Iranian Journal of Mathematical Sciences and Informatics Vol. 6, No. 2 (2011), pp 43-50

Linear Preservers of Majorization

Fatemeh Khalooei* and Abbas Salemi

Department of Mathematics, Shahid Bahonar University of Kerman, Kerman,

Iran

E-mail: f_khalooei@mail.uk.ac.ir E-mail: salemi@mail.uk.ac.ir

ABSTRACT. For vectors $X, Y \in \mathbb{R}^n$, we say X is left matrix majorized by Y and write $X \prec_{\ell} Y$ if for some row stochastic matrix R, X = RY. Also, we write $X \sim_{\ell} Y$, when $X \prec_{\ell} Y \prec_{\ell} X$. A linear operator $T \colon \mathbb{R}^p \to \mathbb{R}^n$ is said to be a linear preserver of a given relation \prec if $X \prec Y$ on \mathbb{R}^p implies that $TX \prec TY$ on \mathbb{R}^n . In this note we study linear preservers of \sim_{ℓ} from \mathbb{R}^p to \mathbb{R}^n . In particular, we characterize all linear preservers of \sim_{ℓ} from \mathbb{R}^2 to \mathbb{R}^n , and also, all linear preservers of \sim_{ℓ} from \mathbb{R}^p .

Keywords: Linear preservers, Row stochastic matrix, Matrix majorization.

2000 Mathematics subject classification: 15A04, 15A21, 15A51.

1. INTRODUCTION

Let M_{nm} be the algebra of all $n \times m$ real matrices, and the usual notation \mathbb{R}^n , for $n \times 1$ real vectors. A matrix $R = [r_{ij}] \in M_{nm}$ is called a *row stochastic* matrix if $r_{ij} \geq 0$ and $\sum_{k=1}^m r_{ik} = 1$ for all i, j. For vectors $X, Y \in \mathbb{R}^n$, we say X is left (resp. right) matrix majorized by Y and write $X \prec_{\ell} Y$ (resp. $X \prec_r Y$) if for some row stochastic matrix R, X = RY (resp. X = YR). For more information about right and left matrix majorization and some other majorizations, we refer to [1], [5] and [11]. Also for $X, Y \in \mathbb{R}^n$, we write $X \sim_{\ell} Y$, if $X \prec_{\ell} Y \prec_{\ell} X$.

^{*}Corresponding Author

Received 20 June 2010; Accepted 15 February 2011 ©2011 Academic Center for Education, Culture and Research TMU

⁴³

A linear operator $T: \mathbb{R}^p \to \mathbb{R}^n$ is said to be a linear preserver of a given relation \prec if $X \prec Y$ on \mathbb{R}^p implies that $TX \prec TY$ on \mathbb{R}^n . Linear preservers of \prec_{ℓ} and \prec_r from \mathbb{R}^n to \mathbb{R}^n are fully characterized in [6] and [7]. For more information about linear preservers of majorization we refer the reader to [1]-[4] and [10]. [8] introduced an extension of this preservers which is the characterization of linear preservers of \prec_{ℓ} from \mathbb{R}^p to \mathbb{R}^n , such that p and n are not necessarily equal. Also [8] characterized the structure of theses linear preservers of \prec_{ℓ} for $p \leq n \leq p(p-1)$. In [9], by a geometric approach one can see the characterization of linear preservers of \prec_{ℓ} from \mathbb{R}^p to \mathbb{R}^n without any additional conditions on p and n. Here we focus on this method. And in the final section we characterize linear preserver of \sim_{ℓ} from \mathbb{R}^p to \mathbb{R}^n , with some restrictions on p and n. We shall use the following conventions throughout the paper, Let $T: \mathbb{R}^p \to \mathbb{R}^n$

