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Abstract. The energy E(G) of a graph G is the sum of the absolute

values of the eigenvalues of G. In this article we consider the problem

whether generalized Fibonacci constants ϕn (n ≥ 2) can be the energy of

graphs. We show that ϕn cannot be the energy of graphs. Also we prove

that all natural powers of ϕ2n cannot be the energy of a matroid.
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1. Introduction

Let G = (V, E) be a simple and finite graph of order n where V and E be
vertex and edge sets of G, respectively. If A is the adjacency matrix of G, then
the eigenvalues of A, λ1 ≥ λ2 ≥ . . . ≥ λn are said to be the eigenvalues of
the graph G. These are the roots of the characteristic polynomial φ(G, λ) =
∏n

i=1(λ − λi). An interval I is called a zero-free interval for a characteristic
polynomial φ(G, λ) if φ(G, λ) has no root in I.

The energy of the graph G is defined as E = E(G) =
∑n

i=1 |λi|. This
definition was put forward by I. Gutman [6] and was motivated by earlier
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results in theoretical chemistry [7]. It is easy to see that if a undirected graph
G has positive eigenvalues λ1, λ2, . . . , λm, then E = 2Σm

i=1λi.
A matroid M consists of a non-empty finite set E and a non-empty collection

I of subsets of E, called independent sets, satisfying the following properties:

(i) any subset of an independent set is independent,
(ii) if I and J are independent sets with |J | > |I| then there is an element

e, contained in J but not in I such that I ∪ {e} is independent.

Let M = (E, I) be a matroid defined in terms of its independent sets. Then
a subset of E is dependent if it is not independent and a minimal dependent
set is called a cycle. If M(G) is the cycle matroid of a graph G then the cycles
of M(G) are precisely the cycles of G. A graphic matroid is a matroid M(G)
on the set of edges of a graph G by taking the cycles of G as the cycles of the
matroid. For a subset A of E, the rank of A denoted by r(A), is the size of
the largest independent set contained in A. Note that the rank of M is equal
to r(E) since a subset A of E is independent if and only if r(A) = |A|. Recall
that a complex number ζ is called an algebraic number (respectively, algebraic
integer) if it is a zero of some monic polynomial with rational (respectively,
integer) coefficients (see [13]). Corresponding to any algebraic number ζ, there
is a unique monic polynomial p with rational coefficients, called the minimal
polynomial of ζ (over the rationals), with the property that p divides every
polynomial with rational coefficients having ζ as a zero. (The minimal polyno-
mial of ζ has integer coefficients if and only if ζ is an algebraic integer.) Since
the characteristic polynomial is a monic polynomial in λ with integer coeffi-
cients, its zeros are, by definition, algebraic integers. This naturally raises the
question: Which algebraic integers can occur as the energy of a graph?

In 2004 Bapat and Pati [2] obtained the following result:

Theorem 1.1. The energy of a graph cannot be an odd integer.

In 2008 Pirzada and Gutman communicated an interesting result:

Theorem 1.2. ([10]) The energy of a graph cannot be the square root of an
odd integer.

Also [1] and [11] contribute to the question of which numbers can be graph
energies.

In this paper we prove some further results of this kind.

In Section 2, we prove that τ , where τ = 1+
√

5
2 is the golden ratio, cannot

be the energy of a graph. Also we generalize this result and prove that all
n-anacci numbers cannot be energy of graphs. In Section 3, we study natural
powers of 2n-anacci constants as the energy of a matroid. We show that all
natural powers of 2n-anacci constants cannot be the energy of a matroid.
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2. Energy of graph and the golden ratio

In this section, we investigate the quantity τ , where τ is the golden ratio
as a graph energy. We show that τ cannot be a graph energy. Also we prove
that all n-anacci constants cannot be a graph energy. We need the following
theorem:

Theorem 2.1. ([3]) If graph G with order n has no isolated vertices, then
E(G) ≥ 2

√
n − 1, with equality for stars.

The following theorem is an immediate consequence of Theorem 2.1.

Theorem 2.2. The golden ratio cannot be the energy of a graph.

Proof. Since for every n ≥ 2, 2
√

n − 1 > 1+
√

5
2 , the result is true for every

graphs of order n ≥ 2. Since τ is not the energy of K1, therefore we have the
result by Theorem 2.1. �

Fibonacci numbers are terms of the sequence defined in a quite simple re-
cursive fashion.

An n-step (n ≥ 2) Fibonacci sequence F
(n)
k , k = 1, 2, 3, . . . is defined by

letting F
(n)
1 = F

(n)
2 = . . . = F

(n)
n = 1 and other terms according to the linear

recurrence equation F
(n)
k =

∑k−1
i=1 F

(n)
k−i, (k > 2). The limit ϕn = limk→∞

F
(n)
k

F
(n)
k−1

is called the n-anacci constant.
It is easy to see that ϕn is the real positive zero of fn(x) = xn − xn−1 −

. . .− x − 1, and this polynomial is the minimal polynomial of ϕn over Z[x]. It
is obvious that ϕn is a zero of gn(x) = xn(2− x)− 1. Note that ϕ2 = τ , where
τ = 1+

√
5

2 is the golden ratio, and limn→∞ ϕn = 2 (see [9]).

Theorem 2.3. For every integer n ≥ 2, the n-anacci numbers ϕn cannot be
the energy of a graph.

