Iranian Journal of Mathematical Sciences and Informatics Vol. 5, No. 2 (2010), pp 13-24

Quotient BCI-algebras induced by pseudo-valuations

Shokoofeh Ghorbani

Department of Mathematics of Bam, Shahid Bahonar University of Kerman, Kerman, Iran

E-mail: sh.ghorbani@mail.uk.ac.ir

Abstract. In this paper, we study pseudo-valuations on a BCI-algebra and obtain some related results. The relation between pseudo-valuations and ideals is investigated. We use a pseudo-metric induced by a pseudovaluation to introduce a congruence relation on a BCI-algebra. We define the quotient algebra induced by this relation and prove that it is also a BCI-algebra and study its properties.

Keywords: BCI-algebra, pseudo-valuation, ideal, pseudo-metric, quotient algebra.

2000 Mathematics subject classification: 06F35, 08A30, 03G25.

1. INTRODUCTION

E-mail: sh.ghorbani@mail.uk.ac.ir

ABSTRACT. In this paper, we study pseudo-valuations on a BCL algebra

and obtain some related results. The relation between pendo valuations

and others one related results. The relatio The notions of BCK and BCI-algebras were introduced by Imai and Iseki in [7, 8]. They are two important classes of logical algebras. BCI-algebras are generalization of BCK-algebras. Some properties of these structures were presented in $[1, 4, 6, 10, 11, 12]$ and $[13]$. Recently, D. Busneag $[2, 3]$ introduced the notion of a pseudo valuation and applied it to Hilbert-algebras and residuated lattices. Also, M. I. Doh and M. S. Kang [5] applied pseudo valuations

Received 05 September 2009; Accepted 29 August 2010 c 2010 Academic Center for Education, Culture and Research TMU

13

to BCK/BCI algebras and investigate some properties.

In the next section, some preliminary definitions and theorems are stated. In section 3, we study pseudo-valuation on BCI-algebras and investigate its properties which is not in [5]. We discuss the relation among pseudo-valuations and ideals of a BCI-algebra. We obtain some results of pseudo-metrics induced by pseudo-valuations on BCI-algebras and prove that a pseudo-metric induced by a pseudo-valuation v is a metric on a BCK-algebra if and only if v is a valuation but it may not be true in general for a BCI-algebra. In section 4, we use pseudometric induced by a pseudo-valuation to define the quotient algebra. We prove that this quotient algebra is also a BCI-algebra and obtain some related results.

2. Preliminaries

Definition 2.1.[11] An algebra $(X, *, 0)$ of type $(2, 0)$ is called a *BCI-algebra*, if it satisfies the following conditions: for any $x, y, z \in X$:

(BCI 1) $((x * y) * (x * z)) * (z * y) = 0$, (BCI 2) $x * 0 = x$,

(BCI 3) $x * y = 0$ and $y * x = 0$ imply $x = y$.

We call the binary operation $*$ on X the *multiplication* on X and the constant of X the *zero element* of X. We often write X instead of $X = (X, \ast, 0)$ for a BCI-algebra in brevity.

Theorem 2.2.[11] Let X be a BCI-algebra. Define a binary relation \leq on X by which $x \leq y$ if and only if $x * y = 0$ for any $x, y \in X$. Then (X, \leq) is a partially ordered set with 0 is a minimal element in the meaning that $x \leq 0$ implies $x = 0$.

A BCI-algebra X satisfying $0 \leq x$ for all $x \in X$ is called a *BCK-algebra*.[10] The set of all positive elements of a BCI-algebra X is called the *BCK-part* of X and is denoted by $B(X)$.

2. PRELIMINARIES
 Definition 2.1.[11] An algebra $(X, *, 0)$ of type $(2, 0)$ is called a *BCI-algebra* (BIc stins the following conditions: for any $x, y, z \in X$:
 $(BCI 2) x * 0 = x$,
 $(BCI 3) x * y = 0$ and $y * x = 0$ imply $x = y$.
 $(BCI$ **Theorem 2.3.**[10, 11] Let x, y, z be any elements in a BCI-algebra X. Then (1) $x \leq y$ implies $z * y \leq z * x$, (2) $x \leq y$ implies $x * z \leq y * z$, (3) $x * y \leq z$ if and only if $x * z \leq y$, (4) $x * (x * y) \leq y$, (5) $(x * y) * (z * y) \leq (x * z),$ (6) $(x * y) * (x * z) \leq (z * y),$ (7) $(x * y) * z = (x * z) * y,$ (8) $x \leq x$, (9) $0 * (x * y) = (0 * x) * (0 * y).$

A subset Y of a BCI-algebra X is called a *subalgebra* of X if constant 0 of X is in Y, and $(Y,*,0)$ itself forms a BCI-algebra. $B(X)$ is a subalgebra of a BCI-algebra X.

