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ABSTRACT. In this paper using the Clifford algebra over R* and its ma-
trix representation, we construct Clifford scaling functions and Clifford
wavelets. Then we compute related mask functions and filters, which

arise in many applications such as quantum mechanics.

Keywords: Clifford Wavelets, Clifford algebra, Multiresolution Analysis, Wavelets.

2000 Mathematics subject classification: 42C15, 46E15, 50C20, 42B99,
42C05.

1. INTRODUCTION

A complex-valued representation of a real 1-dimensional signal is an im-
portant tool in analysis of signal processing. The reason is that in its polar
representation, the modulus of the complex signal is identified as a local quan-
titative measure of a signal, called local amplitude, and the argument of the
complex signal is identified as a local measure for the qualitative information of
a signal, called local phase. First step for generalizing such representation sys-
tem was quaternion-valued representation, on which a signal can be expressed
by four parameters as its local quantitative measures.
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On the other hand wavelets are a very useful and wide applied tools for practi-
cal applications in signal and image processing, multi-satellite measurements of
electromagnetic wave fields, analysis of climate-related time-series and analysis
space weather effects and so on. One usual way to construct wavelets pass
through multiresolution analysis (MRA), which is a procedure for constructing
wavelets from a scaling function. Now if the scaling function is a matrix of func-
tions, we deal with matrix-valued MRAs. In this paper we show that any real
or complex Clifford algebra can be identified with a suitable matrix algebra,
then via this representation, Clifford-valued scaling functions, Clifford-valued
MRAs and Clifford wavelets are given.

Notations. For an algebra K, we denote its product with ”.”. R, C and H are
algebra of real numbers, complex numbers and quaternions, respectively. Kn]
is the algebra of n x n matrices over field K. ®g denotes tensor product over
field K.

This paper is organized as follow: in second section we introduce the n-
dimensional Clifford algebra (on brief) and some useful theorems on it, then
we discuss the CI(R*) and CI(R*) (real and complex forms of Clifford algebra on
R%, resp.) and their matrix representations. Section 3 consists of multiresolition
analysis (MRA) and Clifford wavelet structures. In section 4, we compute
Clifford wavelets matrices on R*.

2. CLIFFORD ALGEBRA

In this section we mention some definitions and basic facts about Clifford
algebras.

Definition 2.1. let V be a finite dimensional vector space on the field F. A
quadratic form (g-form) on V is a function h : V' x V. — F | such that

h(azy + x2,y) = ah(x1,y) + h(za,y)

h(.l?, ayr + y2) = Oéh(J), yl) + h(l‘, y2)'

Furthermore if h(z,y) = h(y,z) then h is called symmetric. For any g-form

h, there exists a matrix representation A = (A;;) such that A;; = h(e;, e;)

where {e1, e, -, e,} is a basis for V. The g-form h is called nondegenerate, if
det(h(e;, e;)) # 0.

Let V be an m-dimensional vector space on the field F, and h be a non-

degenerate symmetric g-form on V', then there exists an ordered basis B =

{e1,e2,- - -,en} for V such that A = (A;;) is diagonal. In particular for F = R

ey { 1 1=

If the matrix A have p-times 1 and ¢-times —1 on its diameter such that p +

g = n, then h will be shown with hA(p,q). For h, a nondegenerate g-form on

otherwise.
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real vector space V, the pair (V) h) is called a quadratic space(q-space). For
describing the Clifford algebra on vector space V', consider the commutative
tensor algebra T'(V) = @,-,®"V on real g-space (V,h) with unit 1. Let
I,(V) =(V®V + h(V,V)) then I} is a two-sided ideal in T(V). The quotient
space % is called the Clifford algebra on V and is denoted by CI(V, h). The
induced product, from tensor product on T(V), is called Clifford product and
will be shown with 7.”, (CI(V,h),”.”) is again a commutative algebra with
unit. If h is h(p, ¢) then CI(V,h) will be shown by Cl(p,q).

By considering the canonical projection map m, : T(V) — CI(V, h), one can
find that the map 6y : V. — CIl(V,h) is one-to-one. This fact says that
CIl(V,h) is generated by vector space V. C CI(V,h) and identity 1, and its
product satisfies the following relations:

v-v=—h(v,v)1 for any v € Cl(V,h)

2)v-w+w-v=—-2h(v,w).