We shall use the following conventions throughout the paper, Let $T: \mathbb{R}^p \to \mathbb{R}^n$ be a nonzero linear operator and let $[T] = [t_{ij}]$ denotes the matrix representation of T with respect to the standard bases $\{e_1, e_2, \ldots, e_p\}$ of \mathbb{R}^p and $\{f_1, f_2, \ldots, f_n\}$ of \mathbb{R}^n . If p = 1, then all linear operators on \mathbb{R}^1 are preservers of \prec_{ℓ} . Thus, we assume $p \ge 2$. Let A_i be $m_i \times p$ matrices, $i = 1, \ldots, k$. We use the notation $[A_1/A_2/\ldots/A_k]$ to denote the corresponding $(m_1 + m_2 + \ldots + m_k) \times p$ matrix. Denote

(1)

$$\mathbf{a}: = \max\{t_{ij} \mid 1 \le i \le n, 1 \le j \le p\},$$

$$\mathbf{b}: = \min\{t_{ij} \mid 1 \le i \le n, 1 \le j \le p\}.$$

We also use the notation P for the permutation matrix such that $P(e_i) = e_{i+1}$, $1 \leq i \leq p-1$, $P(e_p) = e_1$. Let I denote the $p \times p$ identity matrix, and let $r, s \in \mathbb{R}$ be such that rs < 0. Define the $p(p-1) \times p$ matrix $\mathcal{P}_p(r,s) = [P_1/P_2/\ldots/P_{p-1}]$ where $P_j = rI + sP^j$, for all $j = 1, 2, \ldots, p-1$. It is clear that up to a row permutation the matrices $\mathcal{P}_p(r,s)$ and $\mathcal{P}_p(s,r)$ are equal. Also define $\mathcal{P}_p(r,0) := rI$, $\mathcal{P}_p(0,s) := sI$ and $\mathcal{P}_p(0,0)$ as $1 \times p$ zero matrix.

Let $T : \mathbb{R}^2 \to \mathbb{R}^n$ be a linear operator and let $[T] = [T_1/\ldots/T_n]$, where $T_i = [t_{i1}, t_{i2}], 1 \le i \le n$. Let

(2)
$$\Delta := \operatorname{Conv}(\{(t_{i1}, t_{i2}), (t_{i2}, t_{i1}), 1 \le i \le n\}) \subseteq \mathbb{R}^2$$

where $\operatorname{Conv}(A)$ denotes the convex hull of a set A. Also, let C(T) denotes the set of all corners of Δ .

Now, we study the characterization of linear preservers of \prec_{ℓ} from \mathbb{R}^p to \mathbb{R}^n .

Theorem 1.1. Let $T : \mathbb{R}^2 \to \mathbb{R}^n$ be a linear operator. Then, T is a linear preserver of \prec_{ℓ} if and only if $\mathcal{P}_2(x, y)$ is a sub-matrix of [T] and $xy \leq 0$ for all $(x, y) \in C(T)$.

Now let $p \geq 3$, we study all linear preservers $T : \mathbb{R}^p \to \mathbb{R}^n$ of \prec_{ℓ} . First we need some definitions.

Definition 1.2. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator and let $[T] = [T_1/.../T_n]$. Define

$$\Omega := \operatorname{Conv}(\{T_i = (t_{i1}, \dots, t_{ip}), 1 \le i \le n\}) \subseteq \mathbb{R}^p$$

Also, let C(T) be the set of all corners of Ω .

Definition 1.3. Let $T: \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator. We denote by P_i (resp. N_i) the sum of the non negative (resp. nonpositive) entries in the i^{th} row of [T]. If all the entries in the i^{th} row are positive (resp. negative), we define $N_i = 0$ (resp. $P_i = 0$).

Definition 1.4. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator. Define

$$\Delta := \text{Conv}(\{(P_i, N_i), (N_i, P_i) : 1 \le i \le n\}), \\ E(T) := \{(P_i, N_i) : (P_i, N_i) \text{ is a corner of } \Delta\},$$

where P_i, N_i are as in Definition 1.3.

Theorem 1.5. [7, Theorem 4.6] Let T and E(T) be as in Definition 1.4. Then T preserves \prec_{ℓ} if and only if $\mathcal{P}_p(\alpha, \beta)$ is a sub-matrix of [T] for all $(\alpha, \beta) \in E(T)$.

For $X, Y \in \mathbb{R}^p$, we define $X \sim_{\ell} Y$, when $X \prec_{\ell} Y \prec_{\ell} X$. This paper consists of two sections. First section characterizes linear preservers of \sim_{ℓ} from \mathbb{R}^2 to \mathbb{R}^n . In the second section we obtain a key necessary condition for $T : \mathbb{R}^p \to \mathbb{R}^n (p \ge 3)$, to be a linear preserver of \sim_{ℓ} , in particular we prove $p \le n$, when $p \ge 3$. At first we have some lemmas.

Lemma 1.6. Let $X, Y \in \mathbb{R}^p$, $X \sim_{\ell} Y$ if and only if $\max X = \max Y$ and $\min X = \min Y$ where the maximum and minimum are taken over the entries of X and Y.

Proof. By [9, Remark 3.1] we know $X \prec_{\ell} Y$ if and only if $\min Y \leq \min X \leq \max X \leq \max Y$. Hence $X \prec_{\ell} Y \prec_{\ell} X$ if and only if $\max X = \max Y$ and $\min X = \min Y$.

Lemma 1.7. Let $T: \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator such that $\min TX = \min TY$ for all $X \sim_{\ell} Y$. Then T is a linear preserver of \sim_{ℓ} .

Proof. If $X \sim_{\ell} Y$ then $-X \sim_{\ell} -Y$ and hence $\min -TX = \min -TY$, which implies $\max TX = \max TY$.

Lemma 1.8. If $T: \mathbb{R}^p \to \mathbb{R}^n$ is a linear preserver of \prec_{ℓ} , then T is a linear preserver of \sim_{ℓ} .

Proof. Let T be a linear preserver of \prec_{ℓ} and $X \prec_{\ell} Y \prec_{\ell} X$, for some $X, Y \in \mathbb{R}^p$. Hence $TX \prec_{\ell} TY \prec_{\ell} TX$ which is $TX \sim_{\ell} TY$.

The converse of Lemma 1.8 is not true, we will show it in the next section .

2. Linear Preservers on \mathbb{R}^2

We know that T is a linear preserver of \sim_{ℓ} if and only if αT is a linear preserver of \sim_{ℓ} for any nonzero real number α . Without loss of generality we can assume $|\mathbf{b}| \leq \mathbf{a}$. Also throughout the remainder of this paper we fix the notation $\mathcal{P}(n)$ for all $n \times n$ permutation matrices. In this section we shall characterize all linear preservers $T \colon \mathbb{R}^2 \to \mathbb{R}^n$ of \sim_{ℓ} . We have the following lemma.

Lemma 2.1. (i) Let $X, Y \in \mathbb{R}^2$, then $X \sim_{\ell} Y$ if and only if X = PY for some $P \in \mathcal{P}(2)$.

(ii) Let $T: \mathbb{R}^2 \to \mathbb{R}^n$ $(n \leq 2)$ be a linear operator then T is a preserver of \sim_{ℓ} if and only if for all $X \in \mathbb{R}^2$ and $P \in \mathcal{P}(2)$, there exists a permutation matrix $Q \in \mathcal{P}(n)$ such that T(PX) = QT(X).

Proof. (i) Let $X, Y \in \mathbb{R}^2$, by Lemma 1.6 $X \sim_{\ell} Y$ if and only if max $X = \max Y$ and min $X = \min Y$. Hence X = PY for some $P \in \mathcal{P}(2)$.

(*ii*) Let $X \in \mathbb{R}^2$, by part (*i*) T is a linear preserver of \sim_{ℓ} if and only if $T(X) \sim_{\ell} T(PX)$ for every permutation matrix $P \in \mathcal{P}(2)$. Now by part (*i*), if $T(X) \sim_{\ell} T(PX)$ then T(PX) = QT(X) for some suitable permutation matrix Q.

Proposition 2.2. Let $T : \mathbb{R}^2 \to \mathbb{R}$ be a linear operator. Then T preserves \sim_{ℓ} if and only if $[T] = [a \ a]$, for some $a \in R$.

