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Abstract. In this paper, we introduce two concepts of weakly relaxed

{ηγ − αγ}γ∈Γ pseudomonotone and demipseudomonotone mappings in

Banach spaces. Then we obtain some results of the solutions existence

for a system of vector variational-like inequalities with weakly relaxed

{ηγ − αγ}γ∈Γ pseudomonotone and demipseudomonotone mappings in

reflexive Banach spaces. Finally we show that our results improve and

extend some corresponding results of Ref [6].
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1. Introduction and an outline of the previous works

The first who introduced and studied vector variational inequalities was Gi-
annessi [4] in the setting of finite dimensional Euclidean spaces. Ever since
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then, there have been various extensions and generalizations in different direc-
tions for Giannessi’s work which monotonicity is a central and common concept
in all of them. In the recent years many generalizations of monotonicity have
been introduced to study various classes of variational inequalities. Briefly, a
historical order of these researches are: Chen [2] who introduced the concept
of semimonotonicity and applied it in the semimonotone scalar variational in-
equalities in Banach space, Fang and Huang [3] who introduced a new concept
of relaxed η − α monotonicity and obtained some existence theorems of solu-
tions for variational-like inequalities with relaxed η −α monotone mappings in
reflexive Banach spaces, Bai, Zhou and Ni [1] who introduced a new concept
of relaxed η−α pseudomonotone and obtained some existence of the solutions
for variational-like inequalities with relaxed η − α pseudomonotone mappings
in reflexive Banach spaces and very recently the works of Wu and Huang [6]
(also the authors of this paper [5]) who introduced the new concepts of relaxed
η−α pseudomonotone and demipseudomonotone mappings and obtained some
existence results for solutions of vector variational-like inequalities with relaxed
η−α pseudomonotone and demipseudomonotone mappings by means of KKM
technique and Glicksberg fixed point theorem in reflexive Banach spaces.

Inspired and motivated by the works mentioned above, in this paper we in-
troduce two concepts of relaxed {ηγ −αγ}γ∈Γ pseudomonotone and demipseu-
domonotone mappings in Banach spaces. We then obtain some existence re-
sults of the solutions for a system of variational-like inequalities with relaxed
{ηγ − αγ}γ∈Γ pseudomonotone and demipseudomonotone mappings in reflex-
ive Banach spaces. We think this is significant, since only a simple technique
is applied to extend and improve some corresponding results of the previous
works.

Consider a Banach space X and a pointed convex closed cone P with intP �=
∅, where intP is the interior of P . We now define

x � y ⇐⇒ x − y ∈ P

x � y ⇐⇒ x − y /∈ P

x > y ⇐⇒ x − y ∈ intP

x ≯ y ⇐⇒ x − y /∈ intP.

Throughout this section, unless otherwise specified, suppose that K is a
nonempty closed convex subset of X . Let D be a Banach space induced by the
convex closed cone P such that (D, �) is an ordered Banach space. Denote the
space of all bounded linear operator from X to D by L(X, D)

Definition 1.1. ([6], [5]) A mapping T : K → L(X, D) is said to be relaxed
η − α pseudomonotone if there exist the mappings η : K × K → X and
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The System of Vector Variational-like Inequalities with Weakly Relaxed ... 3

α : X → D with α(tz) = tpα(z) for all t > 0 and z ∈ X such that

(1) 〈Ty, η(x, y)〉 ≮ 0 =⇒ 〈Tx, η(x, y)〉 � α(x − y)

where p > 1 is a constant.

Definition 1.2. A mapping T : K → L(X, D) is said to be relaxed {ηγ −
αγ}γ∈Γ pseudomonotone if there exists a family {ηγ , αγ}γ∈Γ of mappings ηγ :
K × K → X, αγ : X → D with αγ(tz) = tpα(z) for all t > 0, γ ∈ Γ and z ∈ X

such that

(i) T is relaxed ηγ − αγ pseudomonotone mapping, for all γ ∈ Γ;
(ii) d(Co(HΓ(x, y)), ∂P ) = 0 implies HΓ(x, y)

⋂
P ⊆ ∂P for all x, y ∈ K

where HΓ(x, y) = {−〈Ty, ηγ(x, y)〉; γ ∈ Γ}, ∂P denotes the bound-
ary of P and d(Co(HΓ(x, y)), ∂P ) is the distance between the sets
Co(HΓ(x, y)) and ∂P .

where p > 1 is a constant which doesn’t depend on the γ ∈ Γ.

