapping.
Then F has a fixed point in C.

3.3. Main result. Having disposed of these auxiliary results, we are in posi-
tion to prove

Theorem 3.3. Assume that:

(24)

⎧⎨
⎩

h : I × R −→ R is a continuous function,
∃ p > 0 : p �= 1, |h(x, u)| ≤ a(x) + b(x)|u|p, ∀ (x, u) ∈ I × R,

where a, b : I −→ R
+ are continuous positive functions.

(25)

⎧⎪⎨
⎪⎩

There existsθ > k + c
2 such that

M1 : =
∫ +∞
0 e−(k+ c

2 )sa(s) ds < ∞,

M2 : =
∫ +∞
0

e(pθ−k− c
2 )sb(s) ds < ∞.

(26) 2k

(
2k

pM2

) 1
p � 1

− M2

(
2k

pM2

) p
p � 1

− M1 ≥ 0, when p > 1.

Then Problem (20) has at least one solutionu ∈ C(I; R).

Remark 3.1. If the coe�cients a, b belong toC(I, R+)∩L∞(I, R+), then the
“rst condition in Assumption (25) is obviously satis“ed. As for the second one,
it holds true wheneverp < 1 since we may always choose a real numberθ such
that k + c

2 < θ < 1
p

(
k + c

2

)
. In case p > 1, we have thatpθ − k − c

2 > 0 and
then the function b should decay exponentially to zero ass → +∞ very faster
in order that the second condition be ful“lled.

Lemma 3.4. Assumption (26) is equivalent to the following condition:

(27) ∃ R0 > 0,
1
2k

(M1 + M2R
p
0) ≤ R0.

Proof. Define the function ω(x) : = x − M2
2k xp = x

(
1 − M2

2k xp−1
)
. Then

ω(0) = 0 and lim
x→+∞ω(x) = −∞ for any p > 1. Moreover, the function ω

changes monotonicity and admits a maximum at some value x0 such that

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir
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xp−1
0 = 1

p
2k
M2

and ω(x0) = p−1
p x0. Hence, Assumption (27) is verified if and

only if p−1
p x0 ≥ M1

2k , that is:

(28)
M1

2k

(
pM2

2k

) 1
p � 1

≤ p − 1
p

= 1 − 1
p

which may be rewritten as

M1 ≤ 2k

(
2k

pM2

) 1
p � 1

− M2

(
2k

pM2

) p
p � 1

for 2k
p

(
2k

pM2

) 1
p � 1

= M2

(
2k

pM2

) p
p � 1

, whence (26) and the lemma is proved.

Remark 3.2. In casep < 1, the function ω de“ned above is such thatω(0) = 0
and lim

x→+∞ω(x) = +∞. Then, for all A > 0, there exists anR > 0 such that

ω(R) > A. It follows that the condition

2k

(
2k

pM2

) 1
p � 1

− M2

(
2k

pM2

) p
p � 1

≤ M1,

which is also equivalent to (27), is always satis“ed.

Proof of Theorem 3.3:
Let θ ∈ R be as in Assumption (25) and consider the weighted space

X = {u ∈ C(I; R) : sup
x∈I

{e−θx|u(x)|} < ∞}

endowed with the weighted sup-norm:

‖u‖θ = sup
x∈I

{e−θx|u(x)|}.

Next define on X the operator F by:

Fu(x) =
∫ +∞

0

e
c
2 (x−s)G(x, s)h(s, u(s)) ds.

We show that F satisfies the following properties:

(a): F maps any closed ball BR = {u ∈ X : ‖u‖ ≤ R} into the space X .
(b): F is completely continuous in X .
(c): There exists a closed ball BR0 such that F (BR0 ) ⊂ BR0 .

• Claim 1: For any u ∈ BR, supx∈I e−θx |Fu(x)| < ∞, that is F (BR) ⊂ X.

Indeed, choosing μ = θ − c
2 in (23), noting that μ ≥ k by (25), and using (24),
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we have the estimates

e−θx|Fu(x)| ≤ e−θx
∫ +∞
0 e

c
2 (x−s)G(x, s)|h(s, u(s))| ds

= e−(θ− c
2 )x
∫ +∞
0 e

� c
2 sG(x, s)|h(s, u(s))| ds

≤ ∫ +∞
0

e−(k+ c
2 )sG(s, s) [a(s) + b(s)|u(s)|p] ds

≤ 1
2k

∫ +∞
0

e−(k+ c
2 )sa(s) ds + 1

2k ‖u‖p
θ

∫ +∞
0

e(pθ−k− c
2 )sb(s) ds

≤ 1
2k (M1 + M2 ‖u‖p

θ) < ∞

≤ 1
2k (M1 + M2R

p) < ∞.

• Claim 2: F is completely continuous:
(a) Let θ1 ∈ R be such that θ1 < θ and consider the functions u ∈ BR for
some positive real number R. Then the family {Fu} is uniformly bounded
with respect to the norm ‖.‖θ1 . Indeed, as shown in Claim 1, we have that
‖Fu‖θ1

≤ 1
2k (M1 + M2R

p), for any u ∈ BR.

