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ABSTRACT. Similarity concept, finding the resemblance or classifying
some groups of objects and study their common properties has been the
interest of many researchers. Basically, in the studies the similarity be-
tween two objects or phenomena, 2-similarity in our words, has been
discussed. In this paper, we consider the case when the resemblance
or similarity among three objects or phenomena of a set, 3-similarity in
our terminology, is desired. “After defining 3-equivalence relation and
3-similarity, some common and different points between them are in-
vestigated. We will see that in some special cases we can reach from

3-similarity to 2-similarity.
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1. INTRODUCTION

In recent years, lots of work have been developed on the concept of similarity
and dissimilarity. Charkraborty and Das [2], Valverde [20], Trillas and Valverde
[19], and Ovchinnikov [12, 13] have widely studied the similarities in various
contexts. Loia et al. [11] used similarity relations in an Internet e-mail appli-
cation. In psychology, similarity concept is used to determine why and how
entities are grouped to categories, and why some categories are comparable to
each other while others are not [6]. Also, the artificial intelligence community
have started using computational similarity models as a new method for infor-
mation retrieval [15]. Alguliev and Aliguliyev in [1] evaluated the performance
of different similarity measures in the context of document summarization.
Also, lots of works have been done on the application of similarity measures to
fuzzy sets [22] which is an important tool in fuzzy mathematics [21]; decision
making, market prediction, and pattern recognition [23, 3, 14]. In.all these, the
measure of similarity between two objects or phenomena, i.e. 2-similarity, has
been discussed and computed. In this paper, the similarity of three or more
objects, out of a group of objects, 3-similarity, in our terminology, is investi-
gated. It is well known that the set of all 2-equivalence relations on a set like
U have one to one correspondence to the set of all partitions on U. On the
other hand, every 2-similarity gives a class of 2-equivalence relations on U. We
will define the 3-equivalence relation and will investigate the relation between
3-similarity and 3-equivalence relations.

After the introduction section, in Section 2, we will review the theoretical
aspects of the 2-similarity relations, them-we will define the 3-similarity relation.
Thereafter, we continue with bringing the definitions, propositions, theorems,
and lemmas regarding 3-similarity relations. We will show that most of the
definitions and propositions related to 2-similarity relations could also be stated
for 3-similarity relations; analogies between them will be studied as well. Also,
we will show that if we have a 2-similarity, under certain conditions, 3-similarity
could obtained. We have shown how T-norms can be used to generalize the
concept of 2-similarity to 3-similarity. In this paper some open questions have
been posed. The first being, the possibility of constructing a set X based on
U, such that all 3-equivalence relations on X correspond to a subset of all
partitions on X. The second open question is the possibility of redefining 3-
equivalence relations in such a way that the set of all the 3-equivalence relations
correspond to the set of all partitions on U x U. The third one is, defining the
conditions on which a 3-similarity can create a 2-similarity. Finally we will show
that the idea can be generalized towards the n-similarity relations. Throughout
the paper, various examples have been brought to support our ideas. Section
3 concludes the paper.
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2. SIMILARITY RELATIONS

Similarity relation [11] is a mathematical notion that provides a way to
manage alternative instances of an entity that can be considered "equal” to
other entities with a given degree [9, 22].

Definition 2.1. A 2-similarity on a domain U is a function S : U xU — [0, 1]
such that the following properties hold [11]:

(i) S(z,z) =1 for any = € U (reflexivity).

(il) S(x,y) = S(y,x) for any x,y € U(symmetry).

(iii) S(z,2) > S(z,y) A S(y, 2) for any z,y, z € U (transitivity),

where A is a minimum operator.
We say that S is strict if the following implication is also verified:
(iv) S(z,2)=1=z =z

For further definitions and propositions regarding 2-similarity; refer to [7].

In 3-similarity, a three member similarity, we expect the permutation of
the members dose not have any effect on their similarity.- Moreover, if all 3
members of the group are exactly identical, their similarity also be maximum.
Regarding these points we define a 3-similarity as follows:

Definition 2.2. A 3-similarity on a domain U is a function'S: U x U x U —
[0, 1] such that the following properties hold:
(i) S(z,z,2) =1 for any x € U(reflexivity).
(il) S(x1,m2,x3) = S(x4y, Tiy, Tiy) for any @y, xo, 3 € U (symmetry), where
(i1,12,143) is an arbitrary permutation of (1,2,3).
(iil) S(z1,z2,23) > S(t, 22, 23)AS(15t, 23)AS (21, X2, t), for any ¢, x1, x2,x3 €
U (transitivity), where A is a minimum operator.
We say that S<s strict. if the following implication is also verified:
(iV) S(:L’l,xg,xg) =1=2 =25 = x3.