Definition 1.3. A mapping T : K → L(X, D) is said to be weakly relaxed
{ηγ −αγ}γ∈Γ pseudomonotone if there exists a family {ηγ , αγ}γ∈Γ of mappings
ηγ : K × K → X, αγ : X → D with αγ(tz) = tpα(z) for all t > 0, γ ∈ Γ and
z ∈ X such that

(i) T is relaxed ηγ − αγ pseudomonotone mapping, for all γ ∈ Γ;
(ii) d(Co(H∆(x, y)), ∂P ) = 0 implies H∆(x, y)

⋂
P ⊆ ∂P for all x, y ∈

K, ∆ ∈ Σ where H∆(x, y) = {−〈Ty, ηγ(x, y)〉; γ ∈ ∆} and Σ denotes a
set including all finite subsets of Γ.

Hear, p > 1 is a constant which doesn’t depend on the γ ∈ Γ.

Remark 1.1. Obviously if in Definition 1.3 Γ is a finite set, then it coincides
with Definition 1.2.

Example 1.1. Let K = (−∞, +∞) and Γ = {1, 2}. Define η1(x, y) = x −
y, η2(x, y) = ex − ey, α1(z) = α2(z) = − z2

2 and

T (x) =




3x

2
x � 0;

−x

2
x < 0.

Easily we can verify that this mapping is weakly relaxed {ηγ − αγ}γ=1,2 pseu-
domonotone.

Lemma 1.1. Let the mapping T : K → L(X, D) be relaxed {ηγ − αγ}γ∈Γ

pseudomonotone. Then there exists a family {ηγ , αγ}γ∈Γ of mappings ηγ :
K × K → X, αγ : X → D with αγ(tz) = tpα(z) for all t > 0, γ ∈ Γ and z ∈ X

such that

(i) T is relaxed ηγ − αγ pseudomonotone mapping, for all γ ∈ Γ;
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(ii) if 〈Ty, ηγ0(x, y)〉 ≮ 0, for some γ0 ∈ Γ and x, y ∈ K, then

〈Ty, ηγ(x, y)〉 ≮ 0 ∀γ ∈ Γ,

where p > 1 is a constant which doesn’t depend on the γ ∈ Γ.

Proof. Obviously, the first condition is the same with definition. So we must
only verify the second. Suppose on the contrary that the second condition
doesn’t hold. Hence there exists γ ∈ Γ such that s = −〈Ty, ηγ(x, y)〉 ∈ intP .
Let t = −〈Ty, ηγ0(x, y)〉 and we see that t /∈ intP . So either t ∈ ∂P or
t ∈ intP c. If t ∈ ∂P then d(Co(HΓ(x, y)), ∂P ) = 0 and thus by definition
HΓ(x, y)

⋂
intP ⊆ ∂P . This implies s ∈ ∂P which is impossible. So we must

have t ∈ intP c. We now define the function f : [0, 1] → R given by

f(λ) =




d(v(λ), ∂P ) v(λ) ∈ intP

−d(v(λ), ∂P ) v(λ) ∈ intP c

0 v(λ) ∈ ∂P

where v(λ) = λt+(1−λ)s. Easily we can verify that f is a continuous function.
Furthermore ∂P is closed and thus f(0) = d(s, ∂P ) > 0, f(1) = −d(t, ∂P ) < 0.
Therefore f(1) < 0 < f(0). By mean value theorem we may deduce that
there exists λ ∈ [0, 1] such that f(λ) = 0 and thus v(λ) ∈ ∂P . This implies
d(Co(HΓ(x, y)), ∂P ) = 0 and by a similar argument as above, this leads to a
contradiction. This completes the proof. �

Remark 1.2. Definition 1.2 generalizes Definition 1.1. Indeed, by letting
Γ = {1} we easily can see that this definition reduce to Definition 1.1.