In view of previous equations we can obtain the universal map for Clifford
algebras as follow:

Proposition 2.1. Let A be a commutative K-Algebra with unit 1, and f :
V — A be a linear map such that: f(v)-f(v) = —h(v,v)1 for anyv € V , then
f can be uniquely extended to the algebraic homomorphism f: Cl(V,h) — A.
Furthermore, CI(V, h) is the unique associated K-Algebra with this property.

In other word if (V, h) is a g-space, then there exists a Clifford algebra as-
sociated to it and is unique up to an isomorphism. This is easy to show that
if {e1,eq, -+, e, } is an orthonormal basis for real vector space V', then the set
{1,ei,eiej,eiejep, -+, ereaez---e, 1 i+1=j,j+1 =k} is a basis for CI(V, h).

Note that CI(V, h) = T}}V) = R@‘zggé‘frﬁ‘%@l‘;@”, and

n
W)= a0+Z aieﬁz aije@eﬁz aijrei®ejQep~+-+a;, . .i, 10e2X. . .Qen.
=1

Also V@V +h(V)1 =0 implies that V@V =—h(V)1.

Example 2.2. Let V = R2, and h be the quadratic form obtained by the matriz

h= ( (1) (1] >, ie V=R? = (e1,e3). DimV = 2, so dimCI(V) = 4 and
CZ(V) = CZ(R2) = <1a6176256162>
= {ao + arer + azes + arzeres : 12 =€l =—1,e1-€3=—ey- e1}

where (e; - 62)2 = e1ezerer = —ererezer = (—1)(=1)(=1) = —1.
So if we define ¥ : CI(R?) — H by

P(1) = 1,9(e1) = 4,9 (e2) = j,(ere2) = P(e3) = k

then, since ¢ is an algebraic homomorphism, C1(R?) = H.
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There are useful algebraic isomorphisms for Cl(p, ¢) such as
(2.1) Cl(n,0) ® C1(0,2) =2 CI(0,n + 2)
Cl(0,n) ® Cl(2,0) = Cl(n + 2,0)

Cl(p,q) @ Cl(1,1) 2 Cl(p+ 1,9+ 1),

where n,p,q > 0 such that n = p + q.

Now we introduce a useful tool. Complexification is one of the important tools
in linear algebra which make it more flexible. Let (V,h) be a real g-space.
The complexification of V' is the vector space W = V ®¢ C such that for
weW :w=v@A=v® (a+ib)=v®a+v®ib=1®av+i(l®bv). This
means that any element of W can be written as z+1iy where x,y € V. Now let g
be a nondegenerate g-form on V. Then gy : W x W — C is a nondegenerate
g-form on W = V ®C defined by gw (z @ \,y ®7) = Ayg(x,y). From this point
of view the complexification of CI(V') is Cl(V) @ C and if W = V ®¢ C then
CI(W)=Cl(V)®rC.

Lemma 2.3. Let V be a real n-dimensional vector space, then
Cl(VoR?) @ C = (Cl(V) ® C) ®c (CI(R*) ® C).

Proof. Let {v1,- - -,v,} be an orthonormal basis for V' and {ej,ea} be the
standard basis for R2. Consider the real map 6 : V & R? — (CI(V) ®r C) ®c
(CI(R?*) @ C) defined by

(vj,0) — iv;Q@eres, 1<j<n, (0,e,) —1®e r=1,2.

so 6 extends to algebra homomorphism CI(V & R?) ® C = (CI(V) ®r C) ®c
(CI(R?) ® C). On the other hand domain and range of § have the same dimen-

sion and it is onto, so # is isometry.
O

the following lemma is the key tool for describing the complex Clifford alge-
bras.

Lemma 2.4. Let V be a real vector space such that dimV = 2n, then
Cl(V) ®r C is isomorphic to the matriz algebra C[2™].
If dimV =2n+ 1 then CI(V) ®@r C is isomorphic to C[2"] @ C[2"].

