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ABSTRACT. For vectors X,Y € R", we say X is left matrix majorized by
Y and write X <, Y if for some row stochastic matrix R, X =RY. Also,
we write X ~y Y, when X <, Y <y X. A linear operator T": RP — R" is
said to be a linear preserver of a given relation < if X <Y on RP implies
that T7X < TY on R"™. In this note we study linear preservers of ~; from
RP to R™. In particular, we characterize all linear preservers of ~, from

R2 to R™, and also, all linear preservers of ~, from RP to RP.
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1. INTRODUCTION

Let M,,,, be the algebra of all n x m real matrices, and the usual notation R™,
for n x 1 real vectors. A matrix R = [r;;] € My, is called a row stochastic
matrix if r;; > 0 and X7 7 = 1 for all 4,j. For vectors X,Y € R", we
say X is left (resp. right) matrix majorized by Y and write X <, Y (resp.
X <, Y)uif for some row stochastic matrix R, X = RY (resp. X = YR).
For more information about right and left matrix majorization and some other
majorizations, we refer to [1], [5] and [11]. Also for X,Y € R", we write
X ~y Y, fX <Y< X.
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A linear operator T: R? — R" is said to be a linear preserver of a given relation
< if X <Y on RP implies that TX < TY on R"™. Linear preservers of <, and
=<, from R™ to R™ are fully characterized in [6] and [7]. For more information
about linear preservers of majorization we refer the reader to [1]-[4] and [10]. [8]
introduced an extension of this preservers which is the characterization of linear
preservers of <, from RP to R™, such that p and n are not necessarily equal.
Also [8] characterized the structure of theses linear preservers of <, for p <
n < p(p —1). In [9], by a geometric approach one can see the characterization
of linear preservers of <y from R? to R™ without any additional conditions on p
and n. Here we focus on this method. And in the final section we characterize
linear preserver of ~, from RP to R™, with some restrictions on p and n.

We shall use the following conventions throughout the paper, Let T': RP — R"
be a nonzero linear operator and let [T] = [t;;] denotes the matrix repre-
sentation of T" with respect to the standard bases {e1,eq,...,ep} of RP and
{f1, f2, .-, fa} of R™. If p = 1, then all linear operators on R! are preservers of
<¢. Thus, we assume p > 2. Let A; be m; X p matrices, i = 1, .., k. We use the
notation [A;/As/ ... /Ag] to denote the corresponding (my+ma+...+mg) Xp
matrix. Denote

a: = max{t;j|1<i<n,L<j<p}
(1) b: = min{t; |1 <i<n,1<j<p}

We also use the notation P for the permutation matrix such that P(e;) = e;41,
1<i<p-—1, P(ep) = e1. Let I denote the p x p identity matrix, and let
r,s € R be such that rs < 0. Define the p(p — 1) x p matrix Py(r,s) =
[P1/Py/.../Py_q] where P; = rl +sP’ forall j =1,2,...,p— 1. It is clear
that up to a row permutation the matrices Pp(r, s) and Pp(s,r) are equal. Also
define P, (r,0) :=rI, P,(0,s) ==l and P,(0,0) as 1 X p zero matrix.

Let T : R? — R"™ be a linear operator and let [T] = [Ty/.../T,], where
Ti = [til,tig], 1 < ) <n. Let

(2) A = Conv({(ti1,ti2), (tio, ti1), 1 <i <n}) CR?

where Conv(4) denotes the convex hull of a set A. Also, let C(T") denotes the
set of all corners of A.
Now, we study the characterization of linear preservers of <, from RP to R".

Theorem 1.1. Let T : R? — R™ be a linear operator. Then, T is a linear
preserver of <, if and only if Pa(x,y) is a sub-matriz of [T] and xy < 0 for all
(z,y) € C(T).

Now let p > 3, we study all linear preservers T : RP — R" of <, . First we need
some definitions.
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Definition 1.2. LetT : RP — R™ be a linear operator and let [T = [T1/ ... /Ty].
Define

Q.= COHV({TZ‘ = (tila ce ,tip),]. < ) < n}) C RP,
Also, let C(T) be the set of all corners of ).
Definition 1.3. Let T: RP — R" be a linear operator. We denote by P;
(resp. N;) the sum of the non negative (resp. nonpositive) entries in the it"

row of [T]. If all the entries in the it" row are positive (resp. negative), we
define N; =0 (resp. P, = 0).

Definition 1.4. Let T : RP — R™ be a linear operator. Define

A Conv({(P;, N;), (N, P;) : 1 < i <mn}),
E(T): = {(FP,N;): (P, N;) is a corner of A},

where P;, N; are as in Definition 1.5.

Theorem 1.5. [7,Theorem 4.6] Let T and E(T) be as in Definition 1.4. Then
T preserves <¢ if and only if Pp(a, B) is a sub-matriz of [T] for all (a,8) €
E(T).

For X,Y € RP, we define X ~; Y, when X <, Y=<, X. This paper consists of
two sections. First section characterizes linear preservers of ~, from R? to R™.
In the second section we obtain a key necessary-condition for 7': R? — R"(p >
3), to be a linear preserver of ~y, in particular we prove p < n, when p > 3. At
first we have some lemmas.

Lemma 1.6. Let XY € RP, X ~y Y. if and only if max X = maxY and
min X = minY where the mazimum and minimum are taken over the entries
of X andY.

Proof. By [9, Remark 3.1] we know X <, Y if and only if minY < min X <
max X < maxY. Hence X <, ¥ <, X if and only if max X = maxY and
min X = minY.

Lemma 1.7, Let T: RP — R"™ be a linear operator such that minTX =
minTY fordall X ~pY. Then T is a linear preserver of ~y .

Proof. If X ~; Y then —X ~;, —Y and hence min —7X = min —TY, which
implies max T X = maxTY.

Lemma 1.8. If T: RP — R" is a linear preserver of <¢, then T is a linear
preserver of ~y .

Proof. Let T be a linear preserver of <, and X <y Y <y X, for some X,Y €
RP. Hence TX <, TY <, TX whichis TX ~,TY.
The converse of Lemma 1.8 is not true, we will show it in the next section .
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2. LINEAR PRESERVERS ON R2

We know that T is a linear preserver of ~y if and only if oT is a linear preserver
of ~, for any nonzero real number «. Without loss of generality we can assume
| b |< a. Also throughout the remainder of this paper we fix the notation P(n)
for all n x n permutation matrices. In this section we shall characterize all
linear preservers 7': R2 — R™ of ~; . We have the following lemma.

Lemma 2.1. (i) Let X,Y € R? then X ~; Y if and only if X = PY for some
P e P(2).

(ii) Let T: R? — R™ (n < 2) be a linear operator then T is a preserver of ~y
if and only if for all X € R? and P € P(2), there exists a permutation matriz
Q € P(n) such that T(PX) = QT (X).

Proof. (i) Let X,Y € R? by Lemma 1.6 X ~; Y if and only if max X = max Y
and min X = minY. Hence X = PY for some P € P(2).

(i) Let X € R?, by part (i) T is a linear preserver of ~, if and only if T'(X) ~
T(PX) for every permutation matrix P € P(2). Now by part (), if T(X) ~
T(PX) then T(PX) = QT(X) for some suitable permutation matrix Q.

Proposition 2.2. Let T: R? — R be a linear operator. Then T preserves ~y
if and only if [T] = [a al], for some a € R.

Proof. Let T preserve ~yp, since e; ~y es then maxTe; = maxTey and
minTe; = minTes. Hence [T] = [a a], a € R. Conversely, let [T] = [a a] for
some a € R hence T'(X) = az; + azs = aze + axy = T(PX), for all X € R?
and for all P € P(2). Therefore T is alinear preserver of ~y .

Theorem 2.3. Let T: R? — R? be a linear operator. T preserves ~y, if and

onlyif[T]z[Z Z} OT[T]:[Z Z},forsomea,beR.

Proof. Let T be a linear preserver of ~, . Since e; ~y es, then Te; ~y Tey
and hence Te; = PTes for some permutation matrix P. Therefore Te; = Teo

or Tey = PTes, (P # I). Which implies [T] = { Z Z } or [T] = { Z 2 ] :

Conversely it is easy to check that T(X) = T(PX), for all X € R? and every
2 X 2-permutation matrix P. Hence T preserves ~y .
The following example shows that the converse of Lemma 1.8 is not true.

2 1
1 2
~y, but by Theorem 1.1, A is not a linear preserver of <y .

Example 2.4. Let A = { ] , by Theorem 2.3, A is a linear preserver of

Ty

Definition 2.5. Let x,y € R, define Qa(x,y) = [ - } ,if x £y and

Qo(z,z) =[x z].


v

Linear preservers of majorization 47

Theorem 2.6. Let T: R? — R™ be a linear operator. Then T is a linear
preserver of ~y if and only if Qa(x,y) is a sub-matriz of [T], for all (x,y) €
C(T), where C(T) denote the set of all corners of A as in (2).

Proof. Let T be a linear preserver of ~, and (z,y) € C(T), x # y. Let T; =
(ti1, tiz) = (z,y). Then there exist real numbers m, M such that mt;; + Mt <
mitj1+Mtjo, j # i. Choose gg > 0small enough so that (m—e)t;1 +(M+e)tie <
(m—e)tj1+(M+e)tjo,j # 1,0 <e <eg. Since (M+e,m—e)" ~y (m—e, M+e)t,
T(M+e,m—e¢)t ~y T(m—e,M+¢)'. Hence, for all 0 < e < g, there exist
1 <k < n such that Ty, = (tg1,tke) € C(T) and (m — e)tin + (M + e)tin =
minT(m—e,M+e)t =minT (M +e,m—¢e)' = (M +¢)tg + (m—¢)tye. Since
ke€{1,2,...,n} is a finite set, there exists k such that tx1 = t;2 and tx2 = t;1.
Therefore, Qa(z,y) is a sub-matrix of [T7],.

Conversely, let Qa(z,y) be a sub-matrix of [T] for all (z,y) € C(T). Define the
linear operator T' on R2 such that [f] = [Qa(x1,y1)/ -/ Q2(zssyr)], where
(zi,y;) € C(T),1 < ¢ < r. By elementary convex analysis, we know that
max T(X) = max T (X) and minT(X) = min JA“(X) for all X € R?. Hence it is
enough to show that T is a linear preserver of <, . By Theorems 2.2 and 2.3,
each Qa(x;,y;) is a linear preserver of ~,. Thus, T is a linear preserver of ~y.

3. LINEAR PRESERVERS/ON RP
In this section we consider linear operators T: RP — R"™ for p > 3.

Lemma 3.1. Let T: RP — R™ p > 3 be a linear preserver of ~; and let a,b
are as in (1). Then the following assertions hold,

(1) a=maxTe; and b =minTe; foralli=1,... ,n. In particular every col-
umn of [T] contains at least one entry equal to a and at least one entry equal
to b.

(1) If t;; = a for some i,§ then ti. <0, for all k # j. Also if t;; = b for some
i,j then ty, > 0, for all k # j.

(73t) p < n.

Proof. (i) We have e; '~y ¢e; for all 1 < 4,j < p, hence Te; ~p Te; which
implies that maxT'e; = maxTe; and minT'e; = minTe;, for all 1 < 4,5 < p.
By (1), a = maxTe; and b =minTe;, for all 1 <14 < p.

(ii) For p >3, and for all r,s € {1,...,p}, r # s, we know (e, + e5) ~y¢ e,
so (Tep + Tes) ~¢ Te,. Therefore, if the i of [T] contains an entry equal
to a (resp. b), then all other entries of the i*" row of [T] are nonpositive
(resp. nonnegative).

(731) By parts (i) and (i7) we know that each column of [T] has at least one
entry equal to a and each row of [T'] has at most one entry equal to a, hence
p<n.

Now, we state the key theorem of this section.
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Theorem 3.2. Let T : RP — R™ be a linear preserver of ~; and let a and b
be as in (1). Then there exist 0 < o < a and b < < 0 such that Py(a,3) and
Pp(a, b) are sub-matrices of [T].