Definition 2.4.[11] A subset I of a BCI-algebra X is called an *ideal* of X if (1) 0 \in *I*,

(2) $y \in I$, $x * y \in I$ imply $x \in I$ for any $x, y \in X$. Any ideal I has the property: $y \in I$ and $x \leq y$ imply $x \in I$.

Definition 2.5.[11] An ideal I of a BCI-algebra X is called *closed* if I is closed under $*$ on X (i.e, I is a subalgebra of X).

Proposition 2.6.[11] An ideal I of a BCI-algebra X is closed if and only if $0 * x \in I$ for any $x \in I$.

Proposition 2.7.[11] Let X be a BCI-algebra. Then (i) If an ideal of X is a finite order, then it is closed, especially, if X is a finite order, then any ideal of X is closed.

(ii) If X is a BCK-algebra, then any ideal of X is closed.

Definition 2.8.[11] Let X and Y be BCI-algebras. A map $f: X \to Y$ is called *homomorphism* if $f(x * y) = f(x) * f(y)$ for all $x, y \in X$.

Proposition 2.6.[11] An ideal *I* of a BCI-algebra *X* is closed if and only $0 * x \in I$ for any $x \in I$.
 Proposition 2.7.[11] Let *X* be a BCI-algebra. Then

(i) If an ideal of *X* is a finite order, then it is closed, f is called *epimorphism*, if it is a surjective homomorphism. f is called *monomorphism*, if it is a injective homomorphism. An *isomorphism* means that f is both of epimorphic and monomorphic. Moreover, we say X is *isomorphic* to Y , symbolically, $X \cong Y$, if there is an isomorphism from X to Y. For a homomorphism $f: X \to Y$, we have $f(0) = 0$ where 0 and 0 are zero elements of X and Y, respectively.

Definition 2.9.[11] An equivalence relation θ on a BCI-algebra X is called a *congruence relation* on X, if $(x, y) \in \theta$ implies $(x*z,y*z) \in \theta$ and $(z*x,z*y) \in \theta$ for all $x, y, z \in X$.

Theorem 2.10.[11] Let I be an ideal of a BCI-algebra X . Define a binary relation θ_I on X as follows: $(x, y) \in \theta_I$ if and only if $x * y, y * x \in I$, for all $x, y \in X$. Then θ_I is a congruence relation on X which is called the *ideal congruence* on X induced by the ideal I.

Theorem 2.11.[11] Let I be an ideal of a BCI-algebra X and θ_I be the ideal congruence relation. The set of all equivalence classes $[x]_I = \{y \in X : (x, y) \in$ $\{\theta_I\}$ is denoted by X/I. On this set, we define $[x]_I * [y]_I = [x * y]_I$. Then $(X/I, *, [0]_I)$ is a BCI-algebra.

3. Pseudo-valuations on BCI-algebras

Definition 3.1.[4] A real function $v: X \to \mathbb{R}$ is called a *pseudo-valuation* on a BCI-algebra X if it satisfies the following conditions: $(V1)$ $v(0) = 0$, (V2) $v(x) \le v(x * y) + v(y)$; for all $x, y \in X$. The pseudo-valuation υ is said to be a *valuation* if (V3) $v(x) = 0$ implies $x = 0$.

Example 3.2.
(i) Let *X* be an arbitrary BCI-algebra and $e \in \mathbb{R}$ such th
 $c \ge 0$. Define $v : X \to \mathbb{R}$ by $v(x) = c$ for all $x \in X - \{0\}$,
 ϕ is a pseudo-valuation of *X*. If $c = 0$, then v is called zero necessa **Example 3.2.**(i) Let X be an arbitrary BCI-algebra and $c \in \mathbb{R}$ such that $c \geq 0$. Define $v : X \to \mathbb{R}$ by $v(x) = c$ for all $x \in X - \{0\}$ and $v(0) = 0$. Then *v* is a pseudo-valuation on X. If $c = 0$, then *v* is called *zero pseudo-valuation*. (ii) The set Z of integer, together with the binary operation ∗ defined by $x * y = x - y$ forms a BCI-algebra, where the operation - is the subtraction as usual. Let $a \neq 0$ be an arbitrary element of Z. Then $v(x) = ax$ is a valuation on Z.