The following example shows a strict 3-similarity.
Ezample 2.3. Suppose U = {1, 2,3}, then we define

1 .
s ifx or T # z
S(a,y,2) =17 Fvore?
1 if x=y=z
It is obvious that S is a 3-similarity and it satisfies the property (iv) above.
The following example on integer numbers, Z, clarifies the concept of 3-
similarity.

Example 2.4. Let Z be the set of integer numbers and let ny, noe, ng € Z.
Consider nj =14; (mod 3), where 1 < j <3 and 0 <i; <2.
Set A = {iy,i2,i3}. It is obvious that 1 < |A| < 3, where |A| denotes the
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cardinality of A.
Define
3— 14|
5
We show that S is a 3-similarity on Z. To this end we define the sets Zg,

Z1, and Zo as

S(nlanQ;nB) -

Zi={3k+i:keZ} i=01,2

It is obvious that Z is partitioned to classes Zgy, Z1, and Zs. Now consider
three integers numbers, n1, no, and ng. 3 cases are possible as follows:

Case 1) The integer numbers belong to the same class, in this case, by dividing
any of these members into 3, we get the same remainder. This means A is an
one-element set and we have S(ni,na, n3) = ‘3%1 = 1. As an example, if ny, no,
and ng3 all are multiples of 3, then the remainder of division of these numbers
into 3 is equal to zero. So A = {0} and |A] = 1.

Case 2) If ny, ng, and n3 come from two different classes, i.e. two of them from
one class, and the other one from another. Then |A| = 2, and S(n1,ng,n3) =
322 —0.5.

Case 3) If nq,n9, and ng each come from a different class, then [A] = 3, and

S(n1,ng,n3) = 353 = 0. So, we showed that by Definition 2.2 the degree of

similarity of three integer numbers would be either 0, 0.5,.0r:1. With these
explanations the reflexivity and symmetry properties of S are clear. For the
transitivity property of S, we show that for all'ny,no,ns,t € Z, we have

S(n1,ng,n3) > min{S(t,n2,n3), S(n1,t,n3), S(n1,na, t)}. (1)

Let n; = i;(mod 3) for j = 1,2,3 where 00< i; < 2. Also, let ¢ = m(mod 3)
for 0 <m <2.

If i1 =i9 = i3, then S(n1,n2,n3) =1 and (1) holds.

If i1 = iz and i1 # i3, then S(n1,ne,n3) = 0.5. Now we may encounter three
different cases:

Case 1: m =1y, then.m # iz and S(¢,n2,n3) = 0.5. Therefore, (1) holds.
Case 2: m = i3, then S(n1,n2,t) = 0.5, and (1) holds.

Case 3: m # i1, and m # i3, then S(n1,t,n3) = 0, and (1) holds.

If i1,42, and 43 are three different elements of {0, 1,2}, then S(ny,ng,n3) is
equal to 0 and m is equal to one of them. Therefore, one of the similarities of
the right-hand side of (1) is zero, hence (1) holds.

Similarities and their dual, dissimilarities, and their relationships have been
discussed in [7] and in [8]. Also, various applications of 3-similarity relations
have been brought in [8].

Definition 2.5. A subset R of U x U x U, is called a 3-equivalence relation
on U if|

(i) (z,z,x) € R, for all z € U.


v

Classification based on 3-similarity 11

(ii) If (z1, 22, x3) € R, then (x;,, zi,, i, ) € R for all permutations (i1, 2, 3)
of (1,2,3).

(iii) (¢,y,2),(x,t,2) and (z,y,t) € R implies that (z,y,z) € R for all
x,y,z,t € U, where by a 3-relation we mean any non-empty subset of
UxUxU.

It is well known that every 2-equivalence relation corresponds to a partition
on U. Our definition of 3-equivalence relation does not make any partition on
U. If each partition on U corresponds to a 3-equivalence relation, then, there
must be a one-to-one correspondence between 2-equivalence and 3-equivalence
relations. However, in the following example we show that, such correspondence
cannot exist.