Proof. Let [T] = [t;;], by Lemma 3.1 we know that in each column of [T there
is at least one entry equal to a and at least one entry equal to b. Let 1 < k < p,
define I, = {i: 1 <i < n,tyy =a}and Ji = {j: 1 < j < n,tj; = b.} Since
T is a linear preserver of ~y, the sets I, and Jj are nonempty. Also, Lemma
3.1 follows that a row containing an entry a (resp. b) contains other positive
(resp. negative) entries. That is t; < 0 and t;; > 0 whenever ¢ € Iy, j € Ji
and | # k. For i € I}, and j € Ji, we set (], = E#ktil <0, ai = E#ktﬂ >0,
and

(3) B :=min{3L, i € I}, ay:= max{ai, Jj e Ji}.

Define X, = —(N +1)eg, +e. Choose Ny large enough such that forall N > Ny
and 1 <i<n,

(4) minT(Xy) = —Na+ B < —Nty + Ztil < —Nb4+ oy, = max T'(Xy).
Ik
We know that Xy ~; X, = —(N +1)e, + ¢, L < r < p and T is a linear
preserver of ~y. Hence by (4),a := a = «, and 8 := [ = 5,1 < r < p.
Also, X ~¢ —Ne; + e, i # j. For each N > Ny, there exists 1 < h < n
such that —Ntp; +tp; = minT(—Ne; + ¢;) = minT(Xy) = —Na+ (3 and for
each1 <i<p 1< j<pandN > Ny, there exists 1 < h < n such that
—N(a—tp;) = tp; — 0. It follows that ts; =a, th; = 5. Hence Py(a, §) is a sub-
matrix of [T]. Similarly, there exists Ny, such-that for each N > Ny, there exists
1 < h < nsuchthat —Ntp;+tp; = maxT(=Ne;+e;) = maxT(Xy) = —Nb+a
and —N (b — ty;) = tp; — . Thus, th; =b and tp; = . Since 1 < i #j <p
was arbitrary, Pp(b, o) is a sub-matrix of [T']. Therefore, Py(a, §) and Pp(b, a)
are sub-matrices of [T]:
In the following example we will show that for all n > p there exists T: RP — R"
which preservers i~ .

Example 3.3. Let p < n. Assume I is the p X p identity matriz and E is an
(n — p) X p row stochastic matriz. Define T: R? — R™ by [T] = [I/E]. By
Theorem 1.5, we know that T is a linear preserver of <, . Hence, by Lemma
1.8, T is a linear preserver of ~y

Theorem 3.4. T: RP — RP, p > 3 is a linear preserver of ~y if and only if
TX =cPX, for some p X p permutation matriz P, c € R and for all X € RP.

Proof. Let T be a linear preserver of ~4, by Lemma 3.1 each column of [T'] has
at least, one entry equal to a and one entry equal to b. Also each row of [T'] has
at most, one entry equal to a and one entry equal to b. Since [T] is p X p, then
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all rows and all columus of [T'] have exactly one entry equal to a and one entry
equal to b with all other entries equal to zero. Without loss of generality let
t11 = a, t12 = b and t1;, = 0 for all k # 1, 2. Therefore maxT(e; —ez) = a—b,
but maxT'(e; — e3) = a. We know that T'(e; — e3) ~¢ T(e1 — e3), since T is
a linear preserver of ~; and (e; — ea) ~¢ (€1 — e3). Hence maxT'(e; — e2) =
maxT'(e; — e3) which is a — b = a. Therefore b = 0 and [T] = aP for some
P e P(p).

Conversely, Let T = cPx for all z € R and P € P(p). Since T is a linear
preserver of ~y if and only if oT for a € R is a linear preserver of ~y, we can
assume ¢ > 0. Let x ~y y and m = minz = miny and M = maxz = maxy.
Obviously em = minTz = minTy and ¢M = maxTzx = maxTy. Therefore
Tx ~y Ty.

By [6] we know that for p > 3, T: R? — RPis a linear preserver of <, if and
only if T has the form x — aPz, for some a € R and some P € P(p).

Corollary 3.5. T: R? — RP p > 3 is a linear preserver of ~y if and only if
T is a linear preserver of <y .

Problem. Let 3 < p < n be given. It will be nice to/characterize all linear
preservers of ~y from R? to R".
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