Theorem 3.3. Let v be a pseudo-valuation on a BCI-algebra X . Then

(1) $x \leq y$ implies $v(x) \leq v(y)$, (2) $v(x * y) \le v(x * z) + v(z * y),$ (3) $0 \le v(x * y) + v(y * x),$ for all $x, y, z \in X$.

Proof. See Proposition 3.11 in [4]. □

Corollary 3.4. Let v be a pseudo-valuation on a BCI-algebra X. If $x \in B(X)$, then $v(x) \geq 0$.

Proof. Since $x \in B(X)$, then $0 \leq x$. By Theorem 3.3 part (1), we get that $0 = v(0) \le v(x).$

In the following example, we will show that if v is a pseudo-valuation on a BCI-algebra X such that $v(x) \geq 0$ where $x \in X$, then it may not be true $x \in B(X)$ in general.

Example 3.5. Let X be a BCI-algebra with the universe $\{0, 1, a\}$ such that the operation ∗ is defined by the table below:

Define $v(0) = 0$, $v(1) = 3$ and $v(a) = 6$. Then v is a pseudo-valuation on X and $v(a) \geq 0$. But we have $a \notin B(X)$.

Theorem 3.6. Let I be an ideal of a BCI-algebra X and t be a positive element of \Re . Define $v_I : X \to \Re$,

$$
v_I(x) = \begin{cases} 0 & x \in I \\ t & x \notin I \end{cases}
$$

Then v_I is a pseudo-valuation on X which is called the *pseudo-valuation induced by ideal* I. Moreover v_I is a valuation if and only if $I = \{0\}$.

Proof. The proof is straightforward.

Then v_I is a pseudo-valuation on *X* which is called the *pseudo-valuation i* duced by ideal *I*. Moreover v_I is a valuation if and only if $I = \{0\}$,
 Proof. The proof is straightforward.
 Theorem 3.7. Let v **Theorem 3.7.** Let υ be a pseudo-valuation on a BCI- algebra X. Then $I_v = \{x \in X : v(x) \leq 0\}$ is an ideal of X which is called the *ideal induced by pseudo-valuation* υ.

Proof. Since $v(0) = 0$, we have $0 \in I_v$. Suppose that $y, x * y \in I_v$. Then $v(y), v(x * y) \leq 0$. We get that

$$
\upsilon(x) \le \upsilon(x \ast y) + \upsilon(y) \le 0
$$

Therefore $x \in I_v$ and I_v is an ideal of X.

Corollary 3.8. Let v be a pseudo-valuation on a BCI-algebra X . If X is finite order or $X = B(X)$, then I_v is a closed ideal of X.

Proof. It follows from Theorem 3.7 and Proposition 2.7. □

Remark 3.9. The ideal induced by a pseudo-valuation v on a BCI-algebra X may not be closed. Consider Example 3.2 part (ii). If $v(x) = x$, for all $x \in Z$, then I_v is the set of negative integer which is not a closed ideal of Z.

Theorem 3.10. Let I be an ideal of a BCI-algebra X. Then $I_{v_I} = I$.

Proof. We have
$$
I_{v_I} = \{x \in X : v_I(x) \le 0\} = \{x \in X : x \in I\} = I.
$$

Remark 3.11. The above Theorems do not furnish a one to one correspondence between ideals and pseudo-valuations, because two distinct pseudovaluations of a given BCI-algebra may induce the same ideal. Consider the following example:

Example 3.12. Let X be a BCI-algebra with the universe $\{0, 1, 2, a, b\}$ such that the operation ∗ is defined by the table below:

Archive of SID Define $v_1(0) = v_1(1) = 0$, $v_1(2) = 4$, $v_1(a) = 3$, $v_1(b) = 5$ and $v_2(0) = v_2(1) = 0$ $0, v_2(2) = 4, v_2(a) = 2, v_2(b) = 3.$ Then v_1 and v_2 are two pseudo-valuations on X such that $I_{v_1} = \{0, 1\} = I_{v_2}$.

Theorem 3.13. Let v be a pseudo-valuation on a BCI-algebra X . Define $d_v: X \times X \rightarrow \Re$ by

$$
d_{\upsilon}(x,y) = \upsilon(x \ast y) + \upsilon(y \ast x),
$$

for $(x, y) \in X \times X$. Then d_v is a pseudo-metric on X which is called the *pseudo-metric induced by pseudo-valuation* υ.

