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1. Introduction

Nowadays noncommutative algebraic geometry is in the focus of many basic
topics in mathematics and mathematical physics. In these fields, any under
consideration space is an abelian category and a morphism between noncom-
mutative spaces is a functor between abelian categories. So one may ask to gen-
eralize some aspects of morphisms between commutative spaces to morphisms
between noncommutative ones. One of the important aspects in commuta-
tive case is the notion of smoothness of a morphism which is stated in some
languages, for example: by lifting property as a universal language, by projec-
tivity of relative cotangent sheaves as an algebraic language and by inducing a
surjective morphism on tangent spaces as a geometric language.
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28 A. Bajravani and A. Rastegar

In this paper, in order to generalize the notion of smooth morphism to a
functor we propose three different approaches. A glance description for the
first one is as follows: linear approximations of a space are important and pow-
erful tools. They have geometric meaning and algebraic structures such as the
vector space of the first order deformations of a space. So it is legitimate to
consider functors which preserve linear approximations. On the other hand
first order deformations are good candidates for linear approximations in cat-
egorical settings. These observations make it reasonable to consider functors
which preserve first order deformations.
The second one is motivated from both Schlessinger’s approach and simultane-
ous deformations. Briefly speaking, a simultaneous deformation is a deforma-
tion which deforms some ingredients of an object simultaneously. Deformations
of morphims with nonconstant target, deformations of a couple (X,L), in which
X is a scheme and L is a line bundle on X, are examples of such deformations.
Also we see that by this approach one can get a morphism of moduli spaces of
some moduli families. We get this, by fixing a universal ring for objects which
correspond to each other by a smooth functor. Theorem 3.1 connects this no-
tion to the universal ring of an object. In 3.1 and 3.2 we describe geometrical
setting and usage of this approach respectively.
The third notion of smoothness comes from a basic reconstruction theorem
of A. Rosenberg, influenced by ideas of A. Grothendieck. We think that this
approach can be a source to translate other notions from commutative case
to noncommutative one. In remarks 3.2 and 4.1 we notice that these three
smoothness notions are independent of each other.

Throughout this paper Art will denote the category of Artinian local k-
algebras with quotient field k. By Sets, we denote the category of sets which
its morphisms are maps between sets. Let F and G be functors from Art
to Sets. For two functors F, G : Art → Sets the following is the notion of
smoothness between morphisms of F and G which has been introduced in [8]:

A morphism D : F → G between covariant functors F and G is said to be
a smooth morphism of functors if for any surjective morphism α : B → A, with
α ∈ Mor(Art), the morphism

F (B) → F (A) ×
G(A)

G(B)

is a surjective map in Sets.
Note that this notion of smoothness is a notion for morphisms between special
functors, i.e. functors from the category Art to the category Sets, while the
concepts for smoothness which we introduce in this paper are notions for func-
tors, but not for morphisms between them.
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On the Smoothness of Functors 29

A functor F : Art → Sets is said to be a deformation functor if it satis-
fies in definition 2.1. of [5]. For a fixed field k the schemes in this paper are
schemes over the scheme Spec(k) otherwise it will be stated.

2. First Smoothness notion and some examples

Definition 2.1. Let M and C be two categories. We say that the category C

is a multicategory over M if there exists a functor T : C → M , in which for
any object A of M , T−1(A) is a full subcategory of C.
Let C and C be two multicategories over M and M respectively. A morphism
of multicategories C and C is a couple (u, ν) of functors, with u : C → C and
ν : M → M such that the following diagram is commutative:

C
f→ M

u ↓ ↓ ν

C → M

The category of modules over the category of rings and the category of sheaves
of modules over the category of schemes are examples of multicategories.

Definition 2.2. For a S-scheme X and A ∈ Art, we say that X is a S-
deformation of X over A if there is a commutative diagram:

X → X
↓ ↓
S → S ×

k
A

in which X is a closed subscheme of X , the scheme X is flat over S ×
k

A and

one has X ∼= S ×
S×

k
A
X .

