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Zagreb, Croatia

bFaculty of Science, University of Split, Nikole Tesle 12, HR-21000 Split,
Croatia
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Abstract. We present explicit formulae for the eccentric connectivity

index and Wiener index of 2-dimensional square and comb lattices with

open ends. The formulae for these indices of 2-dimensional square lattices

with ends closed at themselves are also derived. The index for closed

ends case divided by the same index for open ends case in the limit

N → ∞ defines a novel quantity we call compression factor. This factor

was calculated for both eccentric connectivity and Wiener index for 2-

dimensional square lattice.
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1. Square lattices

1.1 The case of square graph SqC with closed ends
The translationally invariant lattice satisfying boundary cyclic conditions we
describe with SqC graph. Its unit cell U contains just one site (vertex) V1

whose valency (degree) equals δ1 = 4.
SqC graph is built by adding an increasing number L of the unit cells along
both plane directions and so it possesses altogether N=L2 vertices. The number
of edges (chemical bonds) in a graph is denoted by B. The 4-regularity of SqC

immediately implies that B=2N.
The Wiener index, W, is defined as the half of the sum of all distances in the
distance matrix D of a graph, and the diameter, M, as the largest distance in
the graph. Let further define w as the half of the minimal sum of distances in
a row (column) of D and the related vertex (vertices) we call minimal vertex
(vertices) v (V). The eccentricity εi of a vertex vi is defined as the maximal
distance from vi to any other vertex in a graph, and the sum of all local eccen-
tricities multiplied with corresponding vertex degrees δi defines the eccentric
connectivity index, ξ(N), of a graph with N vertices as [5]:

ξ(N) = Σiεiδi (1)

The eccentric connectivity index is the central subject we study in the present
paper.
All the above graph-theoretical invariants, W, M, w, and ξ, can be in 2-
dimensional lattices expressed as polynomials in N1/2 where the leading ex-
ponent of N1/2 depends on the invariant under study as it is shown below:

W (N) = a5N
5/2 + a4N

2 + a3N
3/2 + a2N + a1N

1/2 + a0 (2-1)

M(N) = b1N
1/2 + b0 (2-2)

w(N) = d3N
3/2 + d2N + d1N

1/2 + d0 (2-3)

ξ(N) = f3N
3/2 + f2N + f1N

1/2 + f0 (2-4)

The coefficients in the above polynomials are rational numbers and they only
depend on topological structure (connectivity) of a given graph and are easily
obtained by interpolating numerical results for different values of N ; see Table
1 for the case of SqC graph.
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As SqC graph is highly symmetrical, all w(N) contributions to W are mutually
equal and therefore we have W(N)=Nw(N). Moreover, due to the cyclic bound-
ary conditions, the eccentricity ε of any node equals graph diameter M. As all
vertex degrees are also the same, for local contribution to eccentric connectivity
index is:

e = δε = 4M (3)

and therefore:

ξ(N) = Ne(N) = 4NM(N). (4)

In Table 1 we present numerical values of graph invariants (2) for SqC lattices
for L=2 up to L=15 where the data for even L are separated from those for
odd L. In the headers of this Table we give explicit formulas for invariants as
functions of N. Some of these invariants for even L differ from those for odd L
what is marked by an asterisk. However, diameter M for an even L equals that
one for the next odd value L+1. The same holds for two consecutive values of
the local contributions e to the eccentric connectivity index.

Table 1. Graph invariants for SqC graphs with N=L2 vertices
L=even
L N M=N1/2 W=N5/2/4 w= N3/2/4 e =4M ξ=4N3/2

2 4 2 8 2 8 32

4 16 4 256 16 16 256

6 36 6 1.944 54 24 864

8 64 8 8.192 128 32 2048

10 100 10 25.000 250 40 4000

12 144 12 62.208 432 48 6912

14 196 14 134.456 686 56 10976

L=odd
L N *M=N1/2 -1 *W=(N5/2-N3/2)/4 *w= (N3/2-N1/2)/4 e=4M *ξ=4(N3/2-N)

3 9 2 54 6 8 72

5 25 4 750 30 16 400

7 49 6 4.116 84 24 1176

9 81 8 14.580 180 32 2592

11 121 10 39.930 330 40 4840

13 169 12 92.274 546 48 8112

15 225 14 189.000 840 56 12600

In summary, for even N we have

w = N3/2/4, W (N) = N5/2/4 and ξ(N) = 4N3/2 ,

whereas for odd N we obtain

w = (N3/2 − N1/2)/4, W = (N5/2 − N3/2)/4 and ξ = 4(N3/2 − N).