Proof. See Theorem 3.6 in [4]. □

Theorem 3.14. Let v be a pseudo-valuation on a BCI-algebra X such that I_{ν} is a closed ideal of X. If d_{ν} is a metric on X, then ν is a valuation.

Proof. Suppose that v is not a valuation on X. Then there exists $x \in X$ such that $x \neq 0$ and $v(x) = 0$. Hence $0, x \in I_v$. Since I_v is a closed ideal of X, then $0 * x \in I_v$, that is $v(0 * x) \leq 0$. We have

$$
0 = v(0) \le v(0 * x) + v(x) = v(0 * x) \le 0.
$$

Hence $v(0 * x) = 0$. We get that $d_v(x, 0) = v(x * 0) + v(0 * x) = 0$. Since d_v is a metric on X, then $x = 0$ which is a contradiction.

If I_v is not a closed ideal of X, then the above theorem may not be true. See the following example:

Example 3.15. Consider the set Z of integer, together with the binary operation $*$ defined by $x * y = x - y$. Let $a > o$ be an arbitrary element of Z. Define $v_a(x) = a-x$, where $x \in Z-\{0\}$ and $v_a(0) = 0$. Then v_a is a pseudo-valuation

on a BCI-algebra Z, d_v is a metric space and $I_v = \{x \in X : a \leq x\} \cup \{0\}$ is not a closed ideal of Z. Since $v_a(a) = 0$, then v_a is not a valuation.

Theorem 3.16. Let v be a valuation on a BCI-algebra X such that $I_v = \{0\}$. Then d_v is a metric on X.

Proof. Since $I_v = \{0\}$, then $v(x) \geq 0$ for all $x \in X$. Hence d_v is a metric on X by Theorem 3.20 in [4].

If $I_v \neq \{0\}$, then the above theorem may not be true. Consider v in Remark 3.9. Then $I_v \neq \{0\}$ and $d_v(0, 1) = 0$. Hence d_v is not a metric on X.

Corollary 3.17. Let v be a pseudo-valuation on a BCK-algebra X. Then v is a valuation if and only if d_v is a metric on X.

Corollary 3.17. Let v be a pseudo-valuation on a BCK-algebra X. Then

is a valuation if and only if d_v is a metric on X.
 Proof. Since v is a valuation and X is a BCK-algebra, then $I_x = \{0\}$.

Theorem 3.16, d_v *Proof.* Since v is a valuation and X is a BCK-algebra, then $I_v = \{0\}$. By Theorem 3.16, d_v is a metric on X. Converse follows from Theorem 3.14 and Proposition 2.7.

Lemma 3.18. Let v be pseudo-valuation on a BCI-algebra X . Then

(1) $d_v(x * z, y * z) \leq d_v(x, y)$, (2) $d_v(z * x, z * y) \leq d_v(x, y)$, (3) $d_v(x * y, z * w) \leq d_v(x * y, z * y) + d_v(z)$ for all $x, y, z, w \in X$.

Proof. See Proposition 3.17 in [4].

4. Quotient BCI-algebras induced by pseudo valuations

Definition 4.1. Let v be a pseudo-valuation on a BCI-algebra X. Define the relation θ_v by:

 $(x, y) \in \theta_v$ if and only if $d_v(x, y) = 0$, for all $x, y \in \mathbb{Z}$

Proposition 4.2. Let v be a pseudo-valuation on a BCI-algebra X. Then θ_v is a congruence relation on X which is called the *congruence relation induced* by v .

Proof. Since θ_v induced by a pseudo-metric, it is an equivalence relation on X. Suppose that $(x, y), (z, w) \in \theta_v$. Then we have $d_v(x, y) = d_v(z, w) = 0$. By

Lemma 3.18 part (1), we have $d_v(x * z, y * z) \le d_v(x, y) = 0$. By Theorem 3.3 part (3), we obtain that $0 \le v((x*z)*(y*z)) + v((y*z)*(x*z)) = d_v(x*z,y*z)$. Hence $d_v(x * z, y * z) = 0$ and then $(x * z, y * z) \in \theta_v$. Similar proof gives $(y * z, y * w) \in \theta_v$. Since θ_v is transitive, then $(x * z, y * w) \in \theta_v$. Hence θ_v is a congruence relation on X .