Definition 1.4. ([6], [5]) Let T : K → L(X, D) and η : K × K → X be two
mappings. T is said to be η-hemicontinuous if, for any x, y ∈ K the mapping

t �→ 〈T (x + t(y − x)), η(y, x)〉
is continuous at 0+.

Definition 1.5. Let T : K → L(X, D) be a mapping and {ηγ}γ∈Γ be a family
of mappings ηγ : K × K → X , γ ∈ Γ. T is said to be {ηγ}γ∈Γ-hemicontinuous
if, for any γ ∈ Γ, T is ηγ-hemicontinuous.

Remark 1.3. It is easy to verify that Definition 1.5 generalizes Definition 1.4.

Definition 1.6. ([6], [5]) A mapping T : K → D is said to be completely
continuous if, for any net {xλ} ∈ K, xλ ⇀ x0(weakly convergence), then
Txλ → Tx0 in norm.

Lemma 1.2. ([6]) Let K be a nonempty bounded closed convex set and T : K →
L(X, D) be η-hemicontinuous and relaxed η−α pseudomonotone. Suppose that
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(i) η(x, x) = 0, ∀x ∈ K;
(ii) for any given points y, z ∈ K, the mapping x �→ 〈Tz, η(x, y)〉 is convex

and the mapping x �→ 〈Tz, η(y, x)〉 is completely continuous;
(iii) α : X → D is completely continuous.

Then the following problem is solvable: find x ∈ K such that

(2) 〈Tx, η(y, x)〉 ≮ 0 ∀y ∈ K.

Lemma 1.3. ([6]) Let K be a nonempty unbounded closed convex set and
T : K → L(X, D) be η-hemicontinuous and relaxed η − α pseudomonotone.
Suppose that

(i) there exist a constant r > 0 and y0 ∈ K with ‖y0‖ = rsuch that

〈Tz, η(x, y0)〉 > 0, ∀z ∈ K with‖z‖ = r;

(ii) η(x, y) + η(y, x) = 0, ∀x, y ∈ K;
(iii) for any given points y, z ∈ K, the mapping x �→ 〈Tz, η(x, y)〉 is convex

and completely continuous;
(iv) α : X → D is completely continuous.

Then the problem (2) is solvable.

Lemma 1.4. Let T : K → L(X, D) be a relaxed {ηγ−αγ}γ∈Γ pseudomonotone
mapping, which Γ is a countable set of indexes. Let η =

∑
γ∈Γ ηγ and α =∑

γ∈Γ αγ , with
∑

γ∈Γ ||ηγ || < ∞,
∑

γ∈Γ ||αγ || < ∞. Then T is a relaxed η − α

pseudomonotone mapping.

Proof. First, the conditions
∑

γ∈Γ ||ηγ || < ∞ and
∑

γ∈Γ ||αγ || < ∞ guarantee
that η and α exist. We have

α(tz) =
∑
γ∈Γ

αγ(tz)

=
∑
γ∈Γ

tpαγ(z)

= tp(
∑

γ

αγ)(z)

= tpα(z).

We now suppose that 〈Ty, η(x, y)〉 ≮ 0, for all x, y ∈ K. Hence

〈Ty,
∑

γ

ηγ(x, y)〉 ≮ 0 ∀x, y ∈ K

⇒
∑

γ

〈Ty, ηγ(x, y)〉 ≮ 0 ∀x, y ∈ K

⇒ ∃γ0 ∈ Γ such that 〈Ty, ηγ0(x, y)〉 ≮ 0 ∀x, y ∈ K.

