Iranian Journal of Mathematical Sciences and Informatics Vol. 6, No. 1 (2011), pp 1-6

Left Jordan derivations on Banach algebras

A. Ebadian*^a* and M. Eshaghi Gordji *b,*∗

*^a*Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran *b*Department of Mathematics, Semnan University, P. O. Box 35195-363.

Semnan, Iran

E-mail: a.ebadian@urmia.ac.ir E-mail: madjid.eshaghi@gmail.com

A. Ebadian^a and M. Eshaghi Gordji^{k,*}

⁴Department of Mathematics, Faculty of Science, Urmia University, Urmia

^{*b*}Department of Mathematics, Semman University, P. O. Box 35195-363,

Semman, Iran
 E-mail: a.ebadi ABSTRACT. In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map *d* : *A* → *M* from a von Neumann algebra *A* into a Banach *A*-module M with property that $d(p^2) = 2pd(d)$ for every projection p in A is a left Jordan derivation.

Keywords: Left Jordan derivation, von Neumann algebra.

2000 Mathematics subject classification: Primary 46L10; Secondary 46L05, 46H25, 46L57.

1. Introduction

Let A be a unital Banach algebra. We denote the identity of A by 1. A Banach A–module M is called unital provided that $1x = x = x1$ for each $x \in \mathcal{M}$. A linear (additive) mapping $d : \mathcal{A} \to \mathcal{M}$ is called a left derivations (left ring derivation) if

$$
d(ab) = ad(b) + bd(a) \quad (a, b \in \mathcal{A}).
$$
 (1)

[∗]Corresponding Author

Received 21 July 2009; Accepted 12 April 2010 c 2011 Academic Center for Education, Culture and Research TMU

Also, d is called a left Jordan derivation (or Jordan left derivation) if

$$
d(a^2) = 2ad(a) \quad (a \in \mathcal{A}).\tag{2}
$$

Bresar, Vukman [4], Ashraf et al. [1, 2], Jung and Park [8], Vukman [13, 14] studied left Jordan derivations and left derivations on prime rings and semiprime rings, which are in a close connection with so-called commuting mappings (see also [7, 10, 11, 12]).

Suppose that A is a Banach algebra and M is an $\mathcal{A}-$ module. Let S be in A. We say that S is a left separating point of M if the condition $Sm = 0$ for $m \in \mathcal{M}$ implies $m = 0$.

We refer to [3] for the general theory of Banach algebras.

Theorem 1.1. *Let* A *be a unital Banach algebra and* M *be a Banach* A−*module. Let* S *be in* $\mathcal{Z}(\mathcal{A})$ *such that* S *is a left separating point of* M. Let $f : \mathcal{A} \to \mathcal{M}$ *be a bounded linear map. Then the following assertions are equivalent*

a) $f(ab) = af(b) + bf(a)$ *for all* $a, b \in A$ *with* $ab = ba = S$.

b) f is a left Jordan derivation which satisfies $f(Sa) = Sf(a) + af(S)$ for *all* $a \in \mathcal{A}$.

Proof. First suppose that (a) holds. Then we have

$$
f(S) = f(1S) = f(S)1 + f(1)S = f(S) + f(1)S
$$

hence, by assumption, we get that $f(1) = 0$. Let $a \in \mathcal{A}$. For scalars λ with $|\lambda| < \frac{1}{\|a\|}$, 1 – λa is invertible in A. Indeed, $(1 - \lambda a)^{-1} = \sum_{n=0}^{\infty} \lambda^n a^n$. Then

