Iranian Journal of Mathematical Sciences and Informatics Vol. 6, No. 2 (2011), pp 43-50

Linear Preservers of Majorization

Fatemeh Khalooei ∗ and Abbas Salemi

Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran

> E-mail: f khalooei@mail.uk.ac.ir E-mail: salemi@mail.uk.ac.ir

ABSTRACT. For vectors $X, Y \in \mathbb{R}^n$, we say X is left matrix majorized by *Y* and write $X \prec_{\ell} Y$ if for some row stochastic matrix R , $X = RY$. Also, we write $X \sim_{\ell} Y$, when $X \prec_{\ell} Y \prec_{\ell} X$. A linear operator $T: \mathbb{R}^p \to \mathbb{R}^n$ is said to be a linear preserver of a given relation \prec if $X \prec Y$ on \mathbb{R}^p implies that $TX \prec TY$ on \mathbb{R}^n . In this note we study linear preservers of \sim_{ℓ} from \mathbb{R}^p to \mathbb{R}^n . In particular, we characterize all linear preservers of \sim_{ℓ} from \mathbb{R}^2 to \mathbb{R}^n , and also, all linear preservers of \sim_{ℓ} from \mathbb{R}^p to \mathbb{R}^p .

Keywords: Linear preservers, Row stochastic matrix, Matrix majorization.

2000 Mathematics subject classification: 15A04, 15A21, 15A51.

1. INTRODUCTION

E-mail: f_khalooei@mail. uk.ac.ir
 E-mail: Saleni@mail. uk.ac.ir
 ABSTRACT. For vectors $X, Y \in \mathbb{R}^n$, we say X is left matrix majorized by
 Y and write $X \prec_{\ell} Y$ if for some row stochastic matrix $R, X = R/Y$ Let M_{nm} be the algebra of all $n \times m$ real matrices, and the usual notation \mathbb{R}^n , for $n \times 1$ real vectors. A matrix $R = [r_{ij}] \in M_{nm}$ is called a *row stochastic* matrix if $r_{ij} \geq 0$ and $\sum_{k=1}^{m} r_{ik} = 1$ for all i, j . For vectors $X, Y \in \mathbb{R}^n$, we say X is left (resp. right) matrix majorized by Y and write $X \prec_{\ell} Y$ (resp.
 $Y \rightarrow Y$) if for home now stachastic matrix $B \times_{\ell} Y = BV$ (resp. $X = YD$) $X \prec_r Y$ if for some row stochastic matrix R, $X = RY$ (resp. $X = YR$). For more information about right and left matrix majorization and some other majorizations, we refer to [1], [5] and [11]. Also for $X, Y \in \mathbb{R}^n$, we write $X \sim_{\ell} Y$, if $X \prec_{\ell} Y \prec_{\ell} X$.

[∗]Corresponding Author

Received 20 June 2010; Accepted 15 February 2011 c 2011 Academic Center for Education, Culture and Research TMU

⁴³

A linear operator $T: \mathbb{R}^p \to \mathbb{R}^n$ is said to be a linear preserver of a given relation \prec if $X \prec Y$ on \mathbb{R}^p implies that $TX \prec TY$ on \mathbb{R}^n . Linear preservers of \prec_{ℓ} and \prec_{ℓ} from \mathbb{R}^n to \mathbb{R}^n are fully characterized in [6] and [7]. For more information \prec_r from \mathbb{R}^n to \mathbb{R}^n are fully characterized in [6] and [7]. For more information about linear preservers of majorization we refer the reader to [1]-[4] and [10]. [8] introduced an extension of this preservers which is the characterization of linear preservers of \prec_{ℓ} from \mathbb{R}^p to \mathbb{R}^n , such that p and n are not necessarily equal. Also [8] characterized the structure of theses linear preservers of \prec_{ℓ} for $p \leq$ $n \leq p(p-1)$. In [9], by a geometric approach one can see the characterization of linear preservers of \prec_{ℓ} from \mathbb{R}^p to \mathbb{R}^n without any additional conditions on p
and n. Here we focus on this method. And in the final section we obspectating and n . Here we focus on this method. And in the final section we characterize linear preserver of \sim_{ℓ} from \mathbb{R}^p to \mathbb{R}^n , with some restrictions on p and n.
We shall use the following source throughout the paper. Let $T: \mathbb{R}^p$.