Definition 4.3. Let v be a pseudo-valuation on a BCI-algebra X and θ_v be the congruence relation induced by v . The set of all equivalence classes $[x]_v = \{y \in A : (x, y) \in \theta_v\}$ is denoted by X/v . On this set, we define $[x]_v * [y]_v = [x * y]_v$. The resulting algebra is denoted by X/v and is called the *quotient algebra of* X *induced by pseudo-valuation* υ.

Theorem 4.4. Let υ be a pseudo-valuation on a BCI-algebra X. Then $(X/v, *, [0]_v)$ is a BCI-algebra and $d^*([x]_v, [y]_v) = d(x, y)$ is a metric on X/v . Moreover, the quotient topology on X/v coincide with the metric topology induced by d^* .

Theorem 4.4. Let v be a pseudo-valuation on a BCI-algebra X . The $(X/v, *, [0]_v)$ is a BCI-algebra and $d^*([x]_v, [y]_v) = d(x, y)$ is a metric on X / Moreover, the quotient topology on X/v coincide with the metric topolog *Proof.* Since θ_v is a congruence relation, the operation $*$ is well defined. The proof of (BCI 1) and (BCI 2) is obvious. We only prove (BCI 3). Suppose that $[x]_v * [y]_v = [0]_v$ and $[y]_v * [x]_v = [0]_v$ for some $x, y \in X$. Then $[x * y]_v = [0]_v$ and $[y * x]_v = [0]_v$ by Definition 4.3. So $(x * y, 0), (y * x, 0) \in \theta_v$. By definition of θ_v , the following hold

$$
v(x * y) + v(0 * (x * y)) = 0
$$
 and $v(y * x) + v(0 * (y * x)) = 0.$

By Theorem 2.3 part (9), we have $(0*x)*(0*y)=0*(x*y)$ and $(0*y)*(0*x)$ $0*(y*x)$. Since v is a pseudo-valuation and order preserving, we obtain that

$$
v(0 * x) - v(0 * y) \le v((0 * x) * (0 * y)) = v(0 * (x * y)),
$$

$$
v(0 * y) - v(0 * x) \le v((0 * y) * (0 * x)) = v(0 * (y * x)).
$$

We get that

$$
v(0 * x) - v(0 * y) + v(x * y) \le v(0 * (x * y)) + v(x * y) = 0,
$$

\n
$$
v(0 * y) - v(0 * x) + v(y * x) \le v(0 * (y * x)) + v(y * x) = 0.
$$

Therefore $v(x*y)+v(y*x) \le 0$. By Theorem 3.3 part (3), $v(x*y)+v(y*x) = 0$. It follows that $(x, y) \in \theta_v$, that is $[x]_v = [y]_v$. Hence $(X/v, *, [0]_v)$ is a BCIalgebra. \square

Proposition 4.5. Let v be a pseudo-valuation on a BCI-algebra X such that I_v is a closed ideal of X. Then $I_v \subseteq [0]_v$.

Proof. Let $x \in I_v$. Then $v(x) \leq 0$. Since I_v is a closed ideal of X, then $0 * x \in I_v$. By definition I_v , $v(0 * x) \leq 0$. We get that $v(0 * x) + v(x) \leq 0$. By Theorem 3.3 part (3), $v(0 * x) + v(x) = 0$. Hence $x \in [0]_v$.

If I_v is a not a closed ideal of X, then the above theorem may not be true in general. For example, we have $I_v \nsubseteq [0]_v$ in Remark 3.9.

Proposition 4.6. Let v be a pseudo-valuation on a BCI-algebra X such that $v(x) \geq 0$ for all $x \in X$. Then $[0]_v \subseteq I_v$.

Proof. Let $x \in [0]_v$. Then $(0, x) \in \theta_v$. By definition θ_v , we have $v(0*x)+v(x)$ 0. Since $v(x) \ge 0$ for all $x \in X$, we obtain $v(0 * x) = v(x) = 0$. Hence $x \in I_v$ by definition I_v .

If we do not have $v(x) \geq 0$ for all $x \in X$, then the above theorem may not be true. Consider Example 3.15, we have $I_v \nsubseteq [0]_v$.

Corollary 4.7. Let υ be a pseudo-valuation on a BCI-algebra X such that $v(x) \ge 0$ for all $x \in X$ and I_v is a closed ideal of X. Then $I_v = [0]_v$.