(b) The functions {Fu} for u ∈ BR are almost equi-continuous on I. The
proof follows that in Theorem 5.1, [9] and is omitted.
(c) Applying Lemma 3.2 with weight q(x) = e−θ1 x, we deduce that the map-
ping F is completely continuous on BR.

• Claim 3: Let R0 be as in (27) and check that F (BR0 ) ⊂ BR0 . For any
u ∈ BR0 , we have

0 ≤ e−θx|Fu(x)| ≤ 1
2k

(M1 + M2‖u‖p
θ) ≤

1
2k

(M1 + M2R
p
0) ≤ R0.

By Theorem A, the operator F has a fixed point in BR0 and so Problem (20)
admits a solution u in BR0 .

Remark 3.3. To ensure existence of nontrivial solutions, one must add, fur-
ther to the assumptions in Theorem 3.3, the condition:

∃x0 ∈ I, h(x0, 0) �= 0.

Remark 3.4. In [9], the Krasnosels•kii “xed point theorem in cones has been
used and a result similar to Theorem 3.3 has been proved with the following
additional assumption:⎧⎨

⎩
There exist α > 0, γ, δ > 0 and x0 ∈ I such that:

min
x∈[γ,δ], u∈[mα,αe�� ]

h(x, u) ≥ αeθx0

[∫ δ

γ
e

c
2 (x0−s)G (x0, s) ds

]−1

where m : = min
{
e−kδ, ekγ − e−kγ

}
and h is a positive continuous function.
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78 Smäıl Djebali, Otared Kavian and Toufik Moussaoui

In general, the latter assumption is not easy to be veri“ed; however, existence
of solutions which are both nontrivial and positive has been obtained. This
condition has been weakened in[8] in case of positive right-hand term. Finally,
note that whenp = 1, an existence result of positive solutions is also given in
[19].

3.4. The case p = 1. The case p = 1 may be treated as in Theorem 3.3 and
the following result of a solution with arbitrary sign can be proved; we omit
the proof.

Theorem 3.5. Suppose the following assumptions are ful“lled:

(�1)

⎧⎨
⎩

h : I × R −→ R is a continuous function,
|h(x, u)| ≤ a(x) + b(x)|u|, ∀ (x, u) ∈ I × R,

where a, b : I −→ R
+ are continuous positive functions.

(�2)

⎧⎪⎨
⎪⎩

There existsθ > k + c
2 such that

M1 : =
∫ +∞
0

e−(k+ c
2 )sa(s) ds < ∞,

M2 : =
∫ +∞
0 e(θ−k−c/2)sb(s) ds < 2k.

Then Problem (20) has at least one solutionu ∈ C(I; R).

Remark 3.5. Notice that the condition M2 < 2k guarantees the existence of
a ball B such that the mappingF sendsB into itself.

Corollary 3.6. The problem

(29)
{ −u′′ + cu′ + λu = f(x)u, 0 < x < +∞.

u(0) = u(+∞) = 0

wheref : R → R is a continuous function such that there existsθ > c + k
2 with∫ +∞

0
e(θ−k− c

2 )s|f(s)| ds < 2k has at least one solutionu ∈ C(I, R).

4. Problem on the full real line

The sub-linear problem can be also treated on (−∞, +∞) and u may be
regarded as a solution of the integral equation:

u(x) =
∫ +∞
−∞ K(x, s)h(s, u(s))ds

with new Green’s function:

K(x, s) = 1
r1−r2

{
er1 (x−s), x ≤ s

er2 (x−s), x ≥ s,

and characteristic roots:

r1 = c+
√

c2 +4λ
2 , r2 = c−√

c2 +4λ
2 ·

Consider the Banach space:

E = C0(R, R) = {u ∈ C(R, R) : u(−∞) = u(+∞) = 0}
equipped with the sup-norm:

‖u‖ = supx∈R |u(x)| .
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We state without proof the following result for a right-hand term h(x, u) for
the following problem:

(30)
{ −u′′ + cu′ + λu = h(x, u), −∞ < x < +∞.

u(−∞) = u(+∞) = 0,

The proof runs parallel to that of Theorem 3.3.

Theorem 4.1. Problem (30) has a solution in E provided there exist positive
functions (a, b) ∈ E2 such that:

(a) |h(x, u)| ≤ a(x) + b(x)|u|, ∀x, u ∈ R.

(b) a∗ =
∫ +∞
−∞ a(x)dx < ∞, b∗ =

∫ +∞
−∞ b(x)dx <

√
c2 + 4λ.

Corollary 4.2. The problem

(31)
{ −u′′ + cu′ + λu = f(x)u, −∞ < x < +∞.

u(−∞) = u(+∞) = 0,

where the functionf ∈ C(R, R) ∩ L1(R, R) satis“es
∫ +∞
−∞ |f(s)| ds <

√
c2 + 4λ,

admits at least one solutionu ∈ C0(R, R).

5. Applications

To illustrate the results of Theorems 3.3 and 3.5, take in Problem (20) the
values c = 2 and λ = 3 and discuss three situations.