By Lemma 1.1 we know that

〈Ty, ηγ(x, y)〉 ≮ 0, ∀γ ∈ Γ, x, y ∈ K.
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Now by condition (i) in Definition 1.2 we know that

〈Tx, ηγ(x, y)〉 � αγ(x − y), ∀γ ∈ Γ, x, y ∈ K.

Hence we have ∑
γ

〈Tx, ηγ(x, y)〉 �
∑

γ

αγ(x − y).

This completes the proof. �

2. The system of vector variational-like inequalities with

weakly relaxed {ηγ − αγ}γ∈Γ pseudomonotone mappings

In this section we suppose that K is a nonempty closed convex subset of a
real reflexive Banach space X and (D, �) is an ordered Banach space induced
by the pointed closed convex cone P with intP �= ∅. We denote the space of
all bounded linear operators from X to D with L(X, D). Now the following
system is discussed: find x ∈ K such that

(3) 〈Tx, ηγ(y, x)〉 ≮ 0, ∀y ∈ K, γ ∈ Γ

Theorem 2.1. Let K be a nonempty bounded closed convex subset of X.
Suppose that T : K → L(X, D) be {ηγ}γ-hemicontinuous and weakly relaxed
{ηγ − αγ}γ pseudomonotone mapping. Let Γ = {γn : n ∈ N} and Sn =
{1, 2, . . . , n}. Let ηn =

∑
m∈Sn

ηγm and αn =
∑

m∈Sn
αγm . Suppose that the

following conditions hold

(i) ηn(x, x) = 0, ∀x ∈ K, n ∈ N;
(ii) for any given points y, z ∈ K and each γ ∈ Γ, the mapping x �→

〈Tz, ηγ(x, y)〉 is convex and the mapping x �→ 〈Tz, ηγ(y, x)〉 is com-
pletely continuous;

(iii) αγ : X → D is completely continuous, for all γ ∈ Γ.

Then the system (3) has a solution.

Proof. Based on Lemma 1.4, T is relaxed ηn − αn pseudomonotone, for all
n ∈ N. Easily we can verify that, for each n the mapping x �→ 〈Tz, ηn(x, y)〉
is convex and the mapping x �→ 〈Tz, ηn(y, x)〉 is completely continuous and
T is ηn-hemicontinuous. We can also easily investigate that for each n, αn is
completely continuous. Set

Rn = {x : 〈Tx, ηγm(y, x)〉 ≮ 0, ∀y ∈ K, m ∈ Sn}

For each n, Rn �= ∅. In fact, based on Lemma 1.2, for each n, there exists a
solution, say x0, such that

〈Tx0, ηn(y, x0)〉 ≮ 0, ∀y ∈ K.

www.SID.ir



Arc
hi

ve
 o

f S
ID

The System of Vector Variational-like Inequalities with Weakly Relaxed ... 7

Thus

〈Tx0,
∑

m∈Sn

ηγm(y, x0)〉 ≮ 0, ∀y ∈ K

⇒ ∃u ∈ Sn such that 〈Tx0, ηγu(y, x0)〉 ≮ 0, ∀y ∈ K.

By hypothesis, T is weakly relaxed {ηγ − αγ}γ pseudomonotone mapping and
each Sn is finite, thus by Lemma 1.1 we must have

〈Tx0, ηγm(y, x0)〉 ≮ 0, ∀y ∈ K, m ∈ Sn.

This implies each Rn is not empty. Furthermore Rn+1 ⊆ Rn for all n. Easily
we can verify that each Rn is weakly closed. From this and the conditions of
theorem it follows that each Rn is weakly compact and hence the family {Rn}
has finite intersection property. Thus

⋂
n∈N

Rn �= ∅. Now if x0 ∈ ⋂
n∈N

Rn,
then x0 satisfies the system (3). This completes the proof. �

Theorem 2.2. Let K be a nonempty unbounded closed convex subset of X.
Suppose that T : K → L(X, D) be {ηγ}γ-hemicontinuous and weakly relaxed
{ηγ − αγ}γ∈Γ pseudomonotone. Let Γ = {γn : n ∈ N} and Sn = {1, 2, . . . , n}.
Let ηn =