A. We say that S is a left separating point of M if the condition
$$
Sm = 0
$$
 for $n \in M$ implies $m = 0$.
\nWe refer to [3] for the general theory of Banach algebras.
\n**Theorem 1.1.** Let A be a unital Banach algebra and M be a Banach A-module.
\nLet S be in Z(A) such that S is a left separating point of M. Let $f : A \rightarrow M$
\nbe a bounded linear map. Then the following assertions are equivalent
\na) $f(ab) = af(b) + bf(a)$ for all $a, b \in A$ with $ab = ba = S$.
\nb) f is a left Jordan derivation which satisfies $f(Sa) = Sf(a) + af(S)$ for
\nall $a \in A$.
\nProof. First suppose that (a) holds. Then we have
\n $f(S) = f(1S) = f(S)1 + f(1)S = f(S) + f(1)S$
\nhence, by assumption, we get that $f(1) = 0$. Let $a \in A$. For scalars λ with
\n $\lambda | < \frac{1}{\|a\|}, 1 - \lambda a$ is invertible in A. Indeed, $(1 - \lambda a)^{-1} = \sum_{n=0}^{\infty} \lambda^n a^n$. Then
\n $f(S) = f[(1 - \lambda a)(1 - \lambda a)^{-1}S] = ((1 - \lambda a)^{-1}S)f((1 - \lambda a))$
\n $+ (1 - \lambda a)f((1 - \lambda a)^{-1}S)$
\n $= -\lambda (\sum_{n=0}^{\infty} \lambda^n a^n S)f(a) + (1 - \lambda a)f(\sum_{n=1}^{\infty} \lambda^n a^n S)$
\n $= f(S) + \sum_{n=1}^{\infty} \lambda^n [f(a^n S) - a^{n-1}Sf(a) - af(a^{n-1}S)].$
\nSo
\n $\sum_{n=0}^{\infty} \lambda^n [f(a^n S) - a^{n-1}Sf(a) - af(a^{n-1}S)] = 0$

So

$$
\sum_{n=1}^{\infty} \lambda^n [f(a^nS) - a^{n-1}Sf(a) - af(a^{n-1}S)] = 0
$$

for all λ with $|\lambda| < \frac{1}{\|a\|}$. Consequently

$$
f(a^{n}S) - a^{n-1}Sf(a) - af(a^{n-1}S) = 0
$$
\n(3)

for all $n \in \mathbb{N}$. Put $n = 1$ in (3) to get

$$
f(Sa) = f(aS) = af(S) + Sf(a).
$$
 (4)

for all $a \in \mathcal{A}$.

[www.SID.ir](v)

Now, put $n = 2$ in (3) to get

$$
f(a2S) = aSf(a) + af(aS) = aSf(a) + a(af(S) + Sf(a)) = a2f(S) + 2Saf(a).
$$
\n(5)

Replacing a by a^2 in (4), we get

$$
f(a^2S) = a^2 f(S) + Sf(a^2).
$$
 (6)

It follows from (5), (6) that

$$
S(f(a2) - 2af(a)) = 0.
$$
 (7)

On the other hand S is right separating point of M . Then by (7), f is a left Jordan derivation.

Now suppose that the condition (b) holds. We denote $a \circ b := ab + ba$ for all $a, b \in \mathcal{A}$. It follows from left Jordan derivation identity that

$$
f(aob) = 2(bf(a) + af(b))
$$
\n(8)

for all $a, b \in A$ (see proposition 1.1 of [4]). On the other hand, we have

$$
a \circ (a \circ b) = a \circ (ab + ba) = a^2 \circ b + 2aba
$$

for all $a, b \in \mathcal{A}$. Then

$$
S(f(a^{2}) - 2af(a)) = 0.
$$
\n(7)
\nOn the other hand S is right separating point of M. Then by (7), f is a left
\nJordan derivation.
\nNow suppose that the condition (b) holds. We denote $aob := ab + ba$ for all
\n $a, b \in A$. It follows from left Jordan derivation identity that
\n $f(aob) = 2(bf(a) + af(b))$ \n(8)
\nfor all $a, b \in A$ (see proposition 1.1 of [4]). On the other hand, we have
\n $a \circ (a \circ b) = a \circ (ab + ba) = a^{2} \circ b + 2aba$
\nFor all $a, b \in A$. Then
\n $2f(aba) = f(a \circ (a \circ b)) - f(a^{2} \circ b)$
\n $= 2[(a \circ b)f(a) + af(a \circ b)] - 2[bf(a^{2}) + a^{2}f(b)]$
\n $= 2[(ab + ba)f(a) + 2a^{2}f(b) - 2baf(a).$
\nHence,
\n $f(aba) = 3abf(a) + a^{2}f(b) - baf(a)$
\nfor all $a, b \in A$. Now suppose that $ab = ba = S$, then
\n $f(Sa) = 3abf(a) + a^{2}f(b) - baf(a) = 2abf(a) + a^{2}f(b).$
\nOn the other hand $S \in Z(A)$. Then by multiplying both sides of (10) by b to
\n $Sf(S) - Sbf(a) - Saf(b) = 0$
\n(11)