Proof. It follows from Proposition 4.5 and Proposition 4.6. □

Proposition 4.8. Let v be a pseudo-valuation on a BCI-algebra X and I_v be the ideal induced by v. Then $\theta_{I_v} \subseteq \theta_v$.

6. Since $v(x) \ge 0$ for all $x \in X$, we obtain $v(0 * x) = v(x) = 0$. Hence $x \in$
 Archive of order $P(x) \ge 0$ *for all* $x \in X$, then the above theorem may not true. Consider Example 3.15, we have $I_v \nsubseteq [0]_v$.
 Corollary 4.7 *Proof.* Let $(x, y) \in \theta_{I_v}$. Then $x * y, y * x \in I_v$. We have $v(x * y) \leq 0$ and $v(y * x) \leq 0$, by definition I_v . Thus $v(x * y) + v(y * x) \leq 0$. By Theorem 3.3 part (3), $v(x*y)+v(y*x)=0$. It follows that $(x,y) \in \theta_v$. Hence $\theta_{I_v} \subseteq \theta_v$. \Box

In the above theorem, the opposite inclusion may not hold. See Example 3.2 part (2).

Proposition 4.9. Let v be a pseudo-valuation on a BCI-algebra X such that $v(x) \geq 0$ for all $x \in X$ and I_v be the ideal induced by v. Then $\theta_v \subseteq \theta_{I_v}$.

Proof. Let $(x, y) \in \theta_v$. Then $v(x * y) + v(y * x) = 0$. Since $v(x) \geq 0$ for all $x \in X$, we obtain that $v(x * y) = 0$ and $v(y * x) = 0$. By definition I_v , we get that $x * y, y * x \in I_v$. It follows that $(x, y) \in \theta_v$. Hence $\theta_v \subseteq \theta_{I_v}$.

Proposition 4.10. Let I be an ideal of a BCI-algebra X. Then $\theta_I = \theta_{v_I}$.

Proof. Let $(x, y) \in \theta_I$. Then $x * y, y * x \in I$ by Theorem 2.10. We have $v_I(x * y) = v_I(y * x) = 0$, by Theorem 3.6. Hence $d_v(x, y) = 0$ and then $(x, y) \in \theta_{\nu_I}.$

Conversely, let $(x, y) \in \theta_{\nu}$. Then $v_I(x * y) + v_I(y * x) = 0$. Since $v_I(x) \geq 0$ for all $x \in X$, we obtain that $v_I(x * y) = v_I(y * x) = 0$, that is $x * y, y * x \in I$. Hence $(x, y) \in \theta_I$.

Theorem 4.11. Let v_1 and v_2 be two different pseudo-valuations on a BCIalgebra X such that $[0]_{v_1} = [0]_{v_2}$. Then θ_{v_1} and θ_{v_2} coincide, thus $X/v_1 =$ X/v_2 .

Proof. Let $(x, y) \in \theta_{v_1}$. Then $(x * y, 0) = (x * y, y * y) \in \theta_{v_1}$. It follows that $x * y \in [0]_{v_1}$. Similarly, we can show that $y * x \in [0]_{v_1}$. By assumption $[0]_{v_1} = [0]_{v_2}$, so we get that

 $[x]_{v_2} * [y]_{v_2} = [x * y]_{v_2} = [0]_{v_2}$ and $[y]_{v_2} * [x]_{v_2} = [y * x]_{v_2} = [0]_{v_2}$

Since X/v_2 is a BCI-algebra, then $[x]_{v_2} = [y]_{v_2}$. Hence $(x, y) \in \theta_{v_2}$ and then $X/v_1 = X/v_2$. It follows that $X/v_2 = X/v_1$.

Lemma 4.12. Let v be a pseud-valuation on a BCI-algebra X and I be an ideal of X such that $[0]_v \subseteq I$. Denote $I/v = \{ [x]_v : x \in I \}$. Then (1) $x \in I$ if and only if $[x]_v \in I/v$ for any $x \in X$, (2) I/v is an ideal of X/v .