Note that in the case S = Spec(k), we would have the usual deformation
notion and as in the usual case the set of isomorphism classes of first order
S-deformations of X is a k-vector space. The addition of two deformations
(X1,OX1) and (X2,OX2) is denoted by (X1

⋃
X

X2,OX1 ×
OX

OX2).

Definition 2.3. i) Let C be a category. We say C is a category with enough
deformations, if for any object c of C, one can associate a deformation functor.
We will denote the associated deformation functor of c, by Dc. Moreover for
any c ∈ Obj(C) let Dc(k[ε]) be the tangent space of c, where k[ε] is the ring of
dual numbers.
ii) Let C1 and C2 be two multicategories with enough deformations over Sch /k,
and (F, id) be a morphism between them. We say F is a smooth functor if it
has the following properties:
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30 A. Bajravani and A. Rastegar

1 : For any object M of C1, if M1 is a deformation of M in C1 then F (M1)
is a deformation of F (M) on A in C2.
2 : The map

DM (k[ε]) → DF (M)(k[ε])
X �→ F (X )

is a morphism of tangent spaces.

The following are examples of categories with enough deformations:
1) Category of schemes over a field k.
2) Category of coherent sheaves on a scheme X .
3) Category of line bundles over a scheme.
4) Category of algebras over a field k.

We will need the following lemma to present an example of smooth functors:

Lemma 2.1. Let X, X1, X2 and X be schemes over a fixed scheme S. Assume
that the following diagram of morphisms between schemes is a commutative
diagram.

X X1

X2 X

�

�

� �

i1

i2

g

If i1 is homeomorphic on its image, then so is i2.

Proof. See Lemma (2.5) of [9]. �

Example 2.1. Let Y be a flat scheme over S. Then the fibered product by Y

over S is smooth. More precisely, the functor:

F : Sch /S → Sch /Y

F (X) = X ×
S

Y

is smooth.

Let X be a closed subscheme of X . Then X ×
S

Y is a closed subscheme of

X ×
S

Y . To get the flatness of X ×
S

Y over S ×
k

A, it suffices to have the flatness

of Y over S. It can also be verified easily that the isomorphism:

(X ×
S

Y ) ×
S×

k
A

S ∼= X ×
S

Y

is valid. Therefore X×
S

Y is a S-deformation of X×
S

Y if X is such a deformation

of X . This verifies the first condition of item (ii) of definition 2.3. To prove
the second condition we need the following:
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Lemma 2.2. Let Y , X1 and X2 be S-schemes. Assume that X is a closed
subscheme of X1 and X2. Then we have the following isomorphism:

(X1

⋃
X

X2) ×
S

Y ∼= (X1 ×
S

Y )
⋃

X×
S

Y

(X2 ×
S

Y ).

Proof. For simplicity we set:

X1 ∪
X

X2 = X , (X1 ×
S

Y )
⋃

X×
S

Y

(X2 ×
S

Y ) = Z

By universal property of Z we have a morphism θ : Z → X ×
S

Y . We prove

that θ is an isomorphism. Let i1 : X1 → X , i2 : X2 → X , j1 : X1 ×
S

Y → Z
and j2 : X2 ×

S
Y → Z be the inclusion morphisms. Set theoretically we have:

j1(X1 ×
S

Y )
⋃

j2(X2 ×
S

Y ) = Z (I)

i1(X1)
⋃

i2(X2) = X (II)

Now consider the following commutative diagrams:

X

X1

X

X2

�

�

�

�

f i1

i2g

X ×
S

Y

X1 ×
S

Y

X2 ×
S

Y

Z

X ×
S

Y

�

�

�

�
��

�
g1

j1

g2

h

θ

ej2

Let z ∈ X ×
S

Y , α = PX (z) ∈ X and β = PY (z) ∈ Y in which PX and PY are

the first and second projections from X ×
S

Y to X and Y respectively. Then by

relation (II) one has α ∈ i1(X1) or α ∈ i2(X2). If α = i1(α1) ∈ i1(X1), then α1

and β go to the same element in S by ηX1 and ηY in which ηX1 : X1 → S and
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32 A. Bajravani and A. Rastegar