Ezample 2.6. Suppose U = {1, 2,3}, then there are five 2-equivalence relations
on U as follows:

RO - {(17 1) (272)a (373)}5

Ry = {(17 1)) (27 2)5 (37 3)5 (17 2)5 (27 1)};
Ry = {(17 1)a (27 2)a (37 3)a (17 3)a (37 1)}a
R3 = {(17 1)a (27 2)a (37 3)a (27 3)a (37 2)};
Ry=UxU.

Whereas, the number of 3-equivalence relations exceeds 5. Here we list only
a few of them, R, to R} as follows:

6 = {(17 L 1)7 (2a 272)a (37373)}7
R/ {(1,1,1),(2,2,2),(3,3,3),(1,1,2),(1,2,1),(2,1,1)},
R, = {(1, 1, 1), (2,2,2), (3,3,3), (1,1,3), (1,3 1),(3,1, 1)},
R' ={(1,1,1),(2,2,2),(3,3,3),(1,2,2),(2,2,1),(2,1,2)},
n={(1,1,1),(2,2,2),(3:3,3),(1, 3,3), (3, 3 1), (3, 1,3)},
RB {(1,1,1),(2,2,2),(3,3,3),(2,3,3), (3,3,2), (3,2,3)},
RG {(1,1,1),(2,2,2),(3,3,3),(2,2,3),( ,3,2),(3,2 2)}

F=UxUxU.

On the other hand, there is not any correspondence between the set of all
3-equivalence relations-on U, and the set of all partitions on U x U. To see
this, let again U = {1,2,3}. Then U x U has 9 members, and the number
of partitions.on a 9-member set exceeds 10000, whereas, the number of 3-
equivalence relations on a 3-member set like U is less than 27. Consequently, we
cannot create a one-to-one correspondence between the set of all 3-equivalence
relations and all the partitions on U x U.

Here, we pose 2 open questions:

Open Question 1: Is it possible to construct a set X based on U, such that
all 3-equivalence relations on X corresponds to a subset of all partitions on X7
Open Question 2: Can we redefine 3-equivalence relations in such a way that
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the set of all the 3-equivalence relations correspond to the set of all partitions
on U x U?

Definition 2.7. Let U be aset and S : UxU xU — [0, 1] be a 3-similarity on
U. Then for any A € [0, 1], the 3-relation g 5 in U is defined as (z,y, 2) €=g.,
it S(z,y,z) > A. The set =gy is called cut of level X of S or A — cut of S.

Lemma 2.8. Let S:U x U x U — [0,1] be a map and let for any X € [0,1],
o= {(z,y,2) e U XU xU:8(z,y,z) > A}, the A-cut of S be a 3-relation.
Then S is a 3-similarity on U if and only if for any A € [0,1], =g is a
3-equivalence relation.

Proof. Let S be a 3-similarity and A € [0, 1]. We show =gy is a 3-equivalence
relation.
(a) S(z,z,z) =1 > A, implies that (x,z,x) €=g  for all x € U and for
all A < 1.
(b) If (w1, 9, 23) €=g a, then S(z;,, iy, Tiy) = S(z1,22,23) > A Hence,
(@iy, Tiy, Tiy) €=g,x for all permutations (i1, 2,i3)-of (1,2,3).
(¢) For t,z,y,z € U, let (t,y,2),(z,t,2) and (z,y,t) €Zgx. Then
S(t,y,z) > A, S(x,t,z) > A, and S(z,y,t) > A Now by definition
of 3-similarity, S(x,y,z) > X and (x,y, 2) €=g x. Therefore, =g ) is a
3-equivalence relation.
Conversely, for any A € [0,1], let =g  be a 3-equivalence relation, we show S
is a 3-similarity.
(a) Reflexivity: Since for all A € [0,1], (zyz57) €Xgy, S(z,z,x) > A
Hence, S(x,z,z) = 1.
(b) Symmetry: Let (i1,2,43) be an arbitrary permutation of (1,2,3), and
let « = S(x1,29,23), and §'= S(w;,, x;,, x;,) where x1,29 and a3 € U.
Now by the definition of A-cuts, (z1,z2,23) €=g ) for each 0 < A < «
and (2, , Tiy, Tiy) E=Zg for each 0 < A < 3. On the other hand, by
the definition of 3-equivalence relations, (x1,z2,x3) €=g x if and only
if (x4, @i, ®iy) €2g x. Therefore, o = .
(c) Transitivity: Assume that x,y,z,t are arbitrary elements of U.