In the limit of large N, these N odd vs. N even differences vanish, leading to

wC → N3/2/4, WC → N5/2/4, ξC → 4N3/2 ,
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where by superscript C we emphasize the fact that we consider graphs closed
on themselves, i.e. those satisfying cyclic boundary conditions. Later we will
use the limits WC → N5/2/4 and ξC → 4N3/2 to compare them with analo-
gous limits for graphs with open ends to determine the so called compression
ratios or factors for square graphs.

1.2 The case of square graph Sq with open ends
The square lattice graph without cyclic boundary conditions imposed on it we
call the square lattice (graph) with open ends and denote by Sq. The number
of edges is readily obtained as B=2(N -N1/2). Again, the interpolation method
quickly produces the closed forms for all previous topological lattice invariants.
Opposite to SqC , neither W(N) nor M(N) in lattice Sq do show dependence
on the parity of N. However, this dependence still persists for other indices
(marked by an asterisk in Table2) related to the minimal vertices V like w,
e=δε and the eccentric connectivity ξ.
By inspection of Table 1 and Table 2, one observes an interesting fact that
numerical values of e=δε with respect to L are the same both for closed ends
and open ends lattices. However, it is a simple consequence of the fact that
the center of open ends lattice Sq can also serve as the center of closed ends
lattice SqC with the same eccentricity and degree for both vertices.
It is interesting to note that for open ends graphs Sq the numerical values of
e remain identical for consecutive lattices (e.g. for L=4,5 or L=6,7 pairs) as it
was the case for closed ends lattices SqC .
Asymptotic values of the Wiener index and eccentric connectivity index for Sq
graphs are given by

W → N5/2/3, ξ → 6N3/2,

and by combining this with previously obtained limits for SqC , WC → N5/2/4;
ξC → 4N3/2, the asymptotic values of the compression ratios for W and ξ are
determined as

WC/W = 3/4 (5)

ξC/ξ = 2/3. (6)

It is interesting to note that the same numerical values of compression factors
appear also in 1-dimensional lattices as we reported in an earlier work [3]. Also,
the eccentric connectivity index of Sq lattices were considered in [4] as special
cases of Cartesian products of two paths.

Table 2. Graph invariants for Sq graphs with N=L2 vertices
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L=even
L N M=2(N1/2-1) W=(N5/2- N3/2)/3 w= N3/2/4 e=δ(M+2)/2 ξ=6N3/2 -

11N +6N1/2

2 4 2 8 2 4(+) 16

4 16 6 256 16 16 232

6 36 10 1.944 54 24 936

8 64 14 8.192 128 32 2.416

10 100 18 25.000 250 40 4.960

12 144 22 62.208 432 48 8.856

14 196 26 134.456 686 56 14.392

(+) for L=2: δ=2, e=M+2

L=odd
L N M=2(N1/2-1) W=(N5/2-N3/2)/3 *w= (N3/2)/4- *e=δM/2 *ξ=6N3/2 -

(N1/2)/4 11N +4N1/2 +1

3 9 4 72 6 8 76

5 25 8 1.000 30 16 496

7 49 12 5.488 84 24 1548

9 81 16 19.440 180 32 3.520

11 121 20 53.240 330 40 6.700

13 169 24 123.032 546 48 11.376

15 225 28 252.000 840 56 17.836

2. Comb latices

2.1 The case of square comb lattice Cq with pen ends
A few first square comb lattice graphs Cq are depicted in Figure 1.

N = 4 N = 9 N = 16 N = 25

Figure 1. Graphs of Cq comb lattices for N=4,9,16,25.

Numerical interpolation for increasing number of nodes N=L2 allows a fast
determination of closed forms of lattice invariants for graphs Cq. The results
are given in Table 3. Similarly to the case of square lattices with open ends,
the Wiener index of Cq graphs, W(N)= (4N5/2 - 5N2 + 2N3/2 -N)/6, does not
show dependence on parity of N. However, parity plays role in w and eccentric
connectivity index ξ(N) as for even N we have ξ=(9N3/2 -10N -6N1/2+8)/2
whereas for odd N we obtain ξ=(9N3/2 -10N -7N1/2+8)/2. Generally, a tree
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has one or two centers and this is, of course, also seen in Cq. One center
configuration is one for odd N where ε=M/2 and for even N two centers are
present with ε=1 +M/2 but for both configurations minim

al vertices have the same degree: δ=3 (except for N=4 ). It is clear that for
an increase of L by 2, the corresponding values of e grow by 9 as seen in Table
3.