ηY : Y → S are the maps which make X1 and Y schemes over S. Therefore
there exists an element γ in X1 ×

S
Y such that PX1(γ) = α1 and PY (γ) = β in

which PX1 and PY are the first and second projections from X ×
S

Y to X1 and

Y respectively. By universal property of fibered products γ belongs to X ×
S

Y

and θ(γ) = z. The proof for the case α ∈ i2(X) is similar. This implies that θ

is surjective.
For injectivity of θ assume that θ(z1) = θ(z2). The relation (I) implies that z1

and z2 belong to im(j1)
⋃

im(j2). Set z1 = j1(c1) and z2 = j2(c2). There are
two cases: if z1, z2 ∈ im(j1) ∩ im(j2), then the lemma 2.1 implies e(c1) 	= e(c2)
when c1 	= c2. Now by commutativity of the subdiagram:

X1 ×
S

Y X ×
S

Y

Z

�

�

�

j1
θ

we have θ(z1) 	= θ(z2) when z1 	= z2.
Otherwise assume that z1 ∈ im(j1) and z2 ∈ im(j2) − im(j1). In this case one
can see easily that i1PX1(c1) = i2q2(c2) in which q2 is the first projection from
X2×

S
Y to X2. Since X is the fibered sum of X1 and X2, there exists an element

x ∈ X such that i1f(x) = i2g(x), f(x) = PX1(c1) and g(x) = q2(c2).
Set y = p2e(c1) in which p2 is the second projection from X ×

S
Y to Y . By a

diagram chasing we see that x and y go to the same element in S. This implies
that there exists an element ε in X ×

S
Y which is mapped to x and y by first

and second projections, respectively. Also it is easy to see that the equalities
g1(x, y) = c1 and g2(x, y) = c2 are valid. Since Z is the fibered sum of X1 ×

S
Y

and X2 ×
S

Y on X ×
S

Y , we have z1 = z2 which means that θ is injective. This

together with the surjectivity of θ implies that θ is bijective. Continuity of θ

and its inverse, follow by a diagram chasing.
Finally we should prove that OX×

S
Y

∼= OZ . Since the claim is local, it is

sufficient to prove it for affine schemes. Let X be an affine scheme, so X1,
X2 and X are affine schemes, since they are closed subschemes of X each one
defined by a nilpotent sheaf of ideals. Set X = Spec(A), X1 = Spec(A1), X2 =
Spec(A2), X = Spec(A0), Y = Spec(B) and S = Spec(C). The isomorphism
OX×

S
Y
∼= OZ reduces to the following isomorphism:

(A1 ×
A0

A2) ⊗
C

B ∼= (A1 ⊗
C

B) ×
A0⊗

C
B

(A2 ⊗
C

B).
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Define a morphism as follows:

d : (A1 ×
A0

A2) ⊗
C

B → (A1 ⊗
C

B) ×
A0⊗

C
B

(A2 ⊗
C

B)

d((a1, a2) ⊗ b) = (a1 ⊗ b, a2 ⊗ b).

By a simple commutative algebra argument it can be shown that this is in fact
an isomorphism. This completes the proof of lemma. �

This lemma shows that the fibered product functor, induces an additive
homomorphism on tangent spaces. To check linearity with respect to scalar
multiplication, take an element a in the field k. Multiplication by a is a ring
homomorphism on D. This homomorphism induces a morphism from S ×

k
D

to S ×
k

D and scalar multiplication on tDX , comes from composition of this

map with π. In other words this gives a map from X ×
S

Y into X ×
S

Y . These

together give the linearity of homomorphism induced from F with respect to
scalar multiplication.
This observation together with the lemma 2.2, give the smoothness of the
fibered product functor.

Lemma 2.3. Let X and Y be arbitrary schemes and assume that there exist
morphisms h and g from η to η1 and η2, where η, η1, η2 are sheaves of OX -
modules on the scheme X. Then for any morphism f : X → Y we have the
following isomorphisms:

f∗(η1 ×
η

η2) ∼= f∗(η1) ×
f∗(η)

f∗(η2)

f∗(ρ1 ×
ρ

ρ2)∼= f∗(ρ1) ×
f∗(ρ)

f∗(ρ2).

Proof. For the first isomorphism, it is enough to consider the definition of direct
image of sheaves.
To prove the second one, assume that (Mi)i∈I , (Ni)i∈I and (Pi)i∈I are direct
systems of modules over a directed set I. We have to prove that

lim
i∈I

(Mi ×
Pi

Ni) ∼= (lim
i∈I

(Mi)) ×
(limi∈I (Pi))

(lim
i∈I

(Ni)).

The above isomorphism can be proved by elementary calculations and using
elementary properties of direct limits. �

Example 2.2. Let f : X → Y be a flat morphism of schemes. Then f∗ and
f∗ are smooth functors.

In fact let η be a coherent sheaf on X and η1 ∈ Coh(X×
k

D) be a deformation

of η. By these assumptions we would have:

(f∗(η)) ⊗
D

k = f∗(η1 ⊗
D

k) = f∗(η).
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34 A. Bajravani and A. Rastegar

Moreover f∗(η1) is flat on D, because η is flat on D. This implies that f∗
satisfies in the first condition of smoothness. The second one is the first iso-
morphism of lemma 2.3. Therefore f∗ is smooth. Smoothness of f∗ is similar
to that of f∗.

Assuming this notion of smoothness we can generalize another aspect of
geometry to categories.

Definition 2.4. Let C be a category with enough deformations. We define the
tangent category of C, denoted by TC, as follows:

Obj(TC) :=
⋃

c∈Obj(C)

TcC

MorTC(υ, ω) := Mor(V, W )

which by TcC, we mean the tangent space of Dc. Moreover υ and ω are first
order deformations of V and W .

Remark 2.1. (i) It is easy to see that a smooth functor induces a covariant
functor on the tangent categories.
(ii) Let C be an abelian category. Then its tangent category is also abelian.

The following is a well known suggestion of A. Grothendieck: Instead of
working with a space, it is enough to work on the category of quasi coherent
sheaves on this space. This suggestion was formalized and proved by P. Gabriel
for noetherian schemes and in its general form by A. Rosenberg. To do this,
Rosenberg associates a locally ringed space to an abelian category A. In a
special case he gets the following:

Theorem 2.1. Let (X,OX) be a locally ringed space and let A = QCoh(X).
Then

(Spec(A),OSpec(A)) = (X,OX)

where Spec(A) is the ringed space which is constructed from an abelian category
by A. Rosenberg.

Proof. See Theorem (A.2) of [7]. �

The definition of tangent category and theorem 2.1 motivates the following
questions which the authors could not find any positive or negative answer to
them until yet.

Question 1: For a fixed scheme X consider T QCoh(X) and TX , the tangent
category of category of quasi coherent sheaves on X and the tangent bundle
of X respectively. Can TX be recovered from T QCoh(X) by Rosenberg con-
struction?
Question 2: Let M be a moduli family with moduli space M . Consider M
as a category and consider its tangent category TM. Is there a reconstruction
from TM to TM?
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On the Smoothness of Functors 35

3. Second Smoothness Notion

Definition 3.1. Let F : Sch /k → Sch /k be a functor with the following
property:
For any scheme X and an algebra A ∈ Obj(Art), F (X ) is a deformation of
F (X) over A if X is a deformation of X over A.
We say F is smooth at X, if the morphism of functors

ΘX : DX → DF (X)

is a smooth morphism of functors in the sense of Schlessinger (See [8]). F is
said to be smooth if for any object X of Sch /k, the morphism of functors ΘX

is smooth.

The following lemma describes more properties of smooth functors.

Lemma 3.1. (a) Assume that C1, C2 and C3 are multicategories over the
category Sch /k. Let F1 : C1 → C2 and F2 : C2 → C3 be smooth functors with
the first notion. Then so is their composition.
(b) Let F1 : Sch /k → Sch /k and F2 : Sch /k → Sch /k be smooth functors with
second notion. Then so is their composition.
(c) Let F : Sch /k → Sch /k and G : Sch /k → Sch /k be functors to which F

and GoF are smooth with second notion. Then G is a smooth functor.
(d) Let F, G, H : Sch /k → Sch /k be smooth functors in the sense of second
notion with morphisms of functors F → G and H → G between them. Then
the functor F ×

G
H is smooth functor with the second one.

Proof. Part (a) of lemma is trivial.
(b) Let X ∈ Sch /k and B → A be a surjective morphism in Art. By smooth-
ness of F1, F2 and by remark 2.4 of [8], there exists a surjective map

ΘF2(X),F2oF1(X) : DF2oF1(X)(B) ×
DF2oF1(X)(A)

DX(A) → DF1(X)(B) ×
DF1(X)(A)

DX(A)

such that we have

ΘX,F2oF1(X) = ΘF2(X),F2oF1(X)oΘX,F2(X)

in which ΘX,F2(X) is the surjective map induced by smoothness of F2. From
this equality it follows the map ΘX,F2oF1(X) is surjective immediately.
(c) For a scheme X in the category Sch /k consider a surjective morphism
B → A in Art. By smoothness of F , the morphism DX → DF (X) is a surjective
morphism of functors. Now apply proposition (2.5) of [8] to finish the proof.
(d) Let X ∈ Sch /k and B → A be a surjective morphism in Art. Consider the
following commutative diagram:
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DX DF (X)

DG(X)

�

�

�

Since the morphisms of functors DX → DF (X) and DX → DG(X) are smooth
morphisms of functors, proposition 2.5(iii) of [8] implies that DF (X) → DG(X)

is a smooth morphism of functors. Similarly DH(X) → DG(X) is a smooth
morphism of functors. Again by 2.5(iv) of [8], the morphism of functors:

DH(X) ×
DG(X)

DF (X) → DH(X)

is a smooth morphism of functors. Since in the diagram:

DX DH(X) ×
DG(X)

DF (X)

DH(X)

�

�

�

the morphisms DX → DH(X) and DH(X) ×
DG(X)

DF (X) are smooth morphisms

of functors, part (c) of this lemma implies that DH(X) ×
DG(X)

DF (X) is smooth.

This completes the proof. �

Remark 3.1. (i) The same proof works to generalize part (c) of lemma 3.1
as follows:
(ć) Let F : Sch /k → Sch /k and G : Sch /k → Sch /k be functors with GoF

smooth and F surjective in the level of deformations in the sense that for any
X ∈ Sch /k and any A ∈ Obj(Art) the morphism DX(A) → DF (X)(A) is
surjective in Art. Then G is smooth.
(ii) One may ask to find a criterion to determine smoothness of a functor. We
could not get a complete answer to this question. But by the following fact, one
may answer the question at least partially:
A functor F : Sch /k → Sch /k is not smooth at X if there exists an algebra
A ∈ Art such that the map DX(A) → DF (X)(A) is not surjective in Art, (See
[8]).

Theorem 3.1 relates the second smoothness notion to the hull of deformation
functors. Recall the hull of a functor is defined in [8]. We need the following:
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Lemma 3.2. Let F : Art → Sets be a functor. Then its hulls are non-
canonically isomorphic if there exist.

Proof. See Proposition 2.9 of [8]. �

Theorem 3.1. Let F : Sch /k → Sch /k be a functor and for a scheme X the
functor F has the following properties:
(a) F (X ) is a deformation of F (X) if X is a deformation of X.
(b) The functor F induces isomorphism on tangent spaces.
Then F is smooth at X if and only if (R, F (ξ)) is a hull of DF (X) whenever
(R, ξ) is a hull of DX .

Proof. To prove the Theorem it is enough to apply parts (b), (c) of lemma 3.1,
and lemma 3.2 to the functors

ΘX : DX → DF (X) , hR,X : hR → DX , hR,F (X) : hR → DF (X).

�

For a scheme X let:

{pairs (X , ΩX/k) which X is an infinitesimal deformation of X over A }
be the isomorphism classes of fibered deformations of X .
In the following example we use this notion of deformations of schemes.