We have to show
S, y,2) > S(t,y,z) NS(z,t,2) A S(z,y,t).  (2)

Suppose, & = S(z,y,z2), a1 = S(t,y, 2), az = S(x,t,2), and az = S(z,y,t). If
on the contrary (2) does not hold, then we have o < min{ay, ag,a3}. Then
there is ‘a § such that o < f < min{ai,as,as}. Since S(t,y,z) = a1,
S(t,y,z) > X for every A € [0,aq], and 8 < aq, therefore, (t,y,2) €=gg.
By the same argument, (z,t,y) €~g g, and (z,y,t) €~g . Now, by the defini-
tion of 3-equivalence relation, (x,y,z) €=g 3 and hence a = S(x,y,2) > . It
contradicts with aw < 3. Therefore, (2) holds and the proof is completed. [
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Theorem 2.9. Let S be a 3-similarity on a set U, and let =g » be the A-cut
of S, for any A € [0,1]. Then {=g: A € [0,1]} is a family of 3-equivalence
relations such that,

(1) A < w implies that =g ,,C=g z, for any p and X in [0, 1].

(i) Nacp Zgr==g,p, for any p in [0,1].
Conversely, let {=x: A € [0,1]} be a family of 3-equivalence relations satisfying
conditions (i), (ii). Then the relation S defined by setting S(x,y, z) = Sup{\ €
[0,1] : (x,y,2) €Xx} is a S-similarity whose family of A — cuts is equal to the
Jamily {=x}xep0,1]-

Proof. Let S be a 3-similarity on U, then Lemma 2.8 implies that =g is a
3-equivalence relation, for all A in [0,1] and clearly (i) and (i) are satisfied
(note that its proof is similar to the proof of Proposition 2.3 in [7]).
Conversely, let {=: A € [0,1]} be a family of 3-equivalence relations on U
satisfying conditions (i) and (i7), and

S(x,y,z) = Sup{\ €[0,1] : (x,y,2) €=} (3)

We will show that S is a 3-similarity on U. The reflexivity and symmetry
properties of S are obvious. For the transitivity, let z,y,2;t € U, and:
A={Xe[0,1]: (z,y,2) €=z},

B={Xe[0,1]: (t,y,z) Xy},
C={Ne[0,1]: (z,t,2) €},
D={\e[0,1]: (z,y,t) €Xr}.

Then by (3), S(x,y,2) = SupA =, S(t,y,z) = SupB, S(z,t,z) = SupC,
S(z,y,t) = SupD. We must show that:

S(x,y,z) > min{S(t, vy, 2), S(z,t,2), S(z,y,t)}. (4)

On the contrary, suppose that (4) does not hold, then o < SupB, o < SupC,
and a < SupD. Then, there are A\; € B, \s € C, and A3 € D such that o < \;
for i = 1,2,3. Put v = min{Ai, A2, A3}. Since (t,y,z) €=y, C=,, we have
(t,y,z) €=,. By similarity (z,¢,2) €=, and (z,y,t) €=,. Therefore, by
transitivity property of =, we have (z,y,z) €=, and hence v € A. This is a
contradiction to SupA = « < . Therefore, S is a 3-similarity and (4) holds.

Nowlet 0 < < 1 and consider =g ,,, as the u — cut of S given in Defini-
tion 2.7. Then we have to show that =g , is equal to =,,. Clearly =,C=g ,. On
the other hand, let (z,y, z) €g,. We show that (z,y,2) C=,. Let SupA > p.
Then SupA = S(x,y,z) > p, so, there is A € A such that p < A\ < SupA.
Since A € A, (z,y,2) €=y, and p < A, =\C=,,, therefore, (z,y,2) €=, and
=5 ,C=,. The case SupA < p is similar. O

It’s worth mentioning that Novak and Novotny in [10] have given another def-
inition of n-equivalence relation. If we compare their definition to our proposed


v

14 M. Keshavarzi, M. A. Dehghan, M. Mashinchi

definition (Definition 2.5), we will notice that the reflexive and the symmet-
ric properties are the same, but their definition of transitive property differs.
They have defined n-transitive property as follows: If (z1,...,2,) € R and
(y1, .-, Yn) € R hold; also, if there exist natural numbers iy > jo such that 1 <
ip <n, 1 < jo <n,and xi = yjo, then the n-tuple (z;,, ..., Zi, Yjop1s s Yj) €
R for any natural number 1 < k < n and iy, ..., %k, Jk+1,--., jn Such that
1§i1<...<ik<i0,j0<jk+1<...<jn§n.