oe a nonzero linear operator and let $[T] = [t_{ij}]$ denotes the matrix representation of *T* with respect to the standard bases $\{e_1, e_2, \ldots, e_r\}$ of \mathbb{R}^n and $f_1, f_2, \ldots, f_n\}$ of \mathbb{R}^n . If $p = 1$, then all li We shall use the following conventions throughout the paper, Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a nonzero linear operator and let $[T] = [t_{ij}]$ denotes the matrix representation of T with respect to the standard bases $\{e_1, e_2, \ldots, e_p\}$ of \mathbb{R}^p and ${f_1, f_2,..., f_n}$ of \mathbb{R}^n . If $p = 1$, then all linear operators on \mathbb{R}^1 are preservers of \prec_{ℓ} . Thus, we assume $p \geq 2$. Let A_i be $m_i \times p$ matrices, $i = 1, ..., k$. We use the notation $[A_1/A_2/\dots/A_k]$ to denote the corresponding $(m_1+m_2+\dots+m_k)\times p$ matrix. Denote

(1)
a:
$$
= \max\{t_{ij} | 1 \le i \le n, 1 \le j \le p\},
$$

$$
b: = \min\{t_{ij} | 1 \le i \le n, 1 \le j \le p\}.
$$

We also use the notation P for the permutation matrix such that $P(e_i) = e_{i+1}$, $1 \leq i \leq p-1$, $P(e_p) = e_1$. Let I denote the $p \times p$ identity matrix, and let $r, s \in \mathbb{R}$ be such that $rs < 0$. Define the $p(p-1) \times p$ matrix $\mathcal{P}_p(r, s)$ $[P_1/P_2/\dots/P_{p-1}]$ where $P_j = rI + sP^j$, for all $j = 1, 2, \dots, p-1$. It is clear that up to a row permutation the matrices $\mathcal{P}_p(r,s)$ and $\mathcal{P}_p(s,r)$ are equal. Also define $\mathcal{P}_p(r,0) := rI$, $\mathcal{P}_p(0,s) := sI$ and $\mathcal{P}_p(0,0)$ as $1 \times p$ zero matrix.

Let $T : \mathbb{R}^2 \to \mathbb{R}^n$ be a linear operator and let $[T] = [T_1 / ... / T_n]$, where $T_i = [t_{i1}, t_{i2}], 1 \le i \le n.$ Let

(2)
$$
\Delta := \text{Conv}(\{(t_{i1}, t_{i2}), (t_{i2}, t_{i1}), 1 \le i \le n\}) \subseteq \mathbb{R}^2,
$$

where $Conv(A)$ denotes the convex hull of a set A. Also, let $C(T)$ denotes the set of all corners of Δ .

Now, we study the characterization of linear preservers of \prec_{ℓ} from R^p to R^n .

Theorem 1.1. Let $T : \mathbb{R}^2 \to \mathbb{R}^n$ be a linear operator. Then, T is a linear *preserver of* \prec_{ℓ} *if and only if* $\mathcal{P}_2(x, y)$ *is a sub-matrix of* [T] *and* $xy \le 0$ *for all* $(x, y) \in C(T)$ $(x, y) \in C(T)$.

Now let $p \geq 3$, we study all linear preservers $T : \mathbb{R}^p \to \mathbb{R}^n$ of \prec_{ℓ} . First we need some definitions.

Definition 1.2. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator and let $[T] = [T_1 / \dots / T_n]$. *Define*

$$
\Omega := \text{Conv}(\{T_i = (t_{i1}, \ldots, t_{ip}), 1 \le i \le n\}) \subseteq \mathbb{R}^p.
$$

Also, let $C(T)$ *be the set of all corners of* Ω .