∑
m∈Sn

ηγm and αn =
∑

m∈Sn
αγm . Furthermore assume that the

following hold

(i) there exist a constant r > 0 and y0 ∈ K with ‖y0‖ � r such that

〈Tz, ηγ(z, y0)〉 > 0, ∀z ∈ K, γ ∈ Γ with‖z‖ = r;

(ii) ηn(x, y) + ηn(y, x) = 0, ∀x, y ∈ K, n ∈ N;
(iii) for any given points y, z ∈ K, and each γ ∈ Γ the mapping x �→

〈Tz, ηγ(x, y)〉 is convex and completely continuous;
(iv) αγ : X → D is completely continuous, for all γ ∈ Γ.

Then the system (3) has a solution.

Proof. From these conditions we know that

(i) for each n, T is ηn-hemicontinuous and relaxed ηn − αn pseudomono-
tone;

(ii) 〈Tz, ηn(z, y0)〉 > 0, ∀z ∈ K, n ∈ N with ‖z‖ = r;
(iii) for any given points y, z ∈ K, n ∈ N the mapping x �→ 〈Tz, ηn(x, y)〉 is

convex and completely continuous;
(iv) αn is completely continuous, for all n.

Applying Lemma 1.3 and a similar discussion as the previous theorem we may
deduce that the desired system has a solution. This completes the proof. �

3. The system of vector variational-like inequalities with

weakly relaxed {ηγ − αγ}γ∈Γ demipseudo monotone mappings

Throughout this section, Let X be a real reflexive Banach space, K ⊂ X be
a nonempty closed convex set and (D, �) be an ordered Banach space induced
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by the pointed closed convex cone P with intP �= ∅. Denote by L(X, D) the
space of all bounded linear operators from X to D. We discuss the following
system: find x ∈ K such that

(4) 〈A(x, x), ηγ(y, x)〉 ≮ 0, ∀y ∈ K, γ ∈ Γ

Definition 3.1. A mapping A : K×K → L(X, D) is said to be weakly relaxed
{ηγ − αγ}γ∈Γ demipseudomonotone if the following conditions hold

(i) for any u ∈ K, the mapping s �→ A(u, s) is weakly relaxed {ηγ−αγ}γ∈Γ

pseudomonotone;
(ii) for any v ∈ K and w ∈ X the mapping z �→ 〈A(z, v), w〉 is completely

continuous.

Lemma 3.1. ([6]) Let K ⊂ X be a nonempty bounded closed convex subset of
X and the mapping A : K × K → L(X, D) be nonlinear. Suppose that

(i) A is relaxed η − α demipseudomonotone;
(ii) for each x ∈ K the mapping s �→ A(x, s) is finite-dimension continuous;

i.e., for any finite-dimension subspace F ⊂ X, the mapping A(x, .) :
A ∩ F → L(X, D) is continuous;

(iii) η(x, y) + η(y, x) = 0;
(iv) for any given points w, y, z ∈ K, the mapping x �→ 〈A(w, z), η(x, y)〉is

convex and the mapping x �→ η(x, y) is completely continuous;
(v) α : X → D is completely continuous.

Then there exists x0 ∈ K such that

〈A(x0, x0), η(v, x0)〉 ≮ 0, ∀v ∈ K.

Lemma 3.2. ([6]) Let K ⊂ X be a nonempty unbounded closed convex subset
of X and the mapping A : K × K → L(X, D) be nonlinear. Suppose that

(i) A is relaxed η − α demipseudomonotone;
(ii) for each x ∈ K the mapping s �→ A(x, s) is finite-dimension continuous;
(iii) η(x, y) + η(y, x) = 0;
(iv) for any given points w, y, z ∈ K, the mapping x �→ 〈A(w, z), η(x, y)〉 is

convex and the mapping x �→ η(x, y) is completely continuous;
(v) α : X → D is convex and completely continuous;
(vi) there exist a constant r > 0 and y0 ∈ K with ‖y0‖ � r such that

(5) 〈A(z, z), η(z, y0)〉 > 0, ∀z ∈ K with ‖z‖ = r.