The following example shows that the Definition 2.5 for 3-equivalence rela-
tion is different from the definition in [10].

Ezample 2.10. If z = {1,2,3,4,5} and n=3, then the 3-equivalence relation is
as follows:
R=1{(1,1,1),(2,2,2),(3,3,3), (4,4,4), (5,5,5), (2,3,5), (1,2, 5),
(1,3,2), (1,3,5), (3,2,5), (3,5.2), (5,3,2), (5,2,3), (2,5, 3),
(2,1,5),(2,5,1),(5,1,2), (5,2, 1), (1,5,2), (2, 1,3), (2,3, 1),
(3,1,2),(3,2,1), (1,2,3), (3,1,5), (3,5, 1), (5, 1,3), (5,3,1), (1,5, 3)}.

It is obvious that R satisfies the Definition 2.5, but /R does-not satisfy the
n-transitive property. To see this fact, let k =1, ig = 2, 5o = 1, (1, 22,23) =
(2,3,5), and (y1,%2,y3) = (3,2,1). Now zjp = yjo and 1 < 41 < 2 implies
that i1 = 1. Also 1 < jo < j3 < 3 implies that jo = 2 and j3 = 3. Then,
(i, ¥iasy3) = (2,2,1) ¢ R, whereas, both (z1,22,23) = (2,3,5) € R and
(yl, yg,yg) = (3, 2, 1) € R.

Obviously, if R has the 3-transitive property, then the 3-equvalence relation
satisfies. Therefore our definition of 3<equivalence relation, Definition 2.5, cov-
ers a wider range of 3-ary relations. Consequently, on the issues of 3-equivalence
relations and 3-similarities, our proposed definition, Definition 2.5, have pref-
erence over the Novak-Novotny’s definition.

Stefanesco in [18], on the basis of the definition of relation and its prop-
erties has found the corresponding hypergroups. Cristea in [4] has defined
hypergroups with corresponding n-ary’s. Considering their reflexivity, symme-
try, and n-transitivity properties, sufficient conditions for existence of ”total
hypergroup” ;”semi hypergroup”, and ”associative hypergroup” have been ob-
tained. As a future work, we are currently studying the connection between
hypergroups and the third property of Definition 2.5.

For 2-similarity, Sessa in the paper [16] said that in a set of three numbers like
{S(x,y),S(z, z),S(y, 2)}, two of the members are equal and the third member
is either equal or greater than the other two. We generalize this fact for 3-
similarity in the following proposition.

Proposition 2.11. Let S be a §-similarity, a=S(z,y,z), b=S(t,y,z), c=S5(z,t,2),
and d=S(z,y,t). Then two of the a, b, ¢, and d, are equal, and the others are
either equal or greater than to the first two.
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Proof. Using Definition 2.2 (i), any of the following could be holding:
(i) a>bAcAd,

(ii) b>aANcAd,

(iii) c>aAbAd,

(iv) d>aAbAc.
Case 1 : Suppose the equality hold for all (i), (ii), (iii), and (iv) above. Then
a=bAcAdand (i) implies that a = a Ab A ¢ A d. Likewise for (ii), (iii), and
(iv), we have:
b=bAb=bAaANcAd,
c=cNc=cANaANbAd,
d=dANd=dNaANbAc
Consequently, we have a = b= c =d.
Case 2: Suppose for at least one of the (i), (ii), (iii), or (iv), the equality does
not hold.
Without loss of generality, consider the first one, that is:

a>bAceAd.

Case 2.1: a > b. Then a Ab =10, from (iii) and (iv) we conclude ¢ > b A d
and d > b A c. Now, either ¢ > b, or ¢ > d, and also either d > b,or d > ¢. We
investigate one of the cases, the others are similar.

