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Abstract. We investigate shift invariant subspaces of L2(G), where G

is a locally compact abelian group. We show that every shift invariant

space can be decomposed as an orthogonal sum of spaces each of which

is generated by a single function whose shifts form a Parseval frame. For

a second countable locally compact abelian group G we prove a useful

Hilbert space isomorphism, introduce range functions and give a charac-

terization of shift invariant subspaces of L2(G) in terms of range func-

tions. Finally, we investigate shift preserving operators on locally com-

pact abelian groups. We show that there is a one-to-one correspondence

between shift preserving operators and range operators on L2(G) where

G is a locally compact abelian group.
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1. Introduction

In the last decade, shift invariant (SI)subspaces of L2(Rn) have been studied
from different aspects, by many authors such as: Aldroubi, Benedetto, Bownik,
De Boor, DeVore, Li, Ron, Rzeszotnik, Shen, Weiss and Wilson, cf. [1, 2, 4, 5,
7, 8, 10, 24, 28]. This theory plays an important role in many areas, specially in
the theory of wavelets, and multiresolution analysis. It has been used to show
a new characterization of orthonormal wavelets conjectured by Weiss [26], a
result originally proved in [6] by applying the techniques of [23, 24].

In this paper we investigate the structure of shift invariant subspaces of
L2(G), where G is a locally compact abelian group. Our results generalize
some of the results appearing in the literature on shift invariant spaces. Such a
unified approach seems to be useful, since it describes the basic features of shift
invariant spaces, and includes most of the special cases. The general structure
of these spaces in L2(Rn) was revealed in the work of de Boor, DeVore and
Ron with the use of fiberization techniques based on range functions [5]. The
study of analogous spaces for L2(T, H) with values in a separable Hilbert space
H , in terms of range functions, is quite classical and goes back to Helson [15].
Recently Bownik gave a characterization of shift invariant subspaces of L2(Rn)
following an idea from Helson’s book [15]. So far the theory of SI spaces has
been investigated on Rn but to work with other concrete examples of locally
compact abelian (LCA) groups, it is essential for the theory to be extended to
the general setting. Some general properties of SI spaces on LCA groups, have
been studied by the authors [19]. The present paper is devoted to the study
of structural properties of SI spaces on second countable LCA groups using a
range function approach.

A bounded linear operator U : L2(Rn) → L2(Rn) is called shift preserving
(which will be abbreviated to “SP”) if UTk = TkU for all k ∈ Zn, where Tk
is the shift operator. As a special case of a shift operator is the time delay
operator Tk : l2 → l2 defined by Tku(n) = u(n − k), u ∈ l2, k, n ∈ Z

where the action is to delay the signal u by k units. A digital filter U is a SP
operator on l2. In other words a filter is a time invariant operator in which
delaying the input by k units of time is just to delay the output by k units.
These operators play an important role in signal processing, such as to analyse,
code, reconstruct signals and so on. They are often used to extract required
frequency components from signals. For example, high frequency components
of a signal usually contain the noise and fluctuations, which often have to be
removed from the signal using different kinds of filters. For more details and
examples of filters see [17, 9].

SP operators on R
n have been studied by Bownik in [7]. He gave a char-

acterization of these operators in terms of range operators. Our goal in this
paper is to investigate SP operators on locally compact abelian (which will be
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abbreviated to “LCA”) groups. The major result in this paper is a novel char-
acterization of SP operators on L2(G), where G is a LCA group. This allows
us to handel SP operators (specially filters) on L2(G) in a unified manner. As
an application of this approach, one is able to extend several results from the
theory of filters on Rn to a general LCA group.

2. Notations and Preliminary Results

Throughout this paper we assume that G is a locally compact abelian group.
It is well known that such a group possesses a Haar measure μ that is unique
up to a multiplication by constants. We refer to the usual text books about
locally compact groups [13, 16]. We shall denote the measure of a measurable
set A by |A|. Let Ĝ denote the dual group of G equipped with the compact
convergence topology. The elements of Ĝ which we usually denote by ξ, are
characters on G, but one can also regard elements of G as characters on Ĝ.
More precisely ˆ̂

G = G [13, Pontrjagin Duality Theorem].
Let the Fourier transform ˆ : L1(G) −→ C0(Ĝ), f −→ f̂ , be defined by

f̂(ξ) =
∫
G
f(x)ξ(x)dx. The Fourier transform can be extended to a unitary

isomorphism from L2(G) to L2(Ĝ) known as the Plancherel transform [13, The
Plancherel Theorem].

Suppose G is a locally compact abelian group and H is a closed subgroup of
G. Let G/H be the quotient group whose Haar measure is μ (which is unique
up to a constant factor). If this factor is suitably chosen we have∫

G

f(x)dx =
∫
G/H

∫
H

f(xy)dydμ(xH) f ∈ L1(G).

This identity is known as Weil’s formula [13].
A subgroup L of G is called a uniform lattice if it is discrete and co-compact

(i.e G/L is compact). The subgroup L⊥ = {ξ ∈ Ĝ; ξ(L) = {1}} is called the
annihilator of L in Ĝ.

Let L be a uniform lattice in G. Then the identities L⊥ = Ĝ/L and Ĝ/L⊥ =
L̂, together with the fact that a locally compact abelian group is compact if
and only if its dual group is discrete [13], imply that the subgroup L⊥ is a
uniform lattice in Ĝ (see also [21, 27]).

We now define a shift invariant space in L2(G).

Definition 2.1. Let G be a locally compact abelian group and L be a uniform
lattice in G. A closed subspace V ⊆ L2(G) is called a shift invariant space
(with respect to L) if f ∈ V implies Tkf ∈ V , for any k ∈ L, where Tk
is the translation operator defined by Tkf(x) = f(k−1x) for all x ∈ G. For
ϕ ∈ L2(G), span{Tkϕ; k ∈ L} is called the principle shift invariant space
generated by ϕ and will be denoted by Vϕ.

www.SID.ir

v


Arc
hive

 of
 S

ID

24 R. Raisi Tousi, R.A. Kamyabi Gol

Let ϕ ∈ L2(G). We denote by L2(L̂, wϕ) the space of all functions r : L̂ −→
C, which satisfy

∫
L̂
|r(ξ)|2wϕ(ξ)dξ <∞, where

(1) wϕ(ξ) =
∑
η∈L⊥

|ϕ̂(ξη)|2.

Note that wϕ ∈ L1(L̂). Indeed, by Weil’s formula and The Plancherel The-
orem

∫
L̂

∑
η∈L⊥ |ϕ̂(ξη)|2dξ =

∫
Ĝ
|ϕ̂(ξ)|2dξ = ‖ϕ‖2. In this case ‖r‖2

L2(L̂,w) =∫
L̂
|r(ξ)|2wϕ(ξ)dξ is a norm in L2(L̂, w).
The following proposition gives a characterization of elements in a principle

shift invariant subspace of L2(G) in terms of their Fourier transforms.

Proposition 2.2. Let ϕ ∈ L2(G). Then f ∈ Vϕ if and only if f̂(ξ) = r(ξ)ϕ̂(ξ),
for some r ∈ L2(L̂, wϕ).

Proof: Consider Aϕ = span{Tkϕ; k ∈ L}, then Vϕ = Aϕ. For f ∈ Aϕ let
f(x) =

∑n
i=1 aiϕ(k−1

i x), ai ∈ C, ki ∈ L, 1 ≤ i ≤ n, for some n ∈ N. Then we
have

(2) f̂(ξ) =
n∑
i=1

aiξ(ki)ϕ̂(ξ) = r(ξ)ϕ̂(ξ),

where r(ξ) =
∑n
i=1 aiξ(ki). Conversely every trigonometric polynomial will

give us a function f ∈ Aϕ, via formula (2). So f ∈ Aϕ if and only if
f̂(ξ) = r(ξ)ϕ̂(ξ) where r is a trigonometric polynomial. Denote the set of
all trigonometric polynomials by P . The operator U : Aϕ −→ P given by
U(f) = r is an isometry which is onto. In fact by using The Plancherel Theo-
rem and Weil’s formula we have

(3)

‖f‖2
2 = ‖f̂‖2

2 =
∫
Ĝ
|f̂(ξ)|2dξ

=
∫
L̂

∑
η∈L⊥ |r(ξ)|2|ϕ̂(ξη)|2dξ

=
∫
L̂
wϕ(ξ)|r(ξ)|2dξ

= ‖r‖2
L2(L̂,wϕ).

Therefore there is a unique isometry Ũ : Aϕ −→ P , which extends U from Vϕ
onto P = L2(L̂, wϕ) (Note that for a compact abelian group G the set of all
trigonometric polynomials is dense in L2(G) [25]).

Note that in the case G = R, Z is a uniform lattice. In this case we have
the following corollary which is also proved in [26, Theorem 1.2.4].

Corollary 2.3. Let V ϕ be a principle shift invariant subspace of L2(R). Then
f ∈ Vϕ if and only if f̂(ξ) = r(ξ)ϕ̂(ξ), for some r ∈ L2(T, wϕ), where wϕ(ξ) =∑
k∈Z

|ϕ̂(ξ + k)|2.

3. The Structure of Shift invariant Spaces

It is natural to ask that if for any given principle shift invariant space V we
can find a function ϕ in L2(G) whose shifts are orthonormal. In general the
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answer is not affirmative. (However, we will find another kind of generator for
every principle shift invariant space; see Corollary 3.8 below). In the following
theorem we state a necessary and sufficient condition for shifts of a function ϕ
in L2(G), to be an orthonormal system. Throughout this section the notations
are as in Section 2.

Proposition 3.1. [19] Suppose that ϕ ∈ L2(G), then {Tkϕ; k ∈ L} is an
orthonormal system in L2(G) if and only if

(4) wϕ = 1 a.e. on Ĝ

If Vϕ is a principle shift invariant space and wϕ is given by (1), then the
set supp wϕ is called the spectrum of Vϕ and is denoted by Ωϕ (Note that by
supp wϕ we mean the set of all ξ such that wϕ(ξ) �= 0. Also our convention
is that all measurable sets are determined up to a null set). In the case of
Proposition 3.1, Ωϕ is equal to Ĝ. The following example shows the existence
of principle shift invariant spaces which do not satisfy this property.

Example 3.2. Let G = (R2,+), L = Z2, (so L⊥ = Z2), E = [0, 1/2] ×
[1/2, 3/2], and ϕ be given by ϕ̂ = χE. Then wϕ(ξ) =

∑
k∈Z2 χE(ξ + k). So

Ωϕ =
⋃
k∈Z2(E + k) �= R2.

Now we shall determine how the information about orthogonality of Vϕ1 and
Vϕ2 can be transferred into some other information about the generators ϕ1

and ϕ2 in L2(G).

Proposition 3.3. [19] The spaces Vϕ1 and Vϕ2 are orthogonal if and only if∑
η∈L⊥

ϕ̂1(ξη)ϕ̂2(ξη) = 0 a.e. ξ ∈ Ĝ.

As a consequence of Propositions 3.1 and 3.3, we have the following corollary;
(see also [28]).

Corollary 3.4. (i)Suppose ψ ∈ L2(R). Then {ψ(. − k); k ∈ Z} is an or-
thonormal system if and only if

∑
k∈Z

|ψ̂(ξ + k)|2 = 1, for a.e. ξ ∈ R.
(ii)For any two functions ϕ, ψ ∈ L2(R) the sets {ϕ(. − k); k ∈ Z} and

{ψ(.− k); k ∈ Z} are biorthogonal, if and only if
∑
k∈Z

ϕ̂(ξ + k)ψ̂(ξ + k) = 0,
for a.e. ξ ∈ R.

Definition 3.5. Let H be a Hilbert space. A subset X ⊆ H is called a frame
for H if there exist two numbers 0 < A ≤ B <∞ so that

(5) A‖h‖2 ≤
∑
η∈X

| < h, η > |2 ≤ B‖h‖2 for h ∈ H.

If A = B = 1, X is called a Parseval frame.

Now we prove that every principle shift invariant space has generators whose
shifts form a Parseval frame. The key is the following theorem.
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Theorem 3.6. [19] Let ϕ ∈ L2(G). The shifts of ϕ (with respect to L) form a
Parseval frame for the space Vϕ, if and only if

(6) wϕ = χΩϕ a.e. on Ĝ.

Remark 3.7. Equality (6) is obviously a more general version of equality (4)
that characterizes the orthonormality of the system {Tkϕ}k∈L.

Corollary 3.8. [19] If Vϕ is a principle shift invariant space and ψ is given by

ψ̂(ξ) =
{
ϕ̂(ξ)wϕ(ξ)−1/2 ξ ∈ Ω
0 otherwise

, then {Tkψ, k ∈ L} is a Parseval frame

for Vϕ.

Definition 3.9. If Vϕ is a principle shift invariant space and the system
{Tkϕ, k ∈ L} is a Parseval frame for Vϕ, the function ϕ is called a Parse-
val frame generator of Vϕ.

Corollary 3.8 shows that every principle shift invariant space has a Parseval
frame generator.

Now we show the existence of a decomposition of a shift invariant subspace
of L2(G) into an orthogonal sum of spaces each of which is generated by a
single function whose shifts form a Parseval frame.

Theorem 3.10. [19] Let G be a locally compact abelian group and let L be a
uniform lattice in G. If V is a shift invariant space in L2(G), then there exists
a family of functions {ϕα}α∈I in L2(G) (where I is an index set), such that

(7) V =
⊕
α∈I

Vϕα ,

and ϕα is a Parseval frame generator of the space Vϕα . Moreover, f ∈ V if
and only if

(8) f̂(ξ) =
∑
α∈I

rα(ξ)ϕ̂α(ξ),

and ‖f‖2
2 =

∑
α∈I ‖rα‖2

L2(L̂
⋂

Ωϕα ,wϕα )
, where rα ∈ L2(L̂

⋂
Ωϕα , wϕα) and Ωϕα

is the spectrum of Vϕα , for every α ∈ I.

Remark 3.11. Using the above theorem we can find a Parseval frame for every
shift invariant subspace of L2(G):

If {Tkϕα}k∈L is a Parseval frame for Vϕα , for every α ∈ I, then {Tkϕα}k∈L,α∈I
is a Parseval frame for the orthogonal sum

⊕
α∈I Vϕα . Indeed, for every

f =
∑

β∈I Pβf ∈
⊕

α∈I Vϕα , where Pβ is the orthogonal projection onto Vϕβ
,

we have:∑
α∈I

∑
k∈L | < Tkϕα, f > |2 =

∑
α∈I

∑
β∈I

∑
k∈L | < Tkϕα, Pβf > |2

=
∑

α∈I
∑

k∈L | < Tkϕα, Pαf > |2
=

∑
α∈I ‖Pαf‖2

= ‖
∑
α∈I Pαf‖2

= ‖f‖2.
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4. A Hilbert Space Isomorphism

We show that L2(G) is isometrically isomorphic to the space L2(SL⊥ , l2(L⊥))
of square integrable functions from SL⊥ to l2(L⊥). Notice that this space is
just the direct integral

∫ ⊕
A
Hξdξ, where A = SL⊥ and Hξ = l2(L⊥), for all

ξ ∈ SL⊥ [13]. L2(SL⊥ , l2(L⊥)) is a Hilbert space with inner product < f, g >=∫
S

L⊥
< f(ξ), g(ξ) >l2(L⊥) d(ξ) [12, part II, Proposition 1.5].

Proposition 4.1. [18] The mapping T : L2(G) −→ L2(SL⊥ , l2(L⊥)), defined
by T f(ξ) = (f̂(ξη))η∈L⊥ is an isometric isomorphism, between L2(G) and
L2(SL⊥ , l2(L⊥)).

Applying Proposition 4.1 to G = R
n and L = Zn, the following corollary [7,

Proposition 1.2], is immediate.

Corollary 4.2. [18] The mapping T : L2(Rn) → L2(Tn, l2(Zn)) defined for
f ∈ L2(Rn) by T f : Tn → l2(Zn), T f(x) = (f̂(x + k))k∈Zn , is an isometric
isomorphism between L2(Rn) and L2(Tn, l2(Zn)).

Consider L2(L̂, l2(L⊥)) as the direct integral
∫ ⊕
A l2(L⊥)dλ, for A = L̂ whose

Haar measure is λ. It is interesting to note that this space is also isometrically
isomorphic to L2(G). To prove this we use a direct integral argument.

Proposition 4.3. L2(L̂, l2(L⊥)) is isometrically isomorphic to L2(G).

Proof: By [12, Part II, Proposition 1.11], we have

(
∫ ⊕

L̂

Cdλ) ⊗ l2(L⊥) 

∫ ⊕

L̂

(C ⊗ l2(L⊥))dλ,

where ⊗ is the Hilbert space tensor product (see [22]). The right hand side is
isometrically isomorphic to

∫ ⊕
L̂ l2(L⊥)dλ. Therefore,

L2(L̂) ⊗ l2(L⊥) 
 L2(L̂, l2(L⊥)).

Let SL denote a fundamental domain for L inG. We have l2(L⊥) 
 L2(SL), L2(L̂) 

L2(SL⊥) [21, the proof of Theorem 3.1.7]. Thus,

L2(SL⊥) ⊗ L2(SL) 
 L2(L̂, l2(L⊥)).

But L2(SL⊥)⊗L2(SL) 
 L2(SL⊥ × SL) [13, Theorem 7.16] (note that SL and
SL⊥ are of finite measure [21]), and L2(G) 
 L2(SL⊥×SL) [21, Theorem 1.3.7].
So L2(G) 
 L2(L̂, l2(L⊥)) (By 
 we mean “is isometrically isomorphic to”).

As an immediate consequence of Propositions 4.1 and 4.3 we have:

Corollary 4.4. Suppose G is a second countable LCA group, L is a uniform
lattice in G and SL⊥ is a fundamental domain for L⊥ in Ĝ. Then the three
Hilbert spaces L2(G), L2(L̂, l2(L⊥)) and L2(SL⊥ , l2(L⊥)) are isometrically iso-
morphic.
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5. A Characterization of Shift-Invariant Spaces

Let G be a LCA group and L be a uniform lattice in G. A range function
is a mapping

J : SL⊥ → {closed subspaces of l2(L⊥)}.
J is called measurable if the associated orthogonal projections P (ξ) : l2(L⊥) →
J(ξ) are measurable i.e. ξ �→< P (ξ)a, b > is measurable for each a, b ∈ l2(L⊥)
(see [12]).

The main result of this section is the following characterization theorem in
L2(G).

Theorem 5.1. Suppose G is a second countable LCA group, L is a uniform
lattice in G, and SL⊥ is a fundamental domain for L⊥ in Ĝ. A closed subspace
V ⊆ L2(G) is SI (with respect to the uniform lattice L) if and only if V = {f ∈
L2(G), T f(ξ) ∈ J(ξ) for a.e ξ ∈ SL⊥}, where J is a measurable range function
and T is the mapping as in Proposition 4.1. The correspondence between V

and J is one to one under the convention that the range functions are identified
if they are equal a.e. Moreover, if V = S(φ) for some countable set φ ⊆ L2(G)
then

(9) J(ξ) = span{T ϕ(ξ); ϕ ∈ φ}.

We will prove this theorem in the sequel. For this, we need some prepara-
tions. We start with a definition.

Definition 5.2. For a given range function J , we define the space

(10) MJ = {ϕ ∈ L2(SL⊥ , l2(L⊥)), ϕ(ξ) ∈ J(ξ) for a.e. ξ ∈ SL⊥}.

The following proposition entails that MJ defined by (10) is a Hilbert sub-
space of L2(SL⊥ , l2(L⊥)).

Proposition 5.3. [18] Let J be a range function. Then MJ is a closed subspace
of L2(SL⊥ , l2(L⊥)).

The following lemma is needed in the proof of Theorem 6.1.

Lemma 5.4. Let J be a measurable range function with associated orthogonal
projection P . Let Q denotes the orthogonal projection of L2(SL⊥ , l2(L⊥)) onto
MJ . Then for any ϕ ∈ L2(SL⊥ , l2(L⊥)),

(Qϕ)(ξ) = P (ξ)(ϕ(ξ))

for a.e. ξ ∈ SL⊥.

Proof of Theorem 5.1. Suppose V = S(φ) is a SI space for some count-
able set φ ⊆ L2(G), M = T V and J(ξ) is given by (9). It’s enough to show that
M = MJ . Let ϕ ∈M . Then there exists a sequence {ϕn} converging to ϕ such
that T −1ϕn ∈ span{Tkϕ; ϕ ∈ φ, k ∈ L}. Since T Tkϕ(ξ) = ((T̂kϕ)(ξη))η∈L⊥ =
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(ϕ̂(ξη)ξ(k))η∈L⊥ = ξ(k)T ϕ(ξ), thus ϕn(ξ) ∈ J(ξ) and so ϕ(ξ) ∈ J(ξ). This
implies that M ⊆MJ .
To show thatMJ ⊆M , we observe thatM⊥ = {0}. Take any ψ ∈ L2(SL⊥ , l2(L⊥))
which is orthogonal to M . For any ϕ ∈ T φ and k ∈ L, we have Mkϕ ∈ T V ,
whereMkϕ(ξ) = ξ(k)ϕ(ξ), so 0 =< Mkϕ, ψ >=

∫
S

L⊥
ξ(k) < ϕ(ξ), ψ(ξ) >l2(L⊥)

dξ. Hence < ϕ(ξ), ψ(ξ) >= 0 for a.e. ξ ∈ SL⊥ and any ϕ ∈ T φ. Thus
ψ(ξ) ∈ J(ξ)⊥for a.e. ξ ∈ SL⊥ . This implies that there is no 0 �= ψ ∈ MJ

which is orthogonal to M . Therefore M = MJ . Moreover we need to show
that J , given by (9) is measurable. Let P (ξ) be the orthogonal projection of
l2(L⊥) onto J(ξ) and ψ ∈ L2(SL⊥ , l2(L⊥)). By [12, part II, Proposition 1.9],
It is enough to show that ξ �→ P (ξ)ψ(ξ) is measurable. Let Q denote the or-
thogonal projection of L2(SL⊥ , l2(L⊥)) onto M . Since the map ξ �→ Qψ(ξ) is
measurable, by Lemma 5.4, so is ξ �→ P (ξ)ψ(ξ). Thus J is measurable.

Conversely, if J is a measurable range function and V is given by (9) then
since V = T −1MJ , obviously it is a closed shift invariant space.

Suppose MJ1 = MJ2 for some measurable range functions J1 and J2 with
associated projections P1 and P2, respectively. Then J1(ξ) = J2(ξ) for a.e. ξ ∈
SL⊥ . Indeed, if we apply Lemma 5.4 to the constant function ϕ(ξ) = eη, where
(eη)η∈L⊥ is the standard basis of l2(L⊥), then we have P1(ξ)eη = P2(ξ)eη for all
η ∈ L⊥ and a.e. ξ ∈ SL⊥ . Therefore P1(ξ) = P2(ξ) for a.e. ξ ∈ SL⊥ . So the cor-
respondence between V and J is one to one. �

Now suppose that G is a second countable LCA group, L is a uniform lattice
in G, SL⊥ is a fundamental domain for L⊥, V is a shift invariant subspace of
L2(G) with the associated range function J , and P (ξ) is the projection onto
J(ξ), for ξ ∈ SL⊥ . A range operator on J is a mapping R from the fundamental
domain SL⊥ to the set of bounded linear operators on closed subspaces of
l2(L⊥), so that the domain of R(ξ) is equal to J(ξ) for a.e. ξ ∈ SL⊥ . R is
called measurable if ξ �→< R(ξ)P (ξ)a, b > is a measurable scalar function for
all a, b ∈ l2(L⊥).