Then there exists x0 ∈ K such that

〈A(x0, x0), η(z, x0)〉 ≮ 0, ∀z ∈ K.

Lemma 3.3. Let K ⊂ X be a nonempty closed convex set and the mapping
A : K × K → L(X, D) be weakly relaxed {ηγ − αγ}γ∈Γ demipseudomonotone.
Let Γ = {γn : n ∈ N} and Sn = {1, 2, . . . , n}. Let ηn =

∑
m∈Sn

ηγm and
αn =

∑
m∈Sn

αγm . Then for each n, A is relaxed ηn−αn demipseudomonotone.
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Proof. By Lemma 1.4 we know that, for any u ∈ K the mapping s �→ A(u, s)
is relaxed ηn − αn pseudomonotone. This completes the proof. �

Theorem 3.1. Let K ⊂ X be a nonempty bounded closed convex set and the
mapping A : K × K → L(X, D) be nonlinear. Let Γ = {γn : n ∈ N} and
Sn = {1, 2, . . . , n}. Let ηn =

∑
m∈Sn

ηγm and αn =
∑

m∈Sn
αγm . Suppose that

the following hold

(i) A is weakly relaxed {ηγ − αγ}γ∈Γ demipseudomonotone;
(ii) for each x ∈ K the mapping s �→ A(x, s) is finite-dimension continuous;
(iii) ηn(x, y) + ηn(y, x) = 0, for all x, y ∈ K, n ∈ N;
(iv) for any given points w, y, z ∈ K and γ ∈ Γ the mapping

x �→ 〈A(w, z), ηγ(x, y)〉
is convex and the mapping x �→ ηγ(x, y) is completely continuous;

(v) αγ : X → D is convex and completely continuous, for each γ ∈ Γ;

Then the system (4) is solvable.

Proof. Based on Lemma 3.3, for each n, A is relaxed ηn−αn demipseudomono-
tone. Also for each n the mapping x �→ 〈A(w, z), ηn(x, y)〉 is completely con-
tinuous. Easily we can verify that for each n, αn is also completely continuous.
Thus all conditions of Lemma 3.1 are satisfied and hence for each n there exists
x0 ∈ K such that

〈A(x0, x0), ηn(v, x0)〉 ≮ 0, ∀v ∈ K.

In other words, for each n, 〈A(x0, x0),
∑

m∈Sn
ηγm(v, x0)〉 ≮ 0, for all v ∈ K.

It follows that there exists u ∈ Sn such that

〈A(x0, x0), ηγu(v, x0)〉 ≮ 0, ∀v ∈ K.

By hypothesis, A(x0, .) is weakly relaxed {ηγ0 − αγ0}γ∈Γ pseudomonotone.
Hence we can deduce that

〈A(x0, x0), ηγm(v, x0)〉 ≮ 0, ∀v ∈ K, m ∈ Sn.

Set
Rn = {x : 〈A(x, x), ηγm (v, x)〉 ≮ 0, ∀v ∈ K, m ∈ Sn.}

The above argument implies each Rn is not empty and Rn+1 ⊆ Rn. Fur-
thermore from hypothesis we know that each Rn is weakly compact and thus⋂

n∈N
Rn �= ∅. This completes the proof. �

Theorem 3.2. Let K ⊂ X be a nonempty unbounded and closed convex set
and the mapping A : K × K → L(X, D) be nonlinear. Let Γ = {γn : n ∈ N}
and Sn = {1, 2, . . . , n}. Let ηn =

∑
m∈Sn

ηγm and αn =
∑

m∈Sn
αγm . Suppose

that the following hold

(i) A is weakly relaxed {ηγ − αγ}γ∈Γ demipseudomonotone;
(ii) for each x ∈ K the mapping s �→ A(x, s) is finite-dimension continuous;
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(iii) ηn(x, y) + ηn(y, x) = 0, for all x, y ∈ K, n ∈ N;
(iv) for any given points w, y, z ∈ K and γ ∈ Γ the mapping

x �→ 〈A(w, z), ηγ(x, y)〉,
is convex and the mapping x �→ ηγ(x, y) is completely continuous;

(v) αγ : X → D is convex and completely continuous, for each γ ∈ Γ;
(vi) there exist a constant r > 0 and y0 ∈ K with ‖y0‖ � r such that

〈A(z, z), ηγ(z, y0)〉 > 0, ∀z ∈ K, γ ∈ Γ with ‖z‖ = r.