Proof. Let T preserve \sim_{ℓ} , since $e_1 \sim_{\ell} e_2$ then $\max Te_1 = \max Te_2$ and $\min Te_1 = \min Te_2$. Hence $[T] = [a \ a], \ a \in R$. Conversely, let $[T] = [a \ a]$ for some $a \in \mathbb{R}$ hence $T(X) = ax_1 + ax_2 = ax_2 + ax_1 = T(PX)$, for all $X \in \mathbb{R}^2$ and for all $P \in \mathcal{P}(2)$. Therefore T is a linear preserver of \sim_{ℓ} .

Theorem 2.3. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator. T preserves \sim_{ℓ} , if and only if $[T] = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ or $[T] = \begin{bmatrix} a & a \\ b & b \end{bmatrix}$, for some $a, b \in R$.

Proof. Let T be a linear preserver of \sim_{ℓ} . Since $e_1 \sim_{\ell} e_2$, then $Te_1 \sim_{\ell} Te_2$ and hence $Te_1 = PTe_2$ for some permutation matrix P. Therefore $Te_1 = Te_2$ or $Te_1 = PTe_2$, $(P \neq I)$. Which implies $[T] = \begin{bmatrix} a & a \\ b & b \end{bmatrix}$ or $[T] = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$. Conversely it is easy to check that T(X) = T(PX), for all $X \in \mathbb{R}^2$ and every 2×2 permutation matrix P. Hence T preserves \sim_{ℓ} .

The following example shows that the converse of Lemma 1.8 is not true.

Example 2.4. Let $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, by Theorem 2.3, A is a linear preserver of \sim_{ℓ} , but by Theorem 1.1, A is not a linear preserver of \prec_{ℓ} .

Definition 2.5. Let $x, y \in R$, define $Q_2(x, y) = \begin{bmatrix} x & y \\ y & x \end{bmatrix}$, if $x \neq y$ and $Q_2(x, x) = [x \ x]$.

Theorem 2.6. Let $T: \mathbb{R}^2 \to \mathbb{R}^n$ be a linear operator. Then T is a linear preserver of \sim_{ℓ} if and only if $\mathcal{Q}_2(x,y)$ is a sub-matrix of [T], for all $(x,y) \in$ C(T), where C(T) denote the set of all corners of Δ as in (2).

Proof. Let T be a linear preserver of \sim_{ℓ} and $(x, y) \in C(T), x \neq y$. Let $T_i =$ $(t_{i1}, t_{i2}) = (x, y)$. Then there exist real numbers m, M such that $mt_{i1} + Mt_{i2} < 0$ $mt_{i1} + Mt_{i2}, j \neq i$. Choose $\varepsilon_0 > 0$ small enough so that $(m - \varepsilon)t_{i1} + (M + \varepsilon)t_{i2} < 0$ $(m-\varepsilon)t_{j1}+(M+\varepsilon)t_{j2}, j\neq i, 0<\varepsilon\leq\varepsilon_0.$ Since $(M+\varepsilon,m-\varepsilon)^t\sim_\ell (m-\varepsilon,M+\varepsilon)^t,$ $T(M+\varepsilon,m-\varepsilon)^t \sim_{\ell} T(m-\varepsilon,M+\varepsilon)^t$. Hence, for all $0 < \varepsilon \leq \varepsilon_0$, there exist $1 \leq k \leq n$ such that $T_k = (t_{k1}, t_{k2}) \in C(T)$ and $(m - \varepsilon)t_{i1} + (M + \varepsilon)t_{i2} =$ $\min T(m-\varepsilon, M+\varepsilon)^t = \min T(M+\varepsilon, m-\varepsilon)^t = (M+\varepsilon)t_{k1} + (m-\varepsilon)t_{k2}.$ Since $k \in \{1, 2, \ldots, n\}$ is a finite set, there exists k such that $t_{k1} = t_{i2}$ and $t_{k2} = t_{i1}$. Therefore, $\mathcal{Q}_2(x, y)$ is a sub-matrix of [T],.

Conversely, let $\mathcal{Q}_2(x, y)$ be a sub-matrix of [T] for all $(x, y) \in C(T)$. Define the linear operator \widehat{T} on \mathbb{R}^2 such that $[\widehat{T}] = [\mathcal{Q}_2(x_1, y_1) / \cdots / \mathcal{Q}_2(x_r, y_r)]$, where $(x_i, y_i) \in C(T), 1 \leq i \leq r$. By elementary convex analysis, we know that $\max T(X) = \max \widehat{T}(X)$ and $\min T(X) = \min \widehat{T}(X)$ for all $X \in \mathbb{R}^2$. Hence it is enough to show that \widehat{T} is a linear preserver of \prec_{ℓ} . By Theorems 2.2 and 2.3, each $\mathcal{Q}_2(x_i, y_i)$ is a linear preserver of \sim_{ℓ} . Thus, T is a linear preserver of \sim_{ℓ} .

3. LINEAR PRESERVERS ON \mathbb{R}^p

In this section we consider linear operators $T: \mathbb{R}^p \to \mathbb{R}^n$ for p > 3.

Lemma 3.1. Let $T: \mathbb{R}^p \to \mathbb{R}^n$, $p \geq 3$ be a linear preserver of \sim_{ℓ} and let \mathbf{a}, \mathbf{b} are as in (1). Then the following assertions hold,

(i) $\mathbf{a} = \max T e_i$ and $\mathbf{b} = \min T e_i$ for all $i = 1, \dots, n$. In particular every column of [T] contains at least one entry equal to **a** and at least one entry equal to \mathbf{b} .

(ii) If $t_{ij} = \mathbf{a}$ for some i, j then $t_{ik} \leq 0$, for all $k \neq j$. Also if $t_{ij} = \mathbf{b}$ for some $i, j \text{ then } t_{ik} \ge 0, \text{ for all } k \neq j.$ (iii) $p \le n.$

Proof. (i) We have $e_i \sim_{\ell} e_j$ for all $1 \leq i, j \leq p$, hence $Te_i \sim_{\ell} Te_j$ which implies that $\max Te_i = \max Te_j$ and $\min Te_i = \min Te_j$, for all $1 \le i, j \le p$. By (1), $\mathbf{a} = \max T e_i$ and $\mathbf{b} = \min T e_i$, for all $1 \le i \le p$.

(ii) For $p \geq 3$, and for all $r, s \in \{1, \ldots, p\}, r \neq s$, we know $(e_r + e_s) \sim_{\ell} e_r$ so $(Te_r + Te_s) \sim_{\ell} Te_r$. Therefore, if the i^{th} of [T] contains an entry equal to **a** (resp. **b**), then all other entries of the i^{th} row of [T] are nonpositive (resp. nonnegative).

(*iii*) By parts (*i*) and (*ii*) we know that each column of [T] has at least one entry equal to **a** and each row of [T] has at most one entry equal to **a**, hence $p \leq n$.

Now, we state the key theorem of this section.

Theorem 3.2. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear preserver of \sim_{ℓ} and let \mathbf{a} and \mathbf{b} be as in (1). Then there exist $0 \leq \alpha \leq \mathbf{a}$ and $\mathbf{b} \leq \beta \leq 0$ such that $\mathcal{P}_p(\mathbf{a}, \beta)$ and $\mathcal{P}_p(\alpha, \mathbf{b})$ are sub-matrices of [T].

Proof. Let $[T] = [t_{ij}]$, by Lemma 3.1 we know that in each column of [T] there is at least one entry equal to **a** and at least one entry equal to **b**. Let $1 \le k \le p$, define $I_k = \{i: 1 \le i \le n, t_{ik} = \mathbf{a}\}$ and $J_k = \{j: 1 \le j \le n, t_{jk} = \mathbf{b}.\}$ Since T is a linear preserver of \sim_{ℓ} , the sets I_k and J_k are nonempty. Also, Lemma 3.1 follows that a row containing an entry **a** (resp. **b**) contains other positive (resp. negative) entries. That is $t_{il} \le 0$ and $t_{jl} \ge 0$ whenever $i \in I_k$, $j \in J_k$ and $l \ne k$. For $i \in I_k$ and $j \in J_k$ we set $\beta_k^i = \sum_{l \ne k} t_{il} \le 0$, $\alpha_k^j = \sum_{l \ne k} t_{jl} \ge 0$, and

(3)
$$\beta_k := \min\{\beta_k^i, \ i \in I_k\}, \quad \alpha_k := \max\{\alpha_k^j, \ j \in J_k\}$$

Define $X_k = -(N+1)e_k + e$. Choose N_0 large enough such that for all $N \ge N_0$ and $1 \le i \le n$,

(4)
$$\min T(X_k) = -N\mathbf{a} + \beta_k \le -Nt_{ik} + \sum_{l \ne k} t_{il} \le -N\mathbf{b} + \alpha_k = \max T(X_k).$$

We know that $X_k \sim_{\ell} X_r = -(N+1)e_r + e, \ 1 \leq r \leq p$ and T is a linear preserver of \sim_{ℓ} . Hence by $(4), \alpha := \alpha_k = \alpha_r$ and $\beta := \beta_k = \beta_r, 1 \leq r \leq p$. Also, $X_k \sim_{\ell} -Ne_i + e_j, \ i \neq j$. For each $N \geq N_0$, there exists $1 \leq h \leq n$ such that $-Nt_{hi} + t_{hj} = \min T(-Ne_i + e_j) = \min T(X_k) = -N\mathbf{a} + \beta$ and for each $1 \leq i \leq p, \ 1 \leq j \leq p$ and $N \geq N_0$, there exists $1 \leq h \leq n$ such that $-N(\mathbf{a}-t_{hi}) = t_{hj} - \beta$. It follows that $t_{hi} = a, \ t_{hj} = \beta$. Hence $\mathcal{P}_p(\mathbf{a}, \beta)$ is a submatrix of [T]. Similarly, there exists N_1 , such that for each $N \geq N_1$, there exists $1 \leq h \leq n$ such that $-Nt_{hi}+t_{hj} = \max T(-Ne_i+e_j) = \max T(X_k) = -N\mathbf{b}+\alpha$ and $-N(\mathbf{b}-t_{hi}) = t_{hj} - \alpha$. Thus, $t_{hi} = \mathbf{b}$ and $t_{hj} = \alpha$. Since $1 \leq i \neq j \leq p$ was arbitrary, $\mathcal{P}_p(\mathbf{b}, \alpha)$ is a sub-matrix of [T]. Therefore, $\mathcal{P}_p(\mathbf{a}, \beta)$ and $\mathcal{P}_p(\mathbf{b}, \alpha)$ are sub-matrices of [T].

In the following example we will show that for all $n \ge p$ there exists $T \colon \mathbb{R}^p \to \mathbb{R}^n$ which preservers \sim_{ℓ} .

Example 3.3. Let $p \leq n$. Assume I is the $p \times p$ identity matrix and E is an $(n-p) \times p$ row stochastic matrix. Define $T \colon \mathbb{R}^p \to \mathbb{R}^n$ by [T] = [I/E]. By Theorem 1.5, we know that T is a linear preserver of \prec_{ℓ} . Hence, by Lemma 1.8, T is a linear preserver of \sim_{ℓ}

Theorem 3.4. $T: \mathbb{R}^p \to \mathbb{R}^p$, $p \ge 3$ is a linear preserver of \sim_{ℓ} if and only if TX = cPX, for some $p \times p$ permutation matrix $P, c \in \mathbb{R}$ and for all $X \in \mathbb{R}^p$.

Proof. Let T be a linear preserver of \sim_{ℓ} , by Lemma 3.1 each column of [T] has at least, one entry equal to **a** and one entry equal to **b**. Also each row of [T] has at most, one entry equal to **a** and one entry equal to **b**. Since [T] is $p \times p$, then

all rows and all columns of [T] have exactly one entry equal to **a** and one entry equal to **b** with all other entries equal to zero. Without loss of generality let $t_{11} = \mathbf{a}, t_{12} = \mathbf{b}$ and $t_{1k} = 0$ for all $k \neq 1, 2$. Therefore $\max T(e_1 - e_2) = \mathbf{a} - \mathbf{b}$, but $\max T(e_1 - e_3) = a$. We know that $T(e_1 - e_2) \sim_{\ell} T(e_1 - e_3)$, since T is a linear preserver of \sim_{ℓ} and $(e_1 - e_2) \sim_{\ell} (e_1 - e_3)$. Hence $\max T(e_1 - e_2) =$ $\max T(e_1 - e_3)$ which is $\mathbf{a} - \mathbf{b} = \mathbf{a}$. Therefore $\mathbf{b} = 0$ and $[T] = \mathbf{a}P$ for some $P \in \mathcal{P}(p)$.

Conversely, Let Tx = cPx for all $x \in \mathbb{R}^p$ and $P \in \mathcal{P}(p)$. Since T is a linear preserver of \sim_{ℓ} if and only if αT for $\alpha \in \mathbb{R}$ is a linear preserver of \sim_{ℓ} , we can assume $c \geq 0$. Let $x \sim_{\ell} y$ and $m = \min x = \min y$ and $M = \max x = \max y$. Obviously $cm = \min Tx = \min Ty$ and $cM = \max Tx = \max Ty$. Therefore $Tx \sim_{\ell} Ty$.

By [6] we know that for $p \geq 3$, $T : \mathbb{R}^p \to \mathbb{R}^p$ is a linear preserver of \prec_{ℓ} if and only if T has the form $x \mapsto aPx$, for some $a \in \mathbb{R}$ and some $P \in \mathcal{P}(p)$.

Corollary 3.5. $T: \mathbb{R}^p \to \mathbb{R}^p$, $p \ge 3$ is a linear preserver of \sim_{ℓ} if and only if T is a linear preserver of \prec_{ℓ} .

Problem. Let $3 \le p < n$ be given. It will be nice to characterize all linear preservers of \sim_{ℓ} from \mathbb{R}^p to \mathbb{R}^n .

Acknowledgement. The Authors would like to thank the anonymous referee for useful comments. The research has been supported by the SBUK Center of Excellence in Linear Algebra and Optimization.

References

- T. Ando, Majorization, Doubly stochastic matrices, and comparison of eigenvalues, *Linear Algebra and its Applications*, **118**, (1989), 163-248.
- [2] A. Armandnejad and H. R. Afshin, Linear functions preserving multivariate and directional majorization, *Iranian Journal of Mathematical Sciences and Informatics*, 5(1), (2010), 1-5.
- [3] A. Armandnejad and A. Salemi, The Structure of linear preservers of gs-majorization, Bulletin of the Iranian Mathematical Society, 32(2), (2006), 31-42.
- [4] L. B. Beasley, S.-G. Lee and Y.-H. Lee, A characterization of strong preservers of matrix majorization, *Iranian Journal of Mathematical Siences and Informatics*, 5(1), (2010), 1-5.
- [5] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
- [6] A. M. Hasani and M. Radjabalipour, Linear preserver of Matrix majorization. International Journal of Pure and Applied Mathematics, 32(4) (2006), 475-482.
- [7] A. M. Hasani and M. Radjabalipour, On linear preservers of (right) matrix majorization, Linear Algebra and its Applications, 423(2-3), (2007), 255-261.
- [8] F. Khalooei, M. Radjabalipour and P. Torabian, Linear preservers of left matrix majorization, *Electronic Journal of Linear Algebra*, 17, (2008), 304-315.
- [9] F. Khalooei, A. Salemi, The structure of linear preservers of left matrix majorization on R^p, Electronic Journal of Linear Algebra, 18 (2009), 88-97.
- [10] C. K. Li and E. Poon, Linear operators preserving directional majorization, *Linear Algebra and its Applications*, **325** (2001), 141-14.

[11] F. D. Martínez Pería, P. G. Massey, and L. E. Silvestre, Weak Matrix-Majorization, Linear Algebra and its Applications, 403, (2005), 343-368.

www.SID.ir