Definition 1.3. Let $T: \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator. We denote by P_i (resp. N_i) *the sum of the non negative* (resp. *nonpositive*) *entries in the i*th *row of* [T]. If all the entries in the ith row are positive (resp. negative), we *define* $N_i = 0$ (resp. $P_i = 0$).

Definition 1.4. *Let* $T : \mathbb{R}^p \to \mathbb{R}^n$ *be a linear operator. Define*

$$
\Delta: = \text{Conv}(\{(P_i, N_i), (N_i, P_i) : 1 \le i \le n\}),
$$

$$
E(T): = \{(P_i, N_i) : (P_i, N_i) \text{ is a corner of } \Delta\},
$$

where P_i , N_i *are as in Definition 1.3.*

Theorem 1.5. [7, Theorem 4.6] Let T and $E(T)$ be as in Definition 1.4. Then T preserves \prec_{ℓ} *if* and only *if* $\mathcal{P}_p(\alpha, \beta)$ *is a sub-matrix of* [T] *for all* $(\alpha, \beta) \in$
 $F(T)$ $E(T)$.

 $E(T) := \{ (P_i, N_i) : (P_i, N_i) \text{ is a corner of } \Delta \},$
 Archive of P₁, N_i are as in Definition 1.3.
 Theorem 1.5. [7, *Theorem 4.6*] *Let T* and $E(T)$ be as in Definition 1.4. Then
 T preserves \prec_{ℓ} *if* and only if \mathcal{P}_p For $X, Y \in \mathbb{R}^p$, we define $X \sim_{\ell} Y$, when $X \prec_{\ell} Y \prec_{\ell} X$. This paper consists of two sections. First section characterizes linear preservers of \sim_{ℓ} from \mathbb{R}^2 to \mathbb{R}^n .
In the second section we obtain a lay persensal condition for $T: \mathbb{R}^p \to \mathbb{R}^n$. In the second section we obtain a key necessary condition for $T: \mathbb{R}^p \to \mathbb{R}^n$ ($p \geq$ 3), to be a linear preserver of \sim_{ℓ} , in particular we prove $p \leq n$, when $p \geq 3$. At first we have some lammas. first we have some lemmas.

Lemma 1.6. *Let* $X, Y \in \mathbb{R}^p$, $X \sim_{\ell} Y$ if and only if $\max X = \max Y$ and $\min Y = \min Y$ where the maximum and minimum are taken even the entries $\min X = \min Y$ *where the maximum and minimum are taken over the entries of* X *and* Y.

Proof. By [9, Remark 3.1] we know $X \prec_{\ell} Y$ if and only if $\min Y \leq \min X \leq$ $\max X \le \max Y$. Hence $X \prec_{\ell} Y \prec_{\ell} X$ if and only if $\max X = \max Y$ and $\min Y = \min Y$. $\min X = \min Y$.

Lemma 1.7. Let $T: \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator such that $\min TX =$ $\min TY$ *for all* $X \sim_{\ell} Y$. *Then T is a linear preserver of* \sim_{ℓ} .

Proof. If $X \sim_{\ell} Y$ then $-X \sim_{\ell} -Y$ and hence min $-TX = \min -TY$, which implies $\max_{X,Y} K = \max_{Y} T Y$ implies $\max TX = \max TY$.

Lemma 1.8. *If* $T: \mathbb{R}^p \to \mathbb{R}^n$ *is a linear preserver of* \prec_{ℓ} , *then* T *is a linear measurem* of *preserver of* \sim_{ℓ} . .

Proof. Let T be a linear preserver of \prec_{ℓ} and $X \prec_{\ell} Y \prec_{\ell} X$, for some $X, Y \in \mathbb{R}^p$. Hence $T X \rightarrow T Y$ which is $T Y \rightarrow T Y$ \mathbb{R}^p . Hence $TX \prec_{\ell} TY \prec_{\ell} TX$ which is $TX \sim_{\ell} Y$
The converse of Lamma 1.8 is not two we will

The converse of Lemma 1.8 is not true, we will show it in the next section.

2. LINEAR PRESERVERS ON \mathbb{R}^2

We know that T is a linear preserver of \sim_{ℓ} if and only if αT is a linear preserver of \sim_{ℓ} for any nonzero real number α . Without loss of generality we can assume $| \mathbf{b} |$ < **a**. Also throughout the remainder of this paper we fix the notation $\mathcal{P}(n)$ for all $n \times n$ permutation matrices. In this section we shall characterize all linear preservers $T: \mathbb{R}^2 \to \mathbb{R}^n$ of \sim_{ℓ} . We have the following lemma.

Lemma 2.1. (*i*) *Let* $X, Y \in \mathbb{R}^2$, *then* $X \sim_{\ell} Y$ *if and only if* $X = PY$ *for some* $P \subset \mathcal{D}(2)$ $P \in \mathcal{P}(2)$.

(*ii*) *Let* $T: \mathbb{R}^2 \to \mathbb{R}^n$ ($n \leq 2$) *be a linear operator then* T *is a preserver of* \sim_{ℓ} *of call* $Y \subset \mathbb{R}^2$ *and* $P \subset \mathcal{D}(2)$, *thene emists a parmutation matrice if* and only if for all $X \in \mathbb{R}^2$ and $P \in \mathcal{P}(2)$, there exists a permutation matrix $Q \in \mathcal{P}(n)$ *such that* $T(PX) = QT(X)$.

Proof. (*i*) Let $X, Y \in \mathbb{R}^2$, by Lemma 1.6 $X \sim_{\ell} Y$ if and only if max $X = \max Y$
and $\min Y = \min Y$. Hence $X = DY$ for some $B \in \mathcal{D}(2)$. and min $X = \min Y$. Hence $X = PY$ for some $P \in \mathcal{P}(2)$.

(ii) Let $X \in \mathbb{R}^2$, by part (i) T is a linear preserver of \sim_{ℓ} if and only if $T(X) \sim_{\ell} T(PX)$ for every permutation matrix $P \subset T(2)$. Now by part (i) if $T(X) \sim_{\ell} T(PX)$ $T(PX)$ for every permutation matrix $P \in \mathcal{P}(2)$. Now by part (i), if $T(X) \sim_{\ell}$ $T(PX)$ then $T(PX) = QT(X)$ for some suitable permutation matrix Q.

Proposition 2.2. *Let* $T: \mathbb{R}^2 \to \mathbb{R}$ *be a linear operator. Then* \overline{T} *preserves* \sim_{ℓ} *if* and only if $[T] = [a \ a]$, for some $a \in R$.

Proof. Let T preserve \sim_{ℓ} , since $e_1 \sim_{\ell} e_2$ then $\max Te_1 = \max Te_2$ and $\min Te_2 = \min Te_2$. Hence $[T] = [e, e]$ $e \in E$ Convergely let $[T] = [e, e]$ for $\min Te_1 = \min Te_2$. Hence $[T] = [a \ a]$, $a \in R$. Conversely, let $[T] = [a \ a]$ for some $a \in \mathbb{R}$ hence $T(X) = ax_1 + ax_2 = ax_2 + ax_1 = T(PX)$, for all $X \in \mathbb{R}^2$ and for all $P \in \mathcal{P}(2)$. Therefore T is a linear preserver of \sim_{ℓ} . .

Theorem 2.3. *Let* $T: \mathbb{R}^2 \to \mathbb{R}^2$ *be a linear operator.* T *preserves* ∼_{ℓ}, *if* and *only if* $[T] = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ $\begin{bmatrix} a & b \\ b & a \end{bmatrix}$ or $[T] = \begin{bmatrix} a \\ b \end{bmatrix}$ $\begin{bmatrix} a \\ b \end{bmatrix}$ $\begin{bmatrix} a \\ b \end{bmatrix}$, for some $a, b \in R$.