Example 5.1. Consider the sub-linear case whereh is de“ned by

(32) h(x, u) =
{

e2x, x ∈ R
+, u ∈ [0, 1]

e2x + e
x
2

√
ln(u), x ∈ R

+, u ≥ 1.

Here p = 1
2 and all assumptions in Theorem 3.3 are met since we may take

any 3 < θ < 5 in order that (25) be satis“ed; indeed, in this caseM1 = 1 and
M2 = 2

5−θ · Then, Problem (20) has a solution. This solution is nontrivial for
h(x, 0) �= 0 for any x ∈ I (see Remark 3.3). In addition, it is positive by the
weak maximum principle.

Example 5.2. Consider the boundary value problem:

(33)
{ −u′′ + 2u′ + 3u = eαx + e−βxg(u), 0 < x < ∞

u(0) = u(+∞) = 0

with some0 < α < 3, β > 3 and a function g ∈ C(R, R) with quadratic growth
|g(u)| ≤ |u|2. Then, M1 = 1

3−α and M2 = 1
3+β−2θ for some 3 < θ < 3+β

2 ·
Assumption (28) is ful“lled whenever 4(3 + β − 2θ)(3 − α) ≥ 1 and 3 < θ ≤
3+β

2 − 1
8(3−α) which is possible for any0 < α < 71

24 · Therefore, Problem (33)
has at least a nontrivial solution by Theorem 3.3.
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Example 5.3. Consider the problem:

(34)
{ −u′′ + 2u′ + 3u = eαx + e−βxg(u), 0 < x < ∞

u(0) = u(+∞) = 0

with some 0 < α < 3, β > 3 and a function g(u) = 2
π

ln(1+u2 ) arctan(u)

1+|u| which

satis“es |g(u)| ≤ |u|. Then, M1 = 1
3−α and M2 = 1

3+β−θ ≤ 4 for any 3 < θ <

β + 11
4 · By Theorem 3.5, Problem (34) has at least a nontrivial solution.

6. Concluding remarks

(a) We believe that this work has contributed to the study of Dirichlet
boundary value problems posed on unbounded intervals of the real line and
associated with the class of second-order differential equations −u′′+cu′+λu =
h(x, u). In this work, we have discussed polynomial-like growth of the nonlinear
term h in terms of the unknown u : |h(x, u)| ≤ a(x) + b(x)|u|p (p ∈ R

+).
Example 5.1 shows that in the strict sub-linear case p < 1, the coefficient b

need not tend to zero at positive infinity and then the nonlinear term h is not
committed to die out as x gets very large. Also, a special attention has been
paid to the linear case which arises more particularly in epidemiology.
(b) Corollary 4.2 proves existence of solutions to Problem (4) defined on the
whole real line under condition that f ∈ C0(R, R) and

∫ +∞
−∞ f(x)dx <

√
c2 + 4λ

but does neither encompass the nonincreasing case, nor does it yield positive
solutions to this problem.
(c) However, when f is nonincreasing, the linear problem h(x) = f(x)u set
on the full real line is, as far as we know, an open question. In 2001, the
first author proposed this question in Problem Section of Electronic Journal of
Differential Equations, Problem (2001-2) and is still unsolved
(see http://math.uc.edu/ode/odesols/p2001.htm).
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[11] O. Kavian, Introduction ` a la Th éorie des Points Critiques et Applications aux Probl̀ emes
Elliptiques, Maths and Applications 13, Springer Verlag, Paris, 1993.

[12] L. Malaguti, Bounded Solutions for a Class of Second Order Nonlinear Differential Equa-

tions, Di�. Eq. and Dyn. Syst. , 3 (2) (1995), 175-188.

[13] L. Malaguti and C. Marcelli, Existence and Multiplicity of Heteroclinic Solutions for

a Non-Autonomous Boundary Eigenvalue Problem, Elec. Jour. Di�. Eq. , 118 (2003),

1-21.

[14] J.D. Murray, Mathematical Biology, Biomathematics Texts, 19, Springer Verlag, Berlin

Heidelberg, 1989.

[15] L. Sanchez, A Note on a Nonautonomous O.D.E. related to the Fisher Equation, Jour.
of Comput. and Appl. Math. , 113 (2000), 201-209.

[16] L. Sanchez, Heteroclinic Connections for a Class of Non-Autonomous Systems, USA-

Chile Worshop on Nonlinear Analysis, Elec. Jour. Di�. Eq. Conf. , 06 (2001), 257-266.

[17] K. Zima, Sur l’Existence des Solutions d’une Équation Intégro-différentielle, Annales
Polonici Mathematici , XXVII (1973), 181-187.

[18] M. Zima, On a Certain Boundary Value Problem, Annales Societas Mathematicae
Polonae. Series I: Commentationes Mathematicae , XXIX (1990), 331-340.

[19] M. Zima, On Positive Solutions of Boundary Value Problems on the Half-Line, Jour. of
Math. Anal. and Applications , 259 (2001), 127-136.

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir

