## Properties of Central Symmetric X-Form Matrices

A. M. Nazari\*, E. Afshari and A. Omidi Bidgoli Department of Mathematics, University of Arak, Arak, 38156, Iran

E-mail: a-nazari@araku.ac.ir
E-mail: e-afshari@arashad.araku.ac.ir

ABSTRACT. In this paper we introduce a special form of symmetric matrices that is called central symmetric X-form matrix and study some of their properties, the inverse eigenvalue problem and inverse singular value problem for these matrices.

**Keywords:** Inverse eigenvalue problem, Inverse singular value problem, eigenvalue, singular value.

2000 Mathematics subject classification: 15A29; 15A18.

## 1. Introduction

In [3,4] H. Pickman et. studied the inverse eigenvalue problem of symmetric tridiagonal and symmetric bordered diagonal matrices. In this paper we introduce the odd and even order central symmetric X-form matrix for an integer number n respectively as below: suppose

Received 25 February 2010; Accepted 21 August 2010 © 2011 Academic Center for Education, Culture and Research TMU

<sup>\*</sup>Corresponding Author

$$(1) A_{n} = \begin{pmatrix} a_{n} & & & & & b_{n} \\ & \ddots & & & & \ddots & \\ & & a_{2} & b_{2} & & \\ & & & a_{1} & & & \\ & & b_{2} & a_{2} & & \\ & & \ddots & & & \ddots & \\ b_{n} & & & & a_{n} \end{pmatrix}_{\substack{(2n-1)\times(2n-1)}},$$

$$(2) B_{n} = \begin{pmatrix} a_{n} & & & & b_{n} \\ & \ddots & & & & \ddots & \\ & & a_{2} & & b_{2} & & \\ & & & a_{1} & b_{1} & & \\ & & & b_{1} & a_{1} & & \\ & & & b_{2} & & a_{2} & \\ & & \ddots & & & \ddots & \\ b_{n} & & & & \ddots & \\ \end{pmatrix}_{\substack{(2n)\times(2n)}}$$

For a given 2n-1 real numbers such as

$$\lambda_1^{(n)} < \lambda_1^{(n-1)} < \ldots < \lambda_1^{(2)} < \lambda_1^{(1)} < \lambda_2^{(2)} < \ldots < \lambda_n^{(n)}$$

or for a given 2n real numbers such as

$$\lambda_1^{(2n)} < \lambda_1^{(2(n-1))} < \ldots < \lambda_1^{(2)} < \lambda_2^{(2)} < \ldots < \lambda_{2(n-1)}^{(2(n-1))} < \lambda_{2n}^{(2n)},$$

we construct a matrix  $A_n$  such that  $\lambda_1^{(j)}$  and  $\lambda_j^{(j)}$  are the maximal and minimal eigenvalues of submatrix  $A_j$  respectively for j=1,2,...n where  $A_j$  is defined by to

matrix  $B_j$  such that  $\lambda_1^{(2j)}$  and  $\lambda_{2j}^{(2j)}$  are the maximal and minimal eigenvalues of submatrix  $B_j$  respectively for j = 1, 2, ...n where  $B_j$  is defined by  $B_j = 1, 2, ...n$ 

$$\begin{pmatrix} a_{j} & & & & & & & b_{j} \\ & \ddots & & & & & \ddots & \\ & & a_{2} & & b_{2} & & \\ & & a_{1} & b_{1} & & \\ & & b_{1} & a_{1} & & \\ & & b_{2} & & a_{2} & & \\ & & \ddots & & & \ddots & \\ b_{j} & & & & a_{j} \end{pmatrix}_{(2j)\times(2j)}$$

# 2. Properties of the matrices $A_n$ and $B_n$

Let 
$$p_0(\lambda) = 1$$
,  $q_0(\lambda) = 1$ ,  $p_j(\lambda) = det(A_j - \lambda_j)$  for  $j = 1, 2, ..., n$  and  $q_j(\lambda) = det(B_j - \lambda_j)$  for  $j = 1, 2, ..., n$ .

**Lemma 1.** For a given matrix  $A_j$  and  $B_j$  the sequence  $p_j(\lambda)$  and  $q_j(\lambda)$  satisfy in the following recurrence relations:

$$a) p_1(\lambda) = (a_1 - \lambda),$$

b) 
$$p_j(\lambda) = [(a_j - \lambda)^2 - b_j^2] p_{j-1}(\lambda), j = 2, 3, ..., n$$

c) 
$$q_1(\lambda) = ((a_1 - \lambda)^2 - b_1^2)$$

b) 
$$p_j(\lambda) = [(a_j - \lambda)^2 - b_j^2] p_{j-1}(\lambda), \ j = 2, 3, ..., n.$$
  
c)  $q_1(\lambda) = ((a_1 - \lambda)^2 - b_1^2),$   
b)  $q_j(\lambda) = [(a_j - \lambda)^2 - b_j^2] q_{j-1}(\lambda), \ j = 2, 3, ..., n.$ 

**Proof.** The proof is clear by extending determinants of  $(A_j - \lambda I_j)$  and  $(B_j - \lambda I_j)$  $\lambda I_j$ ) on their first columns.

## 2.1. LU factorization of central symmetric X-form matrix.

Let A be a central symmetric X-form matrix in form (1) and B be a central symmetric X-form matrix in form (2), then we see that the LU Doolitel factorization of A and B are given by

$$L_A = \begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & \\ & & & 1 & & \\ & & & \ell_{n+1,n-1} & 1 & \\ & & \ddots & & & \\ \ell_{2n-1,1} & & & & 1 \end{pmatrix}_{(2n-1)\times(2n-1)}$$

$$U_{A} = \begin{pmatrix} u_{1,1} & & & & u_{1,2n-1} \\ & \ddots & & & & \ddots \\ & & u_{n-1,n-1} & & u_{n-1,n+1} & & \\ & & & u_{n,n} & & & \\ & & & & u_{n+1,n+1} & & \\ & & & & \ddots & \\ & & & & & u_{2n-1,2n-1} \end{pmatrix}_{(2n-1)\times(2n-1)}$$

where the elements  $\ell_{i,j}$  and  $u_{i,j}$  are as the following

$$\ell_{n+i,n-i} = \frac{b_{i+1}}{a_{i+1}} \qquad i = 1, 2, ..., n-1,$$

Also

$$\begin{cases} u_{i,2n-i} = b_{n+1-i} & i = 1, 2, ..., n-1 \\ u_{ii} = a_{n+1-i} & i = 1, 2, ..., n \\ u_{n+i,n+i} = \frac{a_{i+1}^2 - b_{i+1}^2}{a_{i+1}} & i = 1, 2, ..., n-1. \end{cases}$$

and  $L_B$  and  $U_B$  in factorization of  $B=L_BU_B$  are as below

$$L_{B} = \begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & \\ & & & 1 & & \\ & & \frac{b_{1}}{a_{1}} & 1 & \\ & & \ddots & & & \\ \frac{b_{n}}{a_{n}} & & & & 1 \end{pmatrix}_{(2n)\times(2n)}$$

$$U_B = \begin{pmatrix} a_n & & & & b_n \\ & \ddots & & & & \\ & a_2 & & b_2 & & \\ & a_1 & b_1 & & & \\ & & \frac{a_1^2 - b_1^2}{a_1} & & & \\ & & & \frac{a_2^2 - b_2^2}{a_2} & & \\ & & & \ddots & \\ & & & & \frac{a_n^2 - b_n^2}{a_n} \end{pmatrix}_{(2n) \times (2n)},$$

**Remark 1.** We observe that the matrices  $L_A$  and  $L_B$  in LU factorization of central symmetric X-form matrix has a unit  $\lambda$ -matrix.

**Corollary 1.** If A and B are odd-order and even-order of a central symmetric X-form matrices in form (1) and (2) respectively, then

$$det(A) = a_1 \prod_{i=2}^{n} (a_i^2 - b_i^2),$$
  

$$det(B) = \prod_{i=1}^{n} (a_i^2 - b_i^2).$$

2.2. Inverse of  $A_n$  and  $B_n$ . It is clear that the necessary and sufficient conditions for invertibility of  $A_n$  are  $a_1 \neq 0$  and  $a_i \neq \pm b_i$  for i = 2, 3, ..., n. If the matrix  $\Phi$ be the inverse of  $A_n$ , then we have  $A_n\Phi=I$ . If the elements of column j of  $\Phi$  be  $(\Phi_{1j}, \Phi_{2j}, ..., \Phi_{nj})^T$  then we have the following linear system of equations,

With solving the above linear system for all column of  $\Phi$  we have

$$\begin{cases} \Phi_{ii} = \Phi_{2n-i,2n-i} = -\frac{a_{n+1-i}}{b_{n+1-i}^2 - a_{n+1-i}^2} & i = 1, 2, ..., n-1, \\ \Phi_{nn} = \frac{1}{a_1} & \\ \Phi_{2n-i,i} = \Phi_{i,2n-i} = \frac{b_{n+1-i}}{b_{n+1-i}^2 - a_{n+1-i}^2} & i = 1, 2, ..., n-1. \end{cases}$$

and this shows that  $\Phi$  is also the central symmetric X-form matrix. For the inverse of  $B_n$  we also have similar relations.

### 3. Inverse eigenvalue problem

**Theorem 1.** Assume  $\lambda_1^{(j)}$ ,  $\lambda_j^{(j)}$  for j = 1, ..., n are the 2n - 1 distinct real numbers, then there exist a central symmetric X-form matrix in form (1) such that  $\lambda_1^{(j)}$  and  $\lambda_i^{(j)}$  are the minimal and maximal eigenvalues of submatrix  $A_j$  respectively in form (3) if and only if

(4) 
$$\lambda_1^{(n)} < \lambda_1^{(n-1)} < \dots < \lambda_1^{(2)} < \lambda_1^{(1)} < \lambda_2^{(2)} < \dots < \lambda_n^{(n)}.$$

**Proof.** Existence of matrices  $A_n$  such that  $\lambda_1^{(j)}$ ,  $\lambda_j^{(j)}$  are the its maximal and minimal eigenvalues respectively of its submatrix for j = 1, 2, ..., n is equivalence to finding the solution for the following linear system of equations:

(5) 
$$p_{j}(\lambda_{1}^{(j)}) = [(a_{j} - \lambda_{1}^{(j)})^{2} - b_{j}^{2}] p_{j-1}(\lambda_{1}^{(j)}) = 0,$$
(6) 
$$p_{j}(\lambda_{j}^{(j)}) = [(a_{j} - \lambda_{j}^{(j)})^{2} - b_{j}^{2}] p_{j-1}(\lambda_{j}^{(j)}) = 0,$$

(6) 
$$p_j(\lambda_i^{(j)}) = [(a_j - \lambda_i^{(j)})^2 - b_j^2] p_{j-1}(\lambda_i^{(j)}) = 0$$

$$(5) \Longrightarrow [(a_j - \lambda_1^{(j)})^2 - b_j^2] [(a_{j-1} - \lambda_1^{(j)})^2 - b_{j-1}^2] \cdots [(a_2 - \lambda_1^{(j)})^2 - b_2^2] [a_1 - \lambda_1^{(j)}] = 0,$$

(6) 
$$\Longrightarrow$$
  $[(a_j - \lambda_j^{(j)})^2 - b_j^2] [(a_{j-1} - \lambda_j^{(j)})^2 - b_{j-1}^2] \cdots [(a_2 - \lambda_j^{(j)})^2 - b_2^2] [a_1 - \lambda_j^{(j)}] = 0.$  Thus 
$$(a_j - \lambda_1^{(j)})^2 - b_j^2 = 0 \quad \text{for} \quad j = 2, 3, ..., n$$

$$(a_j - \lambda_1^{(j)})^2 - b_j^2 = 0$$
 for  $j = 2, 3, ..., n$   
 $(a_j - \lambda_j^{(j)})^2 - b_j^2 = 0$  for  $j = 2, 3, ..., n$ .

Then  $a_1=\lambda_1^{(1)}$  and whereas  $\lambda_1^{(j)}\neq\lambda_j^{(j)}$ , we have  $a_j=\frac{\lambda_1^{(j)}+\lambda_j^{(j)}}{2}$  and  $b_j^2=(\frac{\lambda_j^{(j)}-\lambda_1^{(j)}}{2})^2$  for j=2,3,...,n, therefore we can find all entries of matrix  $A_n$ .

Conversely since  $p_j(\lambda) = [(a_j - \lambda)^2 - b_j^2] \ p_{j-1}(\lambda)$ , then each root of  $p_{j-1}$  is a root of  $p_j$ , and we know that  $\lambda_1^{(j)}$  and  $\lambda_j^{(j)}$  are the minimal and maximal eigenvalues of submatrix  $A_j$  in form (3) respectively, thus  $\lambda_1^{(j-1)}$  and  $\lambda_{j-1}^{(j-1)}$  are in between  $\lambda_1^{(j)}$  and  $\lambda_j^{(j)}$ , i.e

(7) 
$$\lambda_1^{(j)} < \lambda_1^{(j-1)} < \lambda_{i-1}^{(j-1)} < \lambda_i^{(j)}.$$

and so on we can write

$$\lambda_1^{(n)} < \lambda_1^{(n-1)} < \ldots < \lambda_1^{(2)} < \lambda_1^{(1)} < \lambda_2^{(2)} < \ldots < \lambda_n^{(n)}.$$

So the proof is completed.  $\Box$ 

**Theorem 2.** Assume  $\lambda_1^{(2j)}$ ,  $\lambda_{2j}^{(2j)}$  for j=1,...,n are the 2n distinct real numbers, then there exist an even-order central symmetric X-form matrix in form (2) such that  $\lambda_1^{(2j)}$  and  $\lambda_{2j}^{(2j)}$  are the minimal and maximal eigenvalues of submatrix  $B_j$  respectively, if and only if

(8) 
$$\lambda_1^{(2n)} < \lambda_1^{(2n-2)} < \dots < \lambda_1^{(2)} < \lambda_2^{(2)} < \dots < \lambda_{2n}^{(2n)}.$$

**Proof.** Proof is similar to proof of Theorem 1.  $\square$ 

**Remark 2.** If  $b_j$  for j = 2, 3, ..., n, are positive, then the matrix  $A_n$  is unique.

**Remark 3.** Whereas all eigenvalues of  $A_{j-1}$  are the subset of eigenvalues  $A_j$  then all eigenvalues relation (4) are all eigenvalues of  $A_n$ .

**Lemma 2.** If  $A_n$  is a central symmetric X-form matrix in form (1), then we have (a)  $\lambda_1^{(j)} < a_j < \lambda_j^{(j)}$  where  $\lambda_1^{(j)}$ ,  $\lambda_j^{(j)}$  are the minimal and maximal eigenvalues of submatrix of  $A_n$ , for j = 2, 3, ..., n.

sumatrix of 
$$A_n$$
, for  $j = 2, 3, ..., n$ .  
(b) If  $b_i > 0$  for  $i = 2, ..., j$ , then  $||A_j||_{\infty} = ||A_j||_{1} = \lambda_j^{(j)}$ , and if  $b_i < 0$  for  $i = 2, ..., j$ , then  $||A_j||_{\infty} = ||A_j||_{1} = \lambda_1^{(j)}$ .

**Proof.** (a) According to the previous theorem 2, we have  $a_j = \frac{\lambda_1^{(j)} + \lambda_j^{(j)}}{2}$  and also we have  $\lambda_1^{(j)} < \lambda_j^{(j)}$  for j = 2, ..., n, then

$$\frac{\lambda_1^{(j)} + \lambda_1^{(j)}}{2} < \frac{\lambda_1^{(j)} + \lambda_j^{(j)}}{2} < \frac{\lambda_j^{(j)} + \lambda_j^{(j)}}{2} \quad \Longrightarrow \quad \lambda_1^{(j)} < a_j < \lambda_j^{(j)}.$$

(b) Case (1):  $b_i > 0$  for i = 2, ..., n, then

$$\mid\mid A_{j}\mid\mid_{\infty}=\mid\mid A_{j}\mid\mid_{1}=\max\left\{a_{i}+b_{i}=\frac{\lambda_{1}^{(i)}+\lambda_{i}^{(i)}}{2}+\frac{\lambda_{i}^{(i)}-\lambda_{1}^{(i)}}{2}=\lambda_{i}^{(i)}\quad i=2,...,j\right\}=\lambda_{j}^{(j)}$$

for  $j=2,\ldots,n$ .

Case (II):  $b_i < 0$  for i = 2, ..., n, then

$$||A_j||_{\infty} = ||A_j||_1 = \max\{a_i + b_i = \frac{\lambda_1^{(i)} + \lambda_i^{(i)}}{2} + \frac{\lambda_1^{(i)} - \lambda_i^{(i)}}{2} = \lambda_1^{(i)} \quad i = 2, ..., j\} = \lambda_1^{(j)}$$

for  $j=2,\ldots,n$ .

so that proof is completed.  $\square$ 

#### 4. Inverse singular value problem

In this section we study two inverse singular value problems as below: **problem I.** Given 2n-1 nonnegative real numbers  $\sigma_1^{(j)}$  and  $\sigma_j^{(j)}$  for j=1,2,...,n. We find  $(2n-1)\times(2n-1)$  central symmetric X-form matrix  $A_n$  in form (1), such that  $\sigma_1^{(j)}$  and  $\sigma_j^{(j)}$  for j=1,2,...,n, are minimal and maximal singular value of submatrix  $A_j$  of  $A_n$  in form (3), and for given 2n nonnegative real numbers  $\sigma_1^{(2j)}$  and  $\sigma_{2j}^{(2j)}$  for j=1,2,...,n, similarly we find  $(2n)\times(2n)$  central symmetric X-form matrix  $B_n$  in form (2), such that  $\sigma_1^{(2j)}$  and  $\sigma_{2j}^{(2j)}$  for j=1,2,...,n, are minimal and maximal singular value of submatrix  $B_j$  of  $B_n$ .

**problem II.** Given 2n-1 nonnegative real numbers  $\sigma_1^{(j)}$  and  $\sigma_j^{(j)}$  for j=1,2,...,n, we find the  $\lambda$ -matrix  $\Lambda_n$  in form (9) such that  $\sigma_1^{(j)}$  and  $\sigma_j^{(j)}$  for j=1,2,...,n, are the minimal and maximal singular values of submatrix  $\Lambda_j$  from  $\Lambda_n$ , where

Furthermore for 2n given nonnegative real numbers  $\sigma_1^{(2j)}$  and  $\sigma_{2j}^{(2j)}$  for j=1,2,...,n, we find the  $\lambda$ -matrix  $\Gamma_n$  in form (10) such that  $\sigma_1^{(2j)}$  and  $\sigma_{2j}^{(2j)}$  for j=1,2,...,n, are the minimal and maximal singular values of submatrix  $\Gamma_j$  from  $\Gamma_n$ , where

**Theorem 3.** Assume  $\sigma_1^{(j)}$  and  $\sigma_j^{(j)}$  for j = 1, 2, ..., n are the (2n-1) real nonnegative numbers, then there exist a central symmetric X-form matrix in form (1) such that  $\sigma_1^{(j)}$  and  $\sigma_j^{(j)}$  are the minimal and maximal singular values of submatrix  $A_j$  respectively in form (3) if and only if  $\sigma_1^{(j)}$  and  $\sigma_j^{(j)}$  for j = 1, 2, ..., n satisfy in the following

relation:

(11) 
$$\sigma_1^{(n)} < \sigma_1^{(n-1)} < \dots < \sigma_1^{(2)} < \sigma_1^{(1)} < \sigma_2^{(2)} < \dots < \sigma_n^{(n)}$$

**Proof.** Let  $\sigma_1^{(j)}$  and  $\sigma_j^{(j)}$  for j=1,2,...,n be the real nonnegative number that satisfy in (11). It is clear that  $(\sigma_1^{(j)})^2$  and  $(\sigma_1^{(j)})^2$  for j=1,2,...,n, satisfy in there relations, this means

$$(12) \qquad (\sigma_1^{(n)})^2 < (\sigma_1^{(n-1)})^2 < \dots < (\sigma_1^{(2)})^2 < (\sigma_1^{(1)})^2 < (\sigma_2^{(2)})^2 < \dots < (\sigma_n^{(n)})^2.$$

By Theorem 1 there exist an odd-order central symmetric X-form matrix that  $(\sigma_1^{(j)})^2$  and  $(\sigma_j^{(j)})^2$  are the minimal and maximal eigenvalues of its submatrices respectively. We show this matrix by  $A_n$  as follows:

$$(13) A_n = \begin{pmatrix} a_n & & & & b_n \\ & \ddots & & & \ddots & \\ & & a_2 & b_2 & \\ & & & a_1 & \\ & & b_2 & a_2 & \\ & & \ddots & & \ddots & \\ b_n & & & & a_n \end{pmatrix}_{(2n-1)\times(2n-1)}$$

where

$$a_i = \frac{(\sigma_1^{(i)})^2 + (\sigma_i^{(i)})^2}{2}, \qquad i = 1, 2, ..., r$$

and

$$b_i = \frac{((\sigma_i^{(i)})^2 - (\sigma_1^{(i)})^2)^2}{2}.$$
  $i = 2, 3, ..., n$ 

On the other hand if  $C_n$  be an odd-order central symmetric X-form matrix as follows

$$C_n = \begin{pmatrix} \alpha_n & & & & & \beta_n \\ & \ddots & & & & \ddots & \\ & & \alpha_2 & & \beta_2 & & \\ & & & \alpha_1 & & \\ & & & \beta_2 & & \alpha_2 & \\ & & \ddots & & & & \ddots \\ & & & & & & \alpha_n \end{pmatrix}_{(2n-1)\times(2n-1)}$$

then

$$C_{n}C_{n}^{T} = \begin{pmatrix} \alpha_{n}^{2} + \beta_{n}^{2} & & & 2\alpha_{n}\beta_{n} \\ & \ddots & & & \ddots & \\ & & \alpha_{2}^{2} + \beta_{2}^{2} & & 2\alpha_{2}\beta_{2} & \\ & & & \alpha_{1}^{2} & & \\ & & & 2\alpha_{2}\beta_{2} & & \alpha_{2}^{2} + \beta_{2}^{2} & \\ & & & \ddots & & & \\ 2\alpha_{n}\beta_{n} & & & & & \alpha_{n}^{2} + \beta_{n}^{2} \end{pmatrix}_{(2n-1)\times(2n-1)}$$

$$(14)$$

Since  $A_n = C_n C_n^T$ , we can find the all elements of matrix  $C_n C_n^T$  as the following

$$\begin{aligned} a_1 &= \alpha_1^2, \\ a_i &= \alpha_i^2 + \beta_i^2, \quad i = 2, 3, ..., n \\ b_i &= 2\alpha_i\beta_i, \qquad i = 2, 3, ..., n \end{aligned}$$

by combination of the above relations we have

$$\begin{cases} (\alpha_i + \beta_i)^2 = a_i + b_i \\ (\alpha_i - \beta_i)^2 = a_i - b_i \end{cases} \implies \begin{cases} \alpha_i = \frac{\sqrt{(a_i + b_i)} + \sqrt{(a_i - b_i)}}{2} \\ \beta_i = \frac{\sqrt{(a_i + b_i)} - \sqrt{(a_i - b_i)}}{2} \end{cases} i = 2, 3, \dots, n, q.$$