Example 5.5. The most important class of LCA groups is the class of com-
pactly generated LCA Lie groups. By the Structure Theorem for compactly gen-
erated LCA Lie groups, these groups are of the form Rp × Zq × Tr × F , where
p, q, r ∈ N0 and F is a finite abelian group (see [16]). Let G = Ra×Zb×Tc×Zd

for a, b, c, d ∈ N, where Zd is the finite abelian group {0, 1, 2, ..., d−1} of residues
modulo d. Fix α ∈ N. Then Ĝ = Ra × Zc × Tb × Zd and L = Za × αZb × Zd

is a uniform lattice in G. Thus L⊥ = Za × Zc × Zbα. Obviously SL⊥ :=
T
a×αT

b×Zd is a fundamental domain for L⊥ in Ĝ. Consider the orthonormal
basis B := B1⊗B2⊗B3⊗B4 for L2(G), where B1 = {MγTkχ[0,1); k, γ ∈ Za},
in which MγTkχ[0,1)(x) = e2πiγxχ[0,1)(x−k) for x ∈ Ra, B2 = {χ{m};m ∈ Zb},
B3 = {e2πil; l ∈ Zc}, B4 = Zd. Then V :=

⊕
ϕ∈B,γ∈L⊥ Vϕ,γ, in which Vϕ,γ =

span{MγTkϕ; k ∈ L}, ϕ ∈ B, γ ∈ L⊥, is a shift invariant subspace of L2(G).
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By Theorem 5.1, V = {f ∈ L2(G), (f̂(ξη))η∈L⊥ ∈ J(ξ) for a.e ξ ∈ SL⊥},
where J(ξ) = {T (Mγϕ)(ξ); ϕ ∈ B, γ ∈ L⊥} = span{ϕ̂(γ−1ξη)η∈L⊥ ; ϕ ∈
B, γ ∈ L⊥}.

6. A Characterization of Shift Preserving operators

In this section the notation will be as in the previous section. The following
theorem is a characterization of SP operators in terms of range operators which
is proved in [20].

Theorem 6.1. (The Characterization Theorem) [20] Suppose V ⊆ L2(G) is
a shift invariant space and J is its associated range function. For every SP
operator U : V → L2(G), there exists a measurable range operator R on J such
that

(11) (T ◦ U)f(ξ) = R(ξ)(T f(ξ)) for a.e. ξ ∈ SL⊥ , for all f ∈ V,

where T is the isometric isomorphism between L2(G) and L2(SL⊥ , l2(L⊥)).
Conversely, given a measurable range operator R on J with

ess supξ∈S
L⊥‖R(ξ)‖ <∞,

there is a bounded SP operator U : V → L2(G), such that (11) holds. The
correspondence between U and R is one-to-one under the usual convention that
the range operators are identified if they are equal a.e.

An immediate consequence of Theorem 6.1 is [7, Theorem 4.5] which is
obtained by putting G = R

n, L = Z
n, L⊥ = Z

n, SL⊥ = T
n in Theorem 6.1.

Example 6.2. Let G be the second countable LCA group Rn ×Zn ×Tn ×Zn,
for n ∈ N, where Zn is the finite abelian group {1, 2, ..., n} of residues modulo
n. Then L = Zn × Zn × {1} × Zn is a uniform lattice in G and L⊥ = Ĝ/L =
Zn×{1}×Zn×{1}. Let π be the left regular representation of G on L2(G) and
ψ ∈ L2(G) be admissible (see [14] ). Then the continuous wavelet transform,
Vψ : L2(G) → L2(G), defined by Vψϕ(x) =< ϕ, π(x)ψ > is obviously a SP
operator, so by Theorem 6.1 there is a range operator R such that for every
f ∈ L2(G),
R(ξ)(T f(ξ)) = (T ◦ Vψ)f(ξ) = ((V̂ψf(ξη))η∈L⊥ = (f̂(ξη)ψ̂(ξη))η∈L⊥ .

Example 6.3. Define U : L2(R) → L2(R) by Uf(x) = f(x) − f(x − 1).
Obviously U is a SP operator. By Theorem 6.1 there exists a range operator
R so that R(ξ)(T f(ξ)) = (T ◦ U)f(ξ) = (Ûf(ξ + k))k∈Z = (1 + exp(iξ))(f̂(ξ +
k))k∈Z, for every f ∈ L2(R).
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