Table 3. Graph invariants for Cq graphs with N=L2 vertices

L=even
L N M=3(N1/2-1) W(N)= (4N5/2 - w= (3N3/2-2N)/8 e=δ(M+1)/2 ξ=(9N3/2 -

5N2 + 2N3/2 -N)/6 =3(M+1)/2 10N-6N1/2+8)/2

2 4 3 10 2 4(+) 14

4 16 9 488 20 15 200

6 36 15 4170 72 24 778

8 64 21 18592 176 33 1964

10 100 27 58650 350 42 3974

12 144 33 149160 612 51 7024

14 196 39 327418 980 60 11330

(+) for L=2 e=δε=22 = 4

L=odd
L N M= W(N)= (4N5/2- 5N2)/6 + *w= (3N3/2-2N)/8- *e=3M/2 *ξ=(9N3/2 -10N)/2-

3(N1/2-1) (2N3/2 -N)/6 (N1/2)/8 (7N1/2-8)/2

3 9 6 102 7,50 9 70

5 25 12 1600 40 18 424

7 49 18 9310 115,5 27 1278

9 81 24 34128 252 36 2848

11 121 30 95590 467,5 45 5350

13 169 36 224432 780 54 9000

15 225 42 465150 1207,5 63 14014

2.2 The case of Van Hove comb lattice CvH with open ends
Some of smallest van Hove comb lattice graphs CvH are depicted in Figure 2.

N = 4 N = 9 N = 16

Figure 2. Graphs of CvH comb lattices for N=4,9,16; graph
minimal vertices are in gray.

Numerical interpolation for increasing number of nodes N allows us again to
determine closed forms of lattice invariants for graphs CvH. The results are
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given in Table 4. Note that for these graphs, invariants are insensitive on parity
of N, and they are all expressed as polynomials in N1/2 like in Eq. (2) which
is valid for all 2-dimensional lattices studied so far. So, Eq. (2) is of a general
interest and applicability as it holds for lattices of rather different topologies
like those studied here but also for other structures as translationally invariant
graphs (crystals), pentagonal nanocones [2] and heptagonal nanocones [1].
The results are summarized in Table 4, where polynomials for all invariants
studied are given: W (N) = (17N5/2−20N2 +10N3/2−10N +3N1/2)/30, w =
(4N3/2 − 3N −N1/2)/12, etc. Note that for CvH graphs there is only a single
center we mark by grey node at the bottom of figures. Let also note that e
values of Table 4 increase by 3 (except for the first two lattices) as one moves
from any CvH graph up to its next graph.

Table 4. Graph invariants for CvH graphs with N vertices.
N M=2(N1/2-1) W(N)=(17N5/2 -20N2)/30 + w= (4N3/2-3N)/12- e =3 M/2 ξ=(10N3/2 -12N)/3

(10N3/2 -10N+3N1/2)/30 (N1/2)/12 -(7N1/2-9)/3

4 2 9 1,5 3 9

16 6 426 17 9 143

25 8 1.388 35 12 308

36 10 3.603 62,5 15 565

49 12 8.022 101,5 18 934

64 14 15.988 154 21 1435

81 16 29.304 222 24 2088

100 18 50.301 307,5 27 2913

121 20 81.906 412,5 30 3930

144 22 127.710 539 33 5159

169 24 192.036 689 36 6620

196 26 280.007 864,5 39 8333

225 28 397.614 1067,5 42 10318

3. Conclusions

In the present paper it has been demonstrated that the Wiener index, the
eccentric connectivity index and a couple of other invariants (see Eq. (2)), can
be all represented as polynomials in N1/2, where N stands for the number of
vertices of the lattice under study.
The asymptotic values of the Wiener index and the eccentric connectivity index
for N being large are given below for all lattices studied in the present note. The
leading coefficient of W is a measure of compactness of a given lattice and, as it
should be expected, the lattices have to be ordered as shown below. Note that
the comb lattices are by no means topologically different from square lattices
in filling the plane, i.e. the comb lattices do not exhibit any fractal nature.
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Table 5. Asymptotic behaviors of the Wiener and the eccentric connectivity
index.

Graph kind W (N) W (N)/ N5/2 ξ (N)

SqC 1/4 N5/2 0,25 4 N3/2

Sq 1/4 N5/2 0,33 6 N3/2

CvH 17/30 N5/2 0,57 10/3 N3/2

Cq 2/3 N5/2 0,67 9/2 N3/2
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