Hence,

$$
f(aba) = 3abf(a) + a2f(b) - ba f(a)
$$
 (9)

for all $a, b \in A$. Now suppose that $ab = ba = S$, then

$$
f(Sa) = 3abf(a) + a^2f(b) - ba f(a) = 2abf(a) + a^2f(b).
$$
 (10)

On the other hand $S \in \mathcal{Z}(\mathcal{A})$. Then by multiplying both sides of (10) by b to get

$$
Sf(S) - Sbf(a) - Saf(b) = 0
$$
\n⁽¹¹⁾

since $S \in \mathcal{Z}(\mathcal{A})$, then it follows from (11) that

$$
[f(S) - f(a)b - f(b)a]S = 0
$$

then we have

$$
f(S) = f(a)b + f(b)a.
$$

Now, we characterize the left Jordan derivations on von Neumann algebras.

 \Box

Theorem 1.2. *Let* A *be a von Neumann algebra and let* M *be a Banach* $\mathcal{A}-module$ and $d: \mathcal{A} \to \mathcal{M}$ be a bounded linear map with property that $d(p^2)$ 2pd(p) *for every projection* p *in* A*. Then* d *is a left Jordan derivation.*

Proof. Let $p, q \in A$ be orthogonal projections in A. Then $p + q$ is a projection wherefore by assumption,

$$
2pd(p) + 2qd(q) = d(p) + d(q) = d(p+q) = 2(p+q)d(p+q)
$$

= 2[pd(p) + pd(q) + qd(q) + qd(p)].

It follows that

$$
pd(q) + qd(p) = 0.\t\t(12)
$$

Let $a = \sum_{j=1}^{n} \lambda_j p_j$ be a combination of mutually orthogonal projections $p_1, p_2, ..., p_n \in \mathcal{A}$. Then we have

$$
p_i d(p_j) + p_j d(p_i) = 0 \tag{13}
$$

for all $i, j \in \{1, 2, ..., n\}$ with $i \neq j$. So

$$
d(a^2) = d(\sum_{j=1}^n \lambda_j^2 p_j) = \sum_{j=1}^n \lambda_j^2 d(p_j).
$$
 (14)

On the other hand by (13), we obtain that

It follows that
\n
$$
pd(q) + qd(p) = 0.
$$
\n(12)
\nLet $a = \sum_{j=1}^{n} \lambda_j p_j$ be a combination of mutually orthogonal projections
\n $p_i d(p_j) + p_j d(p_i) = 0$ \n(13)
\nfor all $i, j \in \{1, 2, ..., n\}$ with $i \neq j$. So
\n
$$
d(a^2) = d(\sum_{j=1}^{n} \lambda_j^2 p_j) = \sum_{j=1}^{n} \lambda_j^2 d(p_j).
$$
\n(14)
\nOn the other hand by (13), we obtain that
\n
$$
ad(a) = (\sum_{i=1}^{n} \lambda_i p_i) \sum_{j=1}^{n} \lambda_j d(p_j) = \lambda_1 p_1 \sum_{j=1}^{n} \lambda_j d(p_j)
$$
\n
$$
+ \lambda_2 p_2 \sum_{j=1}^{n} \lambda_j d(p_j) + ... + \lambda_n p_n \sum_{j=1}^{n} \lambda_j d(p_j)
$$
\n
$$
= \sum_{j=1}^{n} \lambda_j^2 p_j d(p_j).
$$
\nIt follows from above equation and (14) that $d(a^2) = 2ad(a)$. By the special theorem (see Theorem 5.2.2 of [9]), every self adjoint element $a \in A_{sa}$ as the norm-limit of a sequence of finite combinations of mutually orthogonal projections. Since d is bounded, then