Proof. By above statements, for every n ≥ 2, {ϕn} is an increasing sequence
and ϕn < 2. Therefore we have the result similar to the proof of Theorem 2.2.

�

3. 2n-anacci and energy of matroid

In this section we shall study natural powers of 2n-anacci numbers as the
energy of a matroid. Characteristic polynomials of matroids were first studied
by Rota [12]. Heron [8] defined chromatic polynomials of matroids and showed
that they are equivalent to characteristic polynomials.

We need the following theorem which is about the zeros of characteristic
polynomials of matroids

Theorem 3.1. ([5]) Let M be a loopless matroid with rank r and characteristic
polynomial P (M, t). Then
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(i) P (M, t) = tr − |M |tr−1 + kr−2t
r−2 − · · ·+ (−1)rk0 where k0, · · · , kr−2

are positive integers
(ii) (−1)rP (M, t) > (1 − t)r for t ∈ (−∞, 1)
(iii) P (M, 1) = 0, and the multiplicity of 1 as a zero of P (M, t) is equal to

the number of components of M .
(iv) if r(M) and c(M) be rank and the number of components of M respec-

tively, then for t ∈ (1, 32
27 ], we have (−1)r(M)+c(M)P (M, t) ≥ (t−1)r(M).

By Theorem 3.1, we deduce that the maximal zero-free intervals for charac-
teristic polynomials of loopless matroids are precisely (−∞, 1) and (1, 32

27 ].
Using the terminology and notation from the book [4], we define two oper-

ations with graphs. By V (G) and E(G) are denoted the vertex and edge sets,
respectively, of the graph G. Let G1 and G2 be two graphs with disjoint vertex
sets of orders n1 and n2, respectively. The direct product of G1 and G2, denoted
by G1×G2, is the graph with vertex set V (G1)×V (G2) such that two vertices
(x1, x2) ∈ V (G1 × G2) and (y1, y2) ∈ V (G1 × G2) are adjacent if and only if
(x1, y1) ∈ E(G1) and (x2, y2) ∈ E(G2). The sum of G1 and G2, (or Cartesian
product) denoted by G1 +G2, is the graph with vertex set V (G1)×V (G2) such
that two vertices (x1, x2) ∈ V (G1 + G2) and (y1, y2) ∈ V (G1 + G2) are adja-
cent if and only if either (x1, y1) ∈ E(G1) and x2 = y2 or (x2, y2) ∈ E(G2) and
x1 = y1. The above specified two graph products have the following spectral
properties (see [4], p.70). Let λ

(1)
i , i = 1, · · · , n1, and λ

(2)
j , j = 1, · · · , n2, be,

respectively, the eigenvalues of the graphs G1 and G2.

Lemma 3.1. The eigenvalues of G1 × G2 are λ
(1)
i λ

(2)
j , i = 1, · · · , n1; j =

1, · · · , n2.

Lemma 3.2. The eigenvalues of G1 + G2 are λ
(1)
i + λ

(2)
j , i = 1, · · · , n1; j =

1, · · · , n2.

Now, we state and prove the following theorem:

Theorem 3.2. If α is not a root of any characteristic polynomial of graph,
then α cannot be the energy of a graph.

Proof. Suppose that there exist a graph G such that E(G) = α. Let
λ1, λ2, · · · , λm be positive eigenvalues of G. Then in view of the fact that
the sum of all eigenvalues of any graph is equal to zero, E(G) = 2

∑m
i=1 λi. De-

note λ1 +λ2 + . . .+λm by λ. By Lemma 3.1 a λ is an eigenvalue of some graph
H isomorphic to the sum of m disjoint copies of the graph G. By Lemma 3.2,
2λ is an eigenvalues of the product of P2 and H . Therefore α is an eigenvalue
of H × P2, a contradiction. Hence we have the result. �

We need the following theorem to show our main results in this section.

Theorem 3.3. ([9]) The polynomial fn(x) = xn − xn−1 − · · · − x − 1 is an
irreducible polynomial over Q.
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Here, we may prove that all natural powers of 2n-anacci constants cannot
be the energy of a matroid.

Theorem 3.4. All natural powers of ϕ2n cannot be energy of matroids.

Proof. By Theorem 3.2, it suffices to prove that ϕm
2n(m ∈ N) cannot be a

characteristic zero. Suppose that ϕm
2n(m ∈ N) is a characteristic zero, that is

there exists a characteristic polynomial

P (G, λ) = λk + ak−1λ
k−1 + · · · + a1λ

such that P (G, ϕm
2n) = 0. Therefore,

ϕmk
2n + ak−1ϕ

m(k−1)
2n + · · · + a1ϕ

m
2n = 0.

Hence ϕ2n is a zero of the polynomial,

Q(λ) = λmk + ak−1λ
mk−m + · · · + a1λ

m

in Z[x]. But f2n(λ) = λ2n − λ2n−1 − · · · − λ − 1 is the minimal polynomial
of ϕ2n over Z[x]. Therefore f2n(λ) divides Q(λ). Since f2n(0) = −1 < 0 and
f2n(−1) = 1 > 0, f2n(λ) and so Q(λ) must have a zero say α, in (−1, 0).
Therefore, αm is a root of P (G, λ). Since αm ∈ (−1, 0) ∪ (0, 1), we have a
contradiction. �

Conjecture 3.1. Let n ∈ N. Then all natural powers of 2n+1-annaci numbers
cannot be the energy of a graph and a matroid.
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