Example 3.1. The functor defined by:

F : Sch /k → QCoh
F (X) = ΩX/k

is a smooth functor.

Note that if one considers deformations of ΩX/k as usual case, the above
functor will not be smooth. The usual deformation of ΩX/k can be described
as simultaneous deformation of an object, and differential forms on that object.
Also this observation is valid for TX and ωX instead of ΩX .

Remark 3.2. The first and second smoothness notions are in general dif-
ferent. Note that a functor which is smooth with the second notion induces
surjective maps on tangent spaces. Since the morphism induced on tangent
spaces with first notion of smoothness is not necessarily surjective, a functor
which is smooth in the sense of first notion is not necessarily smooth with the
sense of second notion. Also a functor which is smooth in the sense of second
notion can not be necessarily smooth with the first notion in general. In fact
the map induced on tangent spaces by second notion is not necessarily a linear
map. It is easy to see that the example 3.1 is smooth with both of the notions,
but examples 2.1 and 2.2 are smooth just in the sense of first one.
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3.1. A Geometric interpretation. Let F be a smooth functor at X . By
theorem 3.1, X and F (X) have the same universal rings and this can be in-
terpreted as we are deforming X and F (X) simultaneously. Therefore we have
an algebraic language for simultaneous deformations. The example 3.1 can
be interpreted as follows: we are deforming a geometric space and an ingredi-
ent of that space, e.g. the structure sheaf of the space or its sheaf of relative
differential forms, and these operations are smooth.

3.2. Relation with smoothness of a morphism. Let M be a moduli family
of algebro - geometric objects with a variety M as its fine moduli space and
suppose Y (m) → M is the fiber on m ∈ M . With this assumptions we would
have the following bijections:

Tm,M
∼= Hom(Spec(k[ε]), M)
∼= {classes of first order deformations of X over A}

In fact these bijections states that why deformations are important in geometric
usages. Now suppose we have two moduli families M1 and M2 with varieties
M1 and M2 as their fine moduli spaces. Also describe M1 and M2 as categories
in which there exists a smooth functor F between them. In this setting, if we
have a morphism between them, induced from F , then it is a smooth morphism.

4. Third Smoothness Notion

This notion of smoothness is completely motivated from Rosenberg’s recon-
struction theorem, Theorem (A.2) of [7]. For this notion of smoothness we do
not use deformation theory.

Definition 4.1. Let F : C1 → C2 be a functor between abelian categories such
that there exists a morphism

f : Spec(C1) → Spec(C2)

induced by the functor F . We say F is a smooth functor if f is a smooth
morphism of schemes.

Remark 4.1. (a) Since this smoothness notion uses a language completely dif-
ferent from the two previous ones, it does not imply non of them and vice versa.
We did not verified this claim with details but it is not so legitimate to expect
that this smoothness implies the previous ones, because deformation theory is
not consistent with the Rosenberg construction. This observation together with
the remark 3.2 show that these three notions are independent of each other,
having nice geometric and algebraic meaning in their own rights separately.
(b) It seems that a functor of abelian categories induces a morphism of schemes
in rarely cases. But the cases in which this happens are the cases of enough
importance to consider them. Here we mention some cases which this happens.
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(i) Let f : X → Spec(k) be a morphism of finite type between schemes. Then
it can be shown that f is induced by

f∗ : QCoh(X) → QCoh(Spec(k))

by Rosenberg’s construction. This example is important because it can be a
source of motivation, to translate notions from commutative case to noncom-
mutative one.
(ii) Also the following result of Rosenberg is worth to note:

Proposition 4.1. Let A be an abelian category.
(a) For any topologizing subcategory T of A, the inclusion functor T → A

induces an embedding Spec(T ) → Spec(A).
(b) For any exact localization Q : A → A/S and for any P ∈ Spec(A), either
P ∈ Obj(S) or Q(P ) ∈ Spec(A/S); hence Q induces an injective map from
Spec(A) − Spec(S) to Spec(A/S).

Proof. See Proposition (A.0.3) of [7]. �
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