Case 2.1.1: ¢ > b and d > b. If on the contrary ¢ # b and d # b, then
b < cand b < d, we also had b < a, consequently, b < a AdAc which contradicts
to (ii), that is, either ¢ =b, or b =d.

Case 2.2: a =b, a > b A cAdimpliessthat a > ¢ A d.

Case 2.2.1: ¢ < d, a > ¢ A d implies that a > ¢ and hence ¢ < a A b A d.
This contradicts (iii). The case ¢ > d is similar. O

Lemma 2.12. Suppose, S :U x U xU — [0,1] is a map with reflexive and
symmetric properties as_in Definition 2.2. For x,y,z,t € U, set

R ={S(z,y,2),S(t,y, 2), S(x,t,2),S(x,y,t)}.

If any two of the members of R are equal, and the other two are either equal
or greater than the first two, then S is a 3-similarity.

Proof. Case 1: If S(x,y, z) is equal to any of the other 3, then the transitivity
condition holds.

Case 2: If two members of R are equal and S(z,y, z) is greater than those
two, then the minimum would be one of those two, and S(z,y, 2) is equal or
greater than the minimum. O

2.1. T-norms. We can use T-norms to generalize the concept of 2-similarity
to 3-similarity. In the following, after giving the definition of T-norms [17], we
will show how they can be utilized for this purpose.
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Definition 2.13. A T-norm (triangular norm) is a function 7" : [0, 1] x [0, 1] —
[0, 1] which satisfies the following properties for all a,b, ¢, d € [0, 1]

1) T(a,b)=T(b,a) (commutativity)

2) T(a,b) <T(c,d),if a < ¢, and b < d (monotonicity)

3) T(a,T(b,c))=T(T(a,b),c) (associativity)

4) T(a,l

A~~~

a,1)=a (boundary condition)

Minimum T-norm, T},in(a, b) = min{a, b}, is one of the prominent examples
of T-norms which we will use in Theorem 2.14.

Theorem 2.14. Let U be a set, T be a T-norm of T : [0,1] x [0,1] — [0, 1],
and Sy be a 2-similarity on U, then for all x,y,z € U consider,

SS(xa Y, Z) = T(T(SQ(xv y)a 52(:% Z))a SQ(?E, Z))
Then Ss is a 3-similarity on U.

Proof. Ss(x,z,xz) =T (T (S2(z,x), Sa(x,x)),Se(x,z) =T(T(1,1),1) =T (141) =
1. Also, it is obvious that by changing the positions of x; y, and z, the result
would not change.

Now, for the transitivity property, we have to show that for allz,y, z,t € U,

53(3?71% Z) Z {53(ta Y, Z) A 53(1‘5 t7 Z) A 53(3:7:% t)}

W.L.G. let

(i) Ss(t,y,z) < Ss(z,t,z), and

(i) Ss(t,y,z) < Ss(x,y,1).
We have to show S5(t,y, 2) <.S3(z,y, z). From (i) we have,
T(T(S2(t,y), Sa2(y, 2)), S2(tyz)) < T(T(S2(x,t), S2(t, 2)), S2(x, 2)), hence,
Sa(t,y) < Sa(x,t), Sa(y,2) < Sa(t, z), and Sa(t, z) < Sa(x, z).
From (ii) we have, So(t,y) < Sa(x,y), S2(y,2z) < Sa2(y,t), and Sa(t,2) <
Sa(z,t). Now, the monequalities Sa(t,y) < Sa(z,y),S2(t, z) < Sa(z,2), and
Sa(y, z) < Sa(y, z) implies that
T(T(52(t,y), 82(y, 2))582(t, 2)) < T(T(S2(x,y), S2(y, 2)), S2(x, 2)), and hence,
Ss(t,y,2) < Sz(x,y, 2).