Arma, $x, y \in [0]_{v_1}$. Similarly, we can show that $y * x \in [0]_{v_2}$. By assumption $|x|_{v_1} = [0]_{v_2}$, so we get that $\lbrack x|_{v_2} = [x * y]_{v_2} = [0]_{v_2}$ and $[y]_{v_2} * [x]_{v_2} = [y * x]_{v_2} = [0]_{v_2}$. Similarly, we can show *Proof.* (1) Suppose that $[x]_v \in I/v$. Then there exists $y \in I$ such that $[x]_v =$ [y]_v. Hence $(x, y) \in \theta_v$. It follows that $(x * y, 0) \in \theta_v$. We get that $x * y \in [0]_v$. Since $[0]_v \subseteq I$, we have $x * y, y \in I$. Hence $x \in I$. The converse is trivial. (2) Since $0 \in I$, then $[0]_v \in I/v$ by part (1). Let $[x]_v * [y]_v, [y]_v \in I/v$. By Definition 4.3, $[x]_v * [y]_v = [x * y]_v$. We have $x * y, y \in I$ by part (1). Since I is an ideal, $x \in I$. We get that $[x]_v \in I/v$. Therefore I/v is an ideal of X/v .

Lemma 4.13. Let v be a pseudo-valuation on a BCI-algebra X and J be an ideal of X/v . Then $I = \{x \in X : [x]_v \in J\}$ is an ideal of X such that $[0]_v \subseteq I$.

Proof. It is clear that $0 \in [0]_v \subseteq I$. Suppose that $x * y, y \in I$. Then $[y]_v, [x *$ $y|_v = [x]_v * [y]_v \in J$. Since J is an ideal of X/v , then $[x]_v \in J$. By definition I, we obtain $x \in I$. Hence I is an ideal of X.

Theorem 4.14. Let v be a pseudo-valuation on a BCI-algebra $X, I(X, v)$ the collection of all ideals of X containing $[0]_v$, and $I(X/v)$ the collection of all ideals of X/v . Then $\varphi: I(X,v) \to I(X/v)$, $I \to I/v$, is a bijection.

 \Box

Proof. It follows from Lemma 4.12 and Lemma 4.13. □

Lemma 4.15. Let X and Y be BCI-algebras, $f : X \to Y$ a homomorphism and v a pseudo-valuation on Y. Then $v \circ f : X \to \mathbb{R}$ defined by $v \circ f(x) = v(f(x))$ for all $x \in X$ is a pseudo-valuation on X.

Proof. The proof is straightforward. □

Theorem 4.16. Let X and Y be BCI-algebras, $f : X \to Y$ an epimorphism and v a pseudo-valuation on Y. Then $X/v \circ f \cong Y/v$.

Proof. By Lemma 4.15 and Theorem 4.4, we have $X/v \circ f$ and Y/v are BG
algebras. Define $\psi : X/v \circ f \to Y/v$ by $\psi([x]_{v \circ f}) = [f(x)]_{v \circ f}$. for all $x \in X$.
(1) Suppose that $[x|_{\omega \circ f} = [y|_{\omega \circ f}$. Then $(v \circ f)(x \circ y) + (v \circ f)(y \circ x) = 0$ *Proof.* By Lemma 4.15 and Theorem 4.4, we have $X/v \circ f$ and Y/v are BCIalgebras. Define $\psi: X/v \circ f \to Y/v$ by $\psi([x]_{v \circ f}) = [f(x)]_v$ for all $x \in X$. (1) Suppose that $[x]_{\nu \circ f} = [y]_{\nu \circ f}$. Then $(\nu \circ f)(x * y) + (\nu \circ f)(y * x) = 0$. Since f is a homomorphism, then $v(f(x)*f(y))+v(f(y)*f(x))=0$. We obtain that $[f(x)]_v = [f(y)]_v$. We get that $\psi([x]_{v \circ f}) = \psi([y]_{v \circ f})$, that is ψ is well define. (2) We show that ψ is a homomorphism. Since f is a homomorphism,

(i) $\psi([0]_{\nu \circ f}) = [f(0)]_{\nu} = [0]_{\nu},$

(ii) $\psi([x]_{\nu \circ f} * [y]_{\nu \circ f}) = \psi([x * y]_{\nu \circ f}) = [f(x * y)]_{\nu} = [f(x) * f(y)]_{\nu} =$ $[f(x)]_v * [f(y)]_v = \psi([x]_{v \circ f}) * \psi([y]_{v \circ f}).$

(3) Let $[y]_v \in Y/v$ be arbitrary. Since f is surjective, there exists $x \in X$ such that $f(x) = y$. Hence $\psi([x]_{\nu \circ f}) = [f(x)]_{\nu} = [y]_{\nu}$ and ψ is surjective.