Proof. We refer interested reader to [2], for an extended proof. O

2.1. Construction of Clifford Algebra on R*. Now we are going to show
that for V. = R* CIl(V) is H[2] = C[4]. We know that, via the algebraic
isomorphism
G4 bitoj bl (2T bEie
—b+1ic a—id
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H is isomorphic to C[2]. Now if V = R* = (eq, e1, 2, e3) with Riemannian form

on it, then

4

4 2

CI(R™) = {a0+z a,;e,',+z a;jejej+ Z ajjreiejeptalzaeieseseyq : ejej = —ejei, e, = —1,a; € R}
iz1 i<j i<j<k

this means that CI(R*) is spanned by 2% = 16 vectors:
1, E1, B, E3, By, F1E2, E1E3, E1Ey, E2 E3, Eo Ey, E3Ey,
E1EqEs, F1EaFEy, E1EsEy, FoE3Ey, E1EoE3Ey,

as a basis. On the other hand

01(0,2) = Cl(R2,< _é 7(1) )) = <60,€1,62,63 =€1€2>
heree—lo e_01 6_1 0 6_0—1
wheree =191 )27\ 10/ 2" Lo -1 )77 1 o
such that 6022612:622:1,(6162)2:—1 and

12

/ / / / ! !
0 1 H = (eo’,e1’ e, es’ = ei'ed)

10 0 1 0 i i 0
/ / / /
“hereeo(o 1)’61<—1 0>’62(i 0>’e3<0 —z‘>'

Now if in (2.1) we set n = 2 then

C1(2,0) =CZ(R2,< L0 ))

Cl1(0,2) ® C1(2,0) = Cl(4,0).

Through the relation A® B = (A;; B) between matrices we can find the matrix
representation for C1(4,0)’s bases:

Ey = eg ®€0/ =1, F = ¢ ®63,, FEy = eo ®61,, Es = e ®€1/,E4 =
eo ey, E1Ey =ex®ey, E1E3 =e ®Qey, E1Ey = —(eg®e’), F2E3 =
es®@ey, FaFEy=e1 ®e3', EsEy=eyQes’, E1EyE3=e3Qes’, E1EE, =
—(e2®ep’), EoEsEy=e3®es, E1E3Ey = —(e1®ey’), E1EyE3Ey = —(e3 ®
61’).

This means that for any p € CI(R*) we have
p=ao+a1 By +acEy+asE3+asEy+ainF1 By +a13E1 Es+auE1 By +asa B Fy
+aza 3By + a3 By B3 + a123 1 Ea E3 4 a104F1 Ea By

+a3a o B3 By + a134E1 E3Ey + a1034 1 By B3 By

By the above matrix representation for F;’s, associated matrix to p is:
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ap + a1t + agqgi—
a124

—az + aqi + arzit
alq

a3 + a24% + a123i—
a134

—a3 + a13% + ag3qit+
a1234

A. Askari Hemmat and Z. Rahbani

ag + agt + ayzi—
aiq

apg — a1t — agzqi—
a124

a3 + a13i + az34i—
a1234

a23 — a24% — a1231—
aizqa

—a24% — a23 — a1231—
a134

—ag + a13i — az34i—
a1234

ap + a1t — azqit
a124

az + aqi — ajzit
aiq

a3z + a13ia234i+
1234

—a23 + az24i + ajazi—
a134

—ag + a4t — ajgi—
alq

ag —ayit+ agqit
ai24

Now if we set

Ay =ao+iar, By =—ai24+iazs, Az =az+ias, Bz =ais+ian, Az=
azs +iaze, Bz = —aizs +ia123, As=a3z+iarz, By=al234+iazas,
and then set A=A, + B, B=A, - B, C=Ay— By, D= A+ By,
E=A3+B;, F=—-A3+Bs, G=A,+By, H= A;— By, pcan be shown
as

A -C F -G
- N

H E D B
A simpler representation for p is p = ( j f ), which is a 2 X 2—matrix in

H, with o = A — jC, f=F - jG, y=FE —jH, A= B — jD.

Till now we’ve found the matrix representations for CI(R*) such that H[2] =
C[4]. By considering the complexification of CI(R*) we will work with C[4],
which is a more general and flexible case.

Let Mg be the set of all 4 x 4—matrices in C[4] which are like above then Mg
excepting the zero matrix is a subgroup of GL(2,C) in the sense of matrix
multiplication.

In next step we generalize these concepts to an MRA.

3. CI(R*)-vaLUED MRA

3.1. General construction and mask functions. Let L3(R,C[r]) = {F(¢) =
(Fun(t) 1t € R,Fppn € L2R),1 < m,n < r} be the space of matrix-
valued functions defined on R with values in C[r]. The norm on L?(R,C[r]) is
the Ferobenious norm : || F(t) ||= [>,, ., [g |Fm,n(t)|2dt]% and for F,G €
L*(R, C[r]), the ”inner product” is defined by (F, G) L2k c(r)) = [ F(t)G'(t)dt
where G is the complex conjugate transpose of G. As pointed out in [7] and
[8] such operation, which is an integral of matrix product, is not really an inner
product but it has the linear and commutative properties:

1.(F1,aF + bF3) = af (F1,Fa) + b1 (F1, F3)

2.(F1,Fy) = (Fy,Fy)'.
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Here the orthogonality of F; and Fy, is identified with (F;,Fy) = I,0;; where
I is identity matrix and &;; the Kronecker delta. Now let X(¢) be a CI(R*)-
valued function. Then X(¢) via its components has a representation like Mo,
as shown in (2.2) and matrix representation of X(¢) is shown with Mg(X).
Define L?MQ(R,(C[ZL]) = {Mo(X) : z;; € L*(R),1 < i,j < 4} C L*(R,C[4]),
and

L2(R,C1(R4)) = {X(t) = xo(t) + (El(t)El + ...+ CL‘1234(t)E1234 LT € LQ(R)},

then we can identify L*(R, CI(R*)) with L3, (R, C[4]) by T : L*(R, CI(R*)) —
L3, (R, C[4]) such that

rp, —xo T —ITG
Tc TaA Tg TR _
X(0)— [ T0 T TE T 2 g(X),

TH TE Tp B
where x4 = xo(t) + ix1(t) + iw34(t) — x124(¢) and all other entries are similar

to Mg’s entries.

Immediately we realize that (X, Y) r2r cire)) = (Mq(X), Mo(Y)) 12, (®.cla):
: o ®

where <X, Y>L2(]R,Cl(]R4)) = f]R XYTdt

Now by considering CI(R*) = C[4], we will investigate some results in matrix-

valued MRAs.

Definition 3.1. The matrix-valued function ®() = (¢m.n(t))rxr € L2(R, C[r])
generates a matrix-valued multiresolution analysis for L?(R,C[r]) if the sub-
spaces V; = span{2%‘1>(2jt — k) : k € Z} are nested: --- C V_1 C Vo C
V1 C Vy--- | and the following conditions hold:

1)U, V; = LA(R,Cl),

2) NV, = 0,, in which 0, is the r X r-zero matrix.

3)X(t) € Vo < X(27t) e V;, je€Z,

1) X(t) e Vo= X(t—k) €V, keZ,

5){®(t — k) : k € Z} form an orthonormal basis for Vj.

Remark 3.1. : A sequence {®y}rezin L*(R,C(r)) is called an orthonor-
mal basis if it is an orthonormal set, (®;, ®r) = I.9;;, and for any X(t) €
L23(R,C[r]) there exists constant matriz-sequence { Ay }rez such that X(t) =
ZkeZ Ay ().

Condition (5) means that X (t) = >, _, Ap®(t — k), which Ferobenious
norm will guarantee the convergence of infinite sum, and Ay = (X, Oy (t — k))
by orthonormality. Also since ®(t) € Vo C Vi, then the two-scale matrix
dilation equation is

(3.1) O(t) = V2 Gpd(t—k)

kEZ
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which combined with orthonormality of ®’s means

(3.2) > GGl =Lop, leZ .

keZ
Let é(f) = rez Gre 2™*f he the matrix mask function, then (3.2) implies
that

1
2

1

(33) G(NG'(/)+ G +3)G(f +5) =21,

Define matrix Fourier transform for ®(t) by </I;(f) = [p ®(t)e 2" *Itdt. Then
(3.1) gives ®(f) = %é(%)q@(%), where by setting f = 0 we get é(O) =
ST G =21, é(%) = 0. Define the function matrix ¥(t) = (Vm,n(t))rxr €
L2(R,C[r]) and corresponding subspace W; = span{23W¥(2/t — k) : k €
Z}. W; is orthogonal complement of V; in V,y; ie. Vi1 = V; & Wy,
V, L W; and @,, W, = L?(R,C[r]). Since ¥(t) € Wy C Vi, then
U(t) = ﬂZkeZ H;, ®(2¢ — k). Combining this formula with (3.1) gives us

(3.4) > GHI =0, L€
kEZ

Now if H(f) = > ez Hee 2™ then

)l

(35) (NG'() +H(f + )& (f+ ) =0,

and W(f) = %f[(g)g(%) If {T(t—k): k € Z} is an orthonormal basis for

Wy then
(U, U(t—k)) = / U(t)U(t — k)dt =1,.0p0 k € Z,
R

which implies the following relation for the matrix of wavelet mask function:

(3.6) S HHS =100, €L
kEZ

This is equivalent to

(37) B(OR'(f)+ B+ ) (+5) =21,
—~ G G 1
Define M(f) = < I(/;Ej:; gg;i i; ) then equations (3.3),(3.5),(3.7) all to-
2

gether are equivalent to

—~ =t

which means ﬁ( f) is a paraunitary matrix.
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3.2. Construction of filters. After constructing the mask function represen-
tation, now we are ready to describe and build filters. Suppose that (A}( f) is
a finite polynomial matrix in e~/ i.e. can be written in the form é(f) =
lL:lo_l G271 with G(0) = v/2I,., and satisfies (3.1). Then from [8] if
(3.9) inf |N[G(f)]] >0
IF1<%

for any eigenfunction /\l[é(f)] of polynomial matrix (A}(f), the solution ®(t) of
the two-scale dilation equation is a matrix-valued scaling function for a matrix-
valued MRA, and {W; x(t) = 22 ¥(2/t — k) : j,k € Z} forms an orthonormal
basis for matrix-valued space L%(R, C[r]). For designing the matrix filters with
transforms a(f) and H(f) that satisfies (3.2) and for that ﬁ(f) is paraunitary
, we consider

N eszf'y

(3.10) G =75

where 7 is a finite integer and f’(2 f) is a (normalized ) paraunitary matrix, i.e.

f’(f)l?’T(f) = I,. which satisfies f’(f—l—l) = f’(f), and such that f’(()) =1I,. The

matrix é( f) satisfies conditions (3.1) and (3.2). Notice that the eigenvalues
of the polynomial matrix G(f) are related to the eigenvalues of P(2f) via
-~ e2mify

XN[G(f)] = 7 {1+ e<27if \,[P(2)]}. Since ﬁ(f) is paraunitary, H(f) may
be chosen as

(3.11) H(f) = e—Q’”f(L'—“‘*)(A;T(f + %)

I, + eI P(2f)), ec {-1,1}

where L' is the design length of the filter G;, and § € {0,1} is chosen so that
L' — 1+ 6 is odd, because by 3.5

()G () + B + ) +5)

= NG (4 )G () + T TIE (G (4 )

¥

_ 6727rif(L'71+5)[(/‘;T(f + %)(A}T(f) -G (f)(A}T(f + %)] =0,

which provide G(f) is commutative in the sense that (A}(f)é(f +3)= é(f +
%)@(f), and indeed this condition holds when G(f) is defined as in (3.10).
The matrix H given by (3.11) is a polynomial which can be written in the form
L'—1+6
ﬁ — Z (_1)L/_1+6_mG2/,1+5,m6_2mfm-
m=4

If L' is even (and § = 0), then comparison with H = Elelo_l H;e 27/ we
obtain H; = (—1)”1(}2,7[71 forl =0,1,...,L'’ — 1 and we set L = L'. If
L’ is odd (6 = 1) we can increase the filter length to an even length L’ +

1 by setting G, = 0,. Then we have H; = (—1)”1(}&,“)7[71 for [
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0,...,L, with Hy = 0,. In this case we set L = L’ + 1. For constructing
the matrix f’( f) we first consider the class of paraunitary matrices, defined by
P(f) = ﬁ(f)ﬁ(f)UT(f) where ﬁ(f) is an arbitrary (normalized) paraunitary
polynomlal matrix with U(O) =1,, and ]3( f) is a diagonal matrix with diagonal
elements D” = e 2mifk ki € {0,1}. Usmg the general lattice structure, the
r X r-matrix U(f) may be constructed by U(f) = Uq(f) LUy (f)F, where ¢
is a positive integer, F is an r X r constant unitary matrlx, ie. FIF = FF', and
ﬁl(f) = I + (2™ — 1)zlz;r l=0,...,q with ’z\jzl = 1, unit-norm constant
r x 1-vectors. The advantage of this construction is that the matrices f)( f) and
f’( f) are similar and hence have the same eigenvalues, and those of ]3( f) are
known. It is thus possible to compute the eigenvalues of é( f) to check that
the sufficient condition (3.9) is satisfied.

4. MAIN RESULTS FOR CI(R%))-MRA

Case I:
Let r = 4, by the previous section D;; = e 2Tkl | e {0,1},1=1,2,3,4. So
we have

P(f)=U(f)D(f)U(f)

It ﬁ( f) = L, Uis a paraunitary polynomial matrix which 6(0) = 14, so

f’(f e~27k T, this gives the diagonal matrix G(f) = T (14ele=2R2mifT,,

G
ele

) = -
(f) has only one eigenvalue which is repeated and is /\[é(f)] 2\7}” 1+
—2k

)27/ Now if we set e = 1 we obtain

eszf'y

NG(f)] = VR iy, (k = 0)

6271'1‘]“/

V2

which in both case the condition |A[G(f)]| = I+ cos2rf > 0 , for|f| < 1.
is fullfaith. Hence the sufficient condition (3.9 ) is satisfied.
If weset vy =0,e =1,k =1, then

NG(f) = (1+e72m0), (k=1)

14 e 2mf 0 0 0

~ 1 0 1+ e 27mif 0 0
G - .

(f) V2 0 0 1+ e 2mf 0

0 0 0 1+ e 2mf


www.sid.ir
www.sid.ir

Clifford Wavelets and Clifford-valued MRAs 17

Let f = 0, then G(O) = /21y, é(%) = 04 and in comparison with G(f) =

L'-1 —oni
Ge 2™l we have

1=0
L 0 o0 o L 0 0 o
v2 1 v2 1
~ 0 = 0 0 0 —= 0 0 )
GH=1 6 9 = o |t o 0 2 o [T
V2 1 V2 1
0 0 0 7 0 0 0 7
This means that Gg = G = \%14 so, H; = (—1)1"’1GTL471 for | =0,1.
Case II:

e2mify

From now on we consider G(f) = 7(14 +e2miIP(2f)), we can make P(f)
as

P(f) =U(HD(HU(f)
(for L3, (R, C[4]) we set U(f) € Mg NU(4)).
Set ¢ =1 and F = 4 x 4-rotation matrix

cosf) —sinf 0 0
F_ sinf)  cosf 0 0
0 0 cos —sinf |’
0 0 sinf  cosf

(note that F € Mg). Then U(f) = I/J\l(f)F such that [/J\l(f) =1, + (2™ —
1)z12].

Now let z; = %(a, b,c,d)T so Z]i = %(a, b, ¢, d) such that a = a®+b?+c?+d>.
For instant if (a,b,c,d) = (0,0,0,a),a € R, then zlzJ{ is a 4 X 4-matrix with
all entiers zero except eq 4 = 1, so Uj(f) is the same matrix with e4 4 = e2mif
and by choosing D such that D17 = 1,D22 = D3 3 = Dy 4 = =27/ finally we

have:
(4.1)
cos29+e_27”’f +e_47”"f sinZ sinfcos§ — e 4™ sinhcos @ 0 0
PS 1 sinfcos @ — e~ 4™ 5in @ cos O e—2mif + sin2 6 + e—4mif cosg 0 0 0
G(f)=— —omif
V2 0 0 2e 0
0 0 0 2¢2mif

0 0

cos? 0 sinffcosf® 0 O 1

3 _ 1 sin 6 cos 0 sin? 0 0 0 _ 1 0
This means that c, = v 0o lher=%
0 0 0 0 0

0
0
2
0

(=N el

GQ:L

V2 0 0

0 0

Then we set L = L' = 4.
Now by H; = (—1)”‘1(}2,7[717 (1=0,1,2,3) we have

sin? 6 sinfcosf® 0 O
" ) ;2 .
sinfeos¢ et 00 1, and since L' —1 =3 then L' =450 = 0.
0 0

Hy= -G} =0,, H =G, Hy = —G], H; = G|.

So from (3.1) and (3.2) we obtain the desired wavelets.
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