O

If Sy is a 2-similarity on U and A C U, then p(A) has been introduced in
[5] as
A= N\ Sez,2)  (5)
z,x’'€A
If we consider A as a set with 3 elements, then we can interpret 11(A) as a special
case of 3-similarity. This case has been brought into the following corollary.
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Corollary 2.15. Let Sy : U x U — [0,1] be a 2-similarity on U. For all
x,y,z € U, define S3: U x U x U — [0, 1] as follows,

S3(x,y,z) = min{Sa(x,y), S2(y, 2), S2(z, 2)}. (6)
Then for every x,y € U we have,
(a) Sz is a 3-similarity on U.
(b) Ss(@,z,y) = S2(z,y).
(c¢) Ss(z,z,y) > Ss(z, vy, 2).
(d) Ss(z,z,y) = Ss(2,y,y).
Proof. (a) is obtained using Theorem 2.14 and the logical product as a T-norm,
ie., T(a,b) = min(a,b)
For (b), we have,
Ss(z,x,y) = min{Ss(z,x), S2(x,y), Se(x,y)}
= min{l, Sa(z,y), S2(z,y)}
= Sa(z,y).
(c) and (d) obviously could be obtained from (b) and (6). O

The following remark shows that our definition of 3-similarity is a general-
ization for definition of similarity of A in (5).
Remark: If A= {x,y,2} C U, then uA) = S3(x,y, 2).

2.2. Induced similarities.

Definition 2.16. If S, is a 2-similarity, and Ss.is'derived from Sy according
to Corollary 2.15, then we call S3, a 3-similarity induced by Ss.

If S5 is a 3-similarity on U, it seems that the relation Sy on U x U which

can be defined as
SQ(x7y) = Sg(l‘,l‘,y)- (7)

is a 2-similarity on'U. That is, in a 3-similarity, if two members are identical,
the 2-similarity concludes. For instance, the 3-similarity of rabbit, rabbit, and
lion are the same as the 2-similarity between rabbit and lion. However, as
the next example shows, we may introduce a 3-similarity like S5, for which a
2-similarity holding (7) dose not exist. Consequently, every 3-similarity does
not giverus a 2-similarity as indicated in (7). In Example 2.17, S35 does not
satisfy the following condition

53(37,3?,y) 253(%%9), vx7y€U' (8)
In Example 2.18 one can see that (8) also holds, even the following
Sa(x,2,y) 2 S3(2,y,2), Vay,zel. (9)

holds too, but still Sy obtained from (7) cannot be a 2-similarity on U. So,
Example 2.18 indicates that even a 3-similarity satisfies (8) and (9), it cannot
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give us a 2-similarity that satisfies (7).

In the following examples we will try to make our ideas clear.

Ezample 2.17. Let U = {R, M, P, W}, where the letters in the set stand for:
M = mouce, P = pigeon, R = rabit, W = wol f. Define S5 : UxUxU — [0, 1]
be a function as in Table 1. Also, let the commutative condition for S5 holds.

TABLE 1. The level values of 3-similarity S3

Sg(fﬁ,y,z) (x,y,z)
1 (W, W,W) (P,P,P) (R,R,R) (M,M,M)
0.7 (R,P,P) (R,R,P) (R,R,W)
0.4 (R,M,M) (R,W,W) (W,M,M) (P,M,M)
0.3 (R,R,.M) (W,P,P) (M,P,P) (W,W.,P) (W,W,M)
0.2 (W, M,P) (R,W,P)
0.1 (R.M,W) (R,M,P)

It is clear that S3 is a 3-similarity. If we define Sy : U x U — [0,1] as
Sa(z,y) = Ss(x,z,y), then Sy(R, M) = S3(R,R, M) = 0.3, and S2(M,R) =
S3(M,M,R) = 0.4. Consequently, Sa(R, M) and Sy(M,R) are not equal.
Hence, S is not a 2-similarity.

Now, consider the following example:

Ezample 2.18. Let U be the set U = {R, M, Py}, where these letters stand
as in Example 2.17. Let S5 : U x U x U — [0, 1] be defined as a 3-similarity
on U as in Table 2, and assume that the commutative condition for S5 holds.
Then S% is a 3-similarity on U and we have S}(x,z,y) = Si(x,y,y) for each
z,y €U.

TABLE 2. The level values of 3-similarity of S5.

SS(xvyaz) (m,y,z)
1 (WW,W) (P,PP) (R,R,R) (M,M,M)
0.7 (R,P,P) (R,R,P) (R,R,W) (R,W,W)
0:4 (R,M,M) (R,R,M)

0.3 (M,M,P) (W,M,M) (W,P,P) (M,P,P) (W,W,P) (W,W,M)
0.2 (WM,P) (R,W,P)
0.1 (R,M,W) (R,M,P)

If we get So from the equality Sa(z,y) = S5(x,x,y), then Sy is obtained as
shown in Table 3. The transitivity condition in the Definition 2.1,

SQ(P, M) Z min{Sg(R, M), SQ(P, R)}
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TABLE 3. The level values of Ss.