(4) We prove that ψ is one to one. Suppose that $\psi([x]_{\nu \circ f}) = \psi([y]_{\nu \circ f})$. Then $[f(x)]_v = [f(y)]_v$. We get that $v(f(x) * f(y)) + v(f(y) * f(x)) = 0$. Since f is a homomorphism, then $(v \circ f)(x * y) + (v \circ f)(y * x) = 0$. We obtain $[x]_{\nu \circ f} = [y]_{\nu \circ f}$. Hence $X/v \circ f \cong Y/v$.

Lemma 4.17. Let v be a pseudo-valuation on a BCI-algebra X and X/v be the corresponding quotient algebra. Then the map $\pi : X \to X/\nu$ defined by $\pi(x)=[x]_v$ for all $x \in X$ is an epimorphism.

Corollary 4.18. Let v be a pseudo-valuation on a BCI-algebra X and X/v the corresponding quotient algebra. For each pseudo-valuation $\bar{v_1}$ on a BCIalgebra X/v , there exists a pseudo-valuation v_1 on a BCI-algebra X, such that $v_1 = \bar{v_1} \circ \pi.$

Proof. It follows from Lemma 4.15 and Lemma 4.17. □

Theorem 4.19. Let υ be a pseudo-valuation on a BCI-algebra X such that $v(x) \geq 0$ for all $x \in X$. Then \overline{v} : $X/v \to \Re$ define by $\overline{v}([x]_v) = v(x)$ is a pseudo-valuation on X/v .

Proof. It is enough to show that \overline{v} is well defined. Let $[x]_v = [y]_v$. Since $v(x) \geq$ 0, then $v(x * y) = v(y * x) = 0$. We have $x * (x * y) \leq y$. By Theorem 3.3 part (1), $v(x*(x*y)) \le v(y)$. It follows that $v(x*(x*y)) + v(x*y) \le v(y) + v(x*y)$. Therefore $v(x) \le v(x * (x * y)) + v(x * y) \le v(y)$. Similarly, we can show that $v(y) \le v(x)$. Therefore $v(y) = v(x)$ and then \overline{v} is well defined.

Acknowledgement. I am grateful to the referees for their valuable suggestions, which have improved this paper.

REFERENCES

[1] A. Borumand Saeid, Redefined fuzzy subalgebra (with thresholds) of BCK/BCIalgebras, *Iranian Journal of Mathematical Sciences and Informatics*, **4** (2) (2009), 9–24.

[2] C. Busneag, On extensions of pseudo-valuations on Hilbert algebras, *Discrete Mathematics*, **263** (2003), 11–24.

[3] C. Busneag, Valuations on residuated lattices, *Annals of University of Craiova, Math. Comp. Sci. Ser.*, **34** (2007), 21–28.

[4] M. Daoji, BCI-algebras and Abelian groups, *Math. Japon.*, **32** (5)(1987), 693–696.

[5] M. I. Doh and M. S. Kang, BCK/BCI-algebras with pseudo valations, *Honam Math. J.*, **32** (2) (2010), 217–226.

Archivensits, 2016 (2003), 11-24.
 Archivensites, 203 (2003), 11-24.
 ARchivensites, 203 (2003), 11-24.
 ARchivensity of Cruion and SI (2. Busness, 203 (2003), 11-24.
 ARChivensity of Cruion and M. S. Karchivensit [6] M. Golmohammadian and M. M. Zahedi, BCK-Algebras and Hyper BCK-Algebras Induced by a Deterministic Finite Automaton, *Iranian Journal of Mathematical Sciences and Informatics*, **4** (1) (2009), 79–98.

[7] Y. Imai and K. Iseki, On axiom systems of propositional calculi XIV, *Proc. Japan Acad.*, **42**(1966), 19–22.

[8] K. Iseki, An algebra related with a propositional calcules, *Proc. Japan Acad.*, **42** (1966), 26–29.

[9] Y. B. Jun, S. Z. Song and C. Lele, Foldness of Quasi-associative Ideals in BCIalgebras, *Scientiae Mathematicae*, **6** (2002), 227-231.

[10] J. Meng and Y. B. Jun, *BCK-Algebras*, Kyung Moon Sa Co., Seoul, Korea, 1994.

[11] Y.S. Huang, *BCI-algebra*, Science Press, China, 2006.

[12] T. Roudabri and L. Torkzadeh, A topology on BCK-algebras via left and right stabilizers, *Iranian Journal of Mathematical Sciences and Informatics*, **4** (2) (2009), 1–8.

[13] C. Xi, on a class of BCI-algebras, *Math Japonica 35*, **1**(1990), 13–17.