Therefore the matrix  $C_n$  is solution of our problem.

Conversely at first, assume  $C_n$  is a matrix of form (1) of order  $(2n-1) \times (2n-1)$  such that  $\sigma_1^j$  and  $\sigma_j^j$  are the minimal and maximal singular values of submatrix  $C_j$  in form (3) respectively. Then  $(\sigma_1^j)^2$  and  $(\sigma_i^j)^2$  are the minimal and maximal eigenvalues of submatrices  $(C_n C_n^T)_j$  of  $C_n C_n^T$  respectively. By Theorem 1 we have

$$(15) \ (\sigma_1^{(n)})^2 < (\sigma_1^{(n-1)})^2 < \dots < (\sigma_1^{(2)})^2 < (\sigma_1^{(1)})^2 < (\sigma_2^{(2)})^2 < \dots < (\sigma_n^{(n)})^2,$$
 consequently we have 
$$\sigma_1^{(n)} < \sigma_1^{(n-1)} < \dots < \sigma_1^{(2)} < \sigma_1^{(1)} < \sigma_2^{(2)} < \dots < \sigma_n^{(n)},$$

$$\sigma_1^{(n)} < \sigma_1^{(n-1)} < \dots < \sigma_1^{(2)} < \sigma_1^{(1)} < \sigma_2^{(2)} < \dots < \sigma_n^{(n)},$$

and proof will be completed.  $\square$ 

Remark 4. There is a similar result for even-order of above Theorem.

**Theorem 4.** Assume  $\sigma_1^{(j)}$  and  $\sigma_j^{(j)}$  for j=1,2,...,n are the (2n-1) positive real numbers, then there exist a matrix in form (9) such that  $\sigma_1^{(j)}$  and  $\sigma_j^{(j)}$  are the minimal and maximal singular values of submatrix  $\Lambda_j$  of  $\Lambda_n$  respectively, if and only if  $\sigma_1^{(j)}$ and  $\sigma_i^{(j)}$  for j = 1, 2, ..., n satisfy in the following relation

(16) 
$$\sigma_1^{(n)} < \sigma_1^{(n-1)} < \dots < \sigma_1^{(2)} < \sigma_1^{(1)} < \sigma_2^{(2)} < \dots < \sigma_n^{(n)}$$

**Proof.** Assume  $\sigma_1^{(j)}$  and  $\sigma_j^{(j)}$ , are 2n-1 positive real numbers which satisfy in the relation (11), consider the squares  $(\sigma_1^{(j)})^2$  and  $(\sigma_j^{(j)})^2$  for j=1,...,n, it is clear that

these satisfy in relation (15), then from Theorem 1 there exist a central symmetric X-form matrix

$$A = \begin{pmatrix} a_n & & & & & b_n \\ & \ddots & & & & \ddots \\ & & a_2 & & b_2 & & \\ & & & a_1 & & & \\ & & b_2 & & a_2 & & \\ & & \ddots & & & \ddots \\ b_n & & & & a_n \end{pmatrix}_{(2n-1)\times(2n-1)}$$

such that  $(\sigma_1^{(j)})^2$  and  $(\sigma_1^{(j)})^2$  for j=1,2,...,n, are the minimal and maximal eigenvalues of  $A_j$  from A respectively. We observe that if matrix  $\Lambda$  has form (9) then  $\Lambda\Lambda^T$  has form (1) as follows

Now we set  $\alpha_j^2 = a_j$  j = 1, ..., n and  $\beta_j \alpha_j = b_j$ , j = 2, ..., n, to compute the entries of an  $(2n-1) \times (2n-1)$  matrix  $\Lambda$  of the form (9) with the prescribed extremal singular values for the submatrices  $\Lambda_j$ 

The proof of the second part is similar to the proof of inverse Theorem 3.  $\square$  Remark 5. There is a similar result for even-order of above Theorem.