Then the system (4) is solvable.

Proof. Easily we can verify that the conditions in Lemma 3.3 are all satisfied.
Hence, based on Lemma 3.2, for each n, there exists x0 ∈ X such that

〈A(x0, x0), ηn(y, x0)〉 ≮ 0, ∀y ∈ K, n ∈ N.

This implies that there exists u ∈ Sn such that

〈A(x0, x0), ηγu(y, x0)〉 ≮ 0, ∀y ∈ K.

By hypothesis, we can deduce that

〈A(x0, x0), ηγm(y, x0)〉 ≮ 0, ∀y ∈ K, m ∈ Sn.

Again, for each n, we can define a set Rn = {x : 〈A(x, x), ηγm (y, x)〉 ≮ 0, ∀y ∈
K, m ∈ Sn} and then conclude that each Rn �= ∅ and Rn+1 ⊆ Rn. Now since
each Rn is weakly compact, thus

⋂
n∈N

Rn �= ∅. This completes the proof. �

4. Applications

As we have already claimed, the results appeared in this paper improve
the results of many corresponding authors. In fact, we can show that each of
Theorems 2.2, 3.1 and 3.2 are extensions of Lemma 1.3, 1.4 and 3.1, respectively.
These Lemmas are indeed, the main results of the [6].

In what follows, we briefly show that for instance Theorem 2.2 improves
Lemma 1.3. Toward this end, suppose that the all conditions in Lemma 1.3
hold. Let Γ = {1, 2}, η1(x, y) = η(x, y), η2(x, y) = −η(y, x) and α1 = α2 = α.
We now verify the conditions of Theorem 2.2. In fact by the first condition of
this lemma there exists y0 ∈ K and r > 0 such that

〈Tz, η(z, y0)〉 > 0,

for all z ∈ K with ‖z‖ = r. Thus

〈Tz, η1(z, y0)〉 > 0,

for all z ∈ K with ‖z‖ = r. Based on the second condition of this lemma
η1(z, y0) = −η1(y0, z) and hence η2(z, y0) = η1(z, y0). It follows that

〈Tz, η2(z, y0)〉 > 0.
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Therefore the first condition of Theorem 2.2 is satisfied. Let

η̃ = η1 + η2.

Easily we can deduce that

η̃(x, y) = η(x, y) − η(y, x).

Whence
η̃(x, y) + η̃(y, x) = 0,

for all x, y ∈ K. Therefore the second condition of the theorem is satisfied.
On the other hand, the mapping x �→ 〈Tz, η(x, y)〉 is convex. In other words
the mapping x �→ 〈Tz, η1(x, y)〉 is convex. Applying the second condition of
the lemma we can deduce that the mapping x �→ 〈Tz, η2(x, y)〉 is also convex.
Furthermore, with the help of a similar argument we can deduce that these
two mapping are completely continuous and hence the second condition of the
theorem holds. Since α1 = α2 = α we see that the last condition of the theorem
equals with the last condition of the lemma. Furthermore, T is both relaxed
{ηγ −αγ}γ pseudomonotone and {ηγ}γ -hemicontinuous, where ηγ ’s, αγ ’s and
the set Γ have been given above. Therefore based on this theorem, there exists
a solution, say x0, such that

〈Tx0, η1(y, x0)〉 ≮ 0,

for all y ∈ K and hence 〈Tx0, η(y, x0)〉 ≮ 0, for all y ∈ K, as desired.
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