It follows from above equation and (14) that $d(a^2)=2ad(a)$. By the spectral theorem (see Theorem 5.2.2 of [9]), every self adjoint element $a \in A_{sa}$ is the norm–limit of a sequence of finite combinations of mutually orthogonal projections. Since d is bounded, then

$$
d(a^2) = 2ad(a) \tag{15}
$$

for all $a \in \mathcal{A}_{sa}$. Replacing a by $a + b$ in (15), we obtain

$$
d(a2 + b2 + ab + ba) = 2(a + b)(d(a) + d(b)
$$

= 2ad(a) + 2bd(b) + 2ad(b) + 2bd(a),

$$
d(ab + ba) = 2ad(b) + 2bd(a)
$$
 (16)

for all $a, b \in A_{sa}$. Let $a \in A$. Then there are $a_1, a_2 \in A_{sa}$ such that $a = a_1 + ia_2$. Hence,

$$
d(a2) = d(a12 + a22 + i(a1a2 + a2a1))
$$

= 2a₁d(a₁) + 2a₂d(a₂) + i[2a₁d(a₂) + 2a₂d(a₁)]
= 2ad(a).

This completes the proof of theorem. \Box

CONTRAY TELL TO THE ARCORD COOPS (Fig. 1973)
 A A \rightarrow A α B α B α β β β **Corollary 1.3.** *Let* A *be a von Neumann algebra and let* M *be a Banach* A−*module and* d : A → M *be a bounded linear map. Then the following assertions are equivalent*

a) $ad(a^{-1}) + a^{-1}d(a) = 0$ *for all invertible* $a \in \mathcal{A}$. *b)* d *is a left Jordan derivation. c)* $d(p^2) = 2pd(p)$ *for every projection p in A*.

Proof. (a) \Leftrightarrow (b) follows from Theorem 1.1, and (b) \Leftrightarrow (c) follows from Theorem \Box . The contract of the contract of the contract of \Box

In 1996, Johnson [6] proved the following theorem (see also Theorem 2.4 of [5]).

Theorem 1.4. *Suppose* A *is a* C∗− *algebra and* M *is a Banach* A−*module. Then each Jordan derivation* $d : A \rightarrow M$ *is a derivation.*

We do not know whether or not every left Jordan derivation on a C^* -algebra is a left derivation.

REFERENCES

- [1] M. Ashraf, On Jordan left derivations of Lie ideals in prime rings, *Southeast Asian Bull. Math.*, **25**(3), (2001), 379–382.
- [2] M. Ashraf and S. Ali, On generalized Jordan left derivations in rings, *Bull. Korean Math. Soc.*, **45**(2), (2008), 253–261.
- [3] F. F. Bonsall and J. Duncan, *Complete normed algebras*, Springer–Verlag, 1973.
- [4] M. Breˇsar and J. Vukman, On left derivations and related mappings, *Proc. Amer. Math. Soc.*, **110**, (1990), 7-16.
- [5] U. Haagerup and N. Laustsen, *Weak amenability of C*∗*-algebras and a theorem of Goldstein*, Banach algebras '97 (Blaubeuren), 223–243, de Gruyter, Berlin, 1998.
- [6] B. E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, *Math. Proc. Camb. Phil. Soc.*, **120**, (1996), 455–473.
- [7] K. W. Jun and B. D. Kim, A note on Jordan left derivations, *Bull. Korean Math. Soc.*, **33**(2), (1996), 221–228.
- [8] Y.S. Jung and K.H. Park, Left Jordan derivations on Banach algebras and related mappings, *Bull. Korean Math. Soc.*, **47**(1), (2010), 151–157.
- [9] R. V. Kadison and J. R. Ringrose, *Fundamentals of the theory of operator algebras*, **I-II**, Academic Press, 1983–1986.
- [10] H. M. Kim, S. Y. Kang and I. S. Chang, On functional inequalities originating from module Jordan left derivations, *Journal of Inequalities and Applications*, **2008**, Article ID 278505, 9 pages doi:10.1155/2008/278505.
- [11] K. H. Park and Y. S. Jung, Jordan derivations and Jordan left derivations of Banach algebras, *Commun. Korean Math. Soc.*, **17**(2), (2002), 245-252.
- [12] J. Vukman, On left Jordan derivations of rings and Banach algebras, *Aequationes Math.*, **75**, (2008) 260-266.
- [13] J. Vukman, Jordan left derivations on semiprime rings, *Math. J. Okayama Univ.*, **39** (1997), 1–6.
- [14] J. Vukman, A note on generalized derivations of semiprime rings, *Taiwanese J. Math.*, **11**(2), (2007), 367–370.

Archive 0