## 5. Examples

**Example 1.** Assume n = 5 and given 9 real numbers as below

$$\lambda_1^{(5)}$$
  $\lambda_1^{(4)}$   $\lambda_1^{(3)}$   $\lambda_1^{(2)}$   $\lambda_1^{(1)}$   $\lambda_2^{(2)}$   $\lambda_3^{(3)}$   $\lambda_4^{(4)}$   $\lambda_5^{(5)}$ ,  $-5$   $-3$   $0$   $2$   $6$   $9$   $10$   $12$   $23,$ 

find the central symmetric X-form matrix such that  $\lambda_1^{(j)}$  and  $\lambda_j^{(j)}$  for j=1,2,3,4,5 are the eigenvalues of submatrix  $A_j$  respectively.

Solution. By theorem 1 and some simple calculations, the solution of problem obtain

in the following form

**Example 2.** Assume n = 5, given 9 real numbers as below

$$\sigma_1^{(5)} \qquad \sigma_1^{(4)} \qquad \sigma_1^{(3)} \qquad \sigma_1^{(2)} \qquad \sigma_1^{(1)} \qquad \sigma_2^{(2)} \qquad \sigma_3^{(3)} \qquad \sigma_4^{(4)} \qquad \sigma_4^{(5)}$$

find the central symmetric X-form matrix  $C_n$  and  $\lambda$ -matrix  $\Lambda_n$  such that  $\sigma_1^{(j)}$  and  $\sigma_j^{(j)}$  for j=1,2,3,4,5 are the singular values of submatrices  $\Lambda_j$  for j=1,2,3,4,5 respectively such that  $\Lambda_j$  has form (9) and  $C_j$  has form (3).

**Solution.** At first we find X-form matrix A by Theorem 1 as below

such that  $(\sigma_1^{(j)})^2$  and  $(\sigma_j^{(j)})^2$  for j=1,2,3,4,5 are the minimal and maximal eigenvalues of submatrices A respectively in form (3). Then by Theorem 3 we find X-form matrix  $C_n$ , such that  $\sigma_1^{(j)}$  and  $\sigma_j^{(j)}$  for j=1,2,3,4,5 are the minimal and maximal singular values of submatrices  $C_n$  respectively in form (3)

Then by Theorem 4 we find the  $\lambda$ -form matrix  $\Lambda_n$  such that  $\sigma_1^{(j)}$  and  $\sigma_j^{(j)}$  for j=1,2,3,4,5 are the minimal and maximal singular values of submatrices  $\Lambda_n$  respectively in form (9)

### References

- Emedin Montano, Mario Salas, Ricardo L. Soto, Nonnegative matrices with prescribed extremal singular values, Computers and Mathematics with Applications, 56, (2008), 30-42.
- [2] Juan Peng, Xi-Yan Hu, Lei Zhang, Two inverse eigenvalue problems for a special kind of matrices, *Linear Algebra and its Applications*, **416**, (2006), 336-347.
- [3] Hubert Pickmann, Juan Egana, Ricardo L. Soto, Extremal inverse eigenvalue problem for bordered diagonal matrices, *Linear Algebra and its Applications*, 427, (2007), 256-271.
- [4] Hubert Pickmann, Ricardo L. Soto, J. Egana, Mario Salas, An inverse eigenvalue problem for symmetrical tridiagonal matrices, Computers and Mathematics with Applications, 54, (2007), 699-708.