SQ(xvy) (a:,y)
1 (W,W) (P,P) (R,R) (M,M)
0.7 (R,P) (R,W) (P,R) (W,R)
0.4 (M,R) (R,M)
0.3 | (P.M)(W,M)(W,P)(M,P)(M,W)(P,W)
0.2
0.1

does not hold, since S2(P, M) = 0.3, Sa(R, M) = 0.4, and S3(P,R) = 0.7. So
So is not a 2-similarity.
At any case Corollary 2.15 guarantees the existence of a 3-similarity induced
by a 2-similarity.

Now, we pose another open question,
Open Question 3: What conditions on a 3-similarity can create a 2-similarity

such that (6) holds?

2.3. n-similarities. Using the definitions of 2-similarity and 3-similarity, we
can define an n-similarity.

Definition 2.19. S: U x U x U...U — [0, 1] is'an n — similarity, if
(i) S(z,z,,....,z) =1, (reflexivity).
(ii) S(x1,z2,...,xn) = S(@iy, Tiy, ..., T4, ) for all permutations
(i1,92,13,...5n) of (1,2,..n), (symmetry).
(iii) S(z1,22,...,2n) > min{S(z, T2, .ty Tp), ..., S(X1, 22, ..., Xp_1,2)} for all
Z1,Za,...Tn, 2z € U, (transitivity).

Similarly, we can obtain.an n = similarity from an (n — 1) — similarity.
The proof is similar to the proof of Corollary 2.15. Also, we can prove it by
induction.

Proposition 2.20. Let S,,_1 be an (n-1) similarity on U and for x1, a2, ...z,
in U define,
Sn(T1, ... Tp) =

min{.Sy,—1 (X223, ..o, Tn )y Sn—1(T1, X3, ey Tn )y ooy Sn—1(T1, T2y ooy Tn—1}.

(a) Sy is an n-similarity on U,

(b) Sn($1,$1,$2,$3...1‘n_1) = Sn_l(x‘l,l‘g, ...,l‘n_l),
(¢) Sp(z1,21,22,23...Tn—1) > Sn(x1, T2, ..., Tp),
(d) Sp(z1, 21,22, 25...n-1) = Sn(T1,Z2, ooy Tn—1, Tp—1)-

The n-similarity, S,, which is obtained from S,,_; as in Corollary 2.15 is called
the n-similarity induced by S,_1. Example 2.4 could be generalized for the
case of n-similarity. That is:
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Example 2.21. Let Z be the set of integer numbers and let my, ma,..... my € Z,
such that m; = (¢; mod n) where 0 <i; <n -1, j=12,...n
Set A= {il,ig, ig, ,Zn} Define

n— |4

S(ml,mg, ,mn) = n—1

)

then S is an n-similarity.

3. CONCLUSION

In this paper we showed how it is possible to form 3-similarities. We proved
that all the definitions and propositions related to 2-similarity relations could
also be used for 3-similarity relations. We showed under certain conditions we
can obtain a 3-similarity if we have a 2-similarity. Also in some examples we
saw that not all 3-similarities can produce 2-similarities. As an open question,
we are interested in obtaining the conditions that could be imposed on a 3-
similarity to produce an induced 2-similarity. We also showed that the idea
can be generalized towards the n-similarities.

The possibility of constructing a set X based on U, such that all 3-equivalence
relations on X correspond to a subset of all partitions on' X, and the possibil-
ity of redefining 3-equivalence relations in such a way that.the set of all the
3-equivalence relations correspond to the set of all partitions on U x U are
the matters that should be investigated. Another matter that we posed as an
open question was defining the conditions on which a 3-similarity can create a
2-similarity. As future work, we are currently working on extending our propo-
sitions of 3-equivalence relations and 3-similarities to fuzzy logic programming.

Also, we should mention that using the discussion of dissimilarities between
two objects [7], 3-dissimilarity (or n-dissimilarity) can be defined. Also the
relation between 3-similarity and 3-dissimilarity can be investigated. Of course
to avoid a lengthy paper, the authors will present these cases somewhere else.
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