Proof. (*i*) Let *X*, $Y \in \mathbb{R}^2$, by Lemma 1.6 *X* ~ ϵ *Y* if and only if max $X = \max Y$

and min $X = \min Y$. Hence $X = PY$ for some $P \in \mathcal{P}(2)$.
 $\{ii\}$ Let $X \in \mathbb{R}^2$, by part (*i*) i is a linear preserver of $\$ **Proof.** Let T be a linear preserver of \sim_{ℓ} . Since $e_1 \sim_{\ell} e_2$, then $Te_1 \sim_{\ell} Te_2$ and hence $Te_1 = PTe_2$ for some permutation matrix P. Therefore $Te_1 = Te_2$ or $Te_1 = PTe_2$, $(P \neq I)$. Which implies $[T] = \begin{bmatrix} a & a \\ b & b \end{bmatrix}$ $\begin{bmatrix} a & a \\ b & b \end{bmatrix}$ or $[T] = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$
 $\begin{bmatrix} Y \\ Y \end{bmatrix}$ for all $Y \subset \mathbb{R}^2$ and $\begin{bmatrix} a & b \\ b & a \end{bmatrix}$. Conversely it is easy to check that $T(X) = T(PX)$, for all $X \in \mathbb{R}^2$ and every 2×2 permutation matrix P. Hence T preserves \sim_{ℓ} .

. The following example shows that the converse of Lemma 1.8 is not true.

Example 2.4. *Let* A ⁼ $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, *by Theorem 2.3, A is a linear preserver of* \sim_{ℓ} , *but by Theorem 1.1, A is not a linear preserver of* \prec_{ℓ} .

Definition 2.5. *Let* $x, y \in R$, *define* $Q_2(x, y) = \begin{bmatrix} x & y \\ y & x \end{bmatrix}$ $\begin{bmatrix} x & y \\ y & x \end{bmatrix}$, if $x \neq y$ and $\mathcal{Q}_2(x,x)=[x\ x].$

Theorem 2.6. *Let* $T: \mathbb{R}^2 \to \mathbb{R}^n$ *be a linear operator. Then* T *is a linear preserver of* ∼_{ℓ} *if and only if* $Q_2(x, y)$ *is a sub-matrix of* [T], *for all* $(x, y) \in C(T)$, where $C(T)$ denote the set of all sermons of Δ as in (2) $C(T)$, where $C(T)$ denote the set of all corners of Δ as in (2).

Proof. Let T be a linear preserver of \sim_{ℓ} and $(x, y) \in C(T)$, $x \neq y$. Let $T_i = (t_i, t_{i+1}) - (x, y)$. Then there exist real numbers $m M$ such that $m t_{i+1} M t_{i+2}$ $(t_{i1}, t_{i2}) = (x, y)$. Then there exist real numbers m, M such that $mt_{i1} + Mt_{i2}$ $mt_{i1}+Mt_{i2}, j \neq i$. Choose $\varepsilon_0 > 0$ small enough so that $(m-\varepsilon)t_{i1}+(M+\varepsilon)t_{i2}$ $(m-\varepsilon)t_{j1} + (M+\varepsilon)t_{j2}, j \neq i, 0 < \varepsilon \leq \varepsilon_0$. Since $(M+\varepsilon, m-\varepsilon)^t \sim \ell (m-\varepsilon, M+\varepsilon)^t$,
 $T(M+\varepsilon, m-\varepsilon)^t \sim T(m-\varepsilon, M+\varepsilon)^t$. Hence for all $0 < \varepsilon < \varepsilon$, there exist $T(M + \varepsilon, m - \varepsilon)^t \sim_{\ell} T(m - \varepsilon, M + \varepsilon)^t$. Hence, for all $0 < \varepsilon \leq \varepsilon_0$, there exist
 $1 < h < m$ such that $T = (t + 1) \in C(T)$ and $(m - \varepsilon)t + (M + \varepsilon)t =$ $1 \leq k \leq n$ such that $T_k = (t_{k1}, t_{k2}) \in C(T)$ and $(m - \varepsilon)t_{i1} + (M + \varepsilon)t_{i2} =$ $\min T(m-\varepsilon, M+\varepsilon)^t = \min T(M+\varepsilon, m-\varepsilon)^t = (M+\varepsilon)t_{k1} + (m-\varepsilon)t_{k2}$. Since $k \in \{1, 2, \ldots, n\}$ is a finite set, there exists k such that $t_{k1} = t_{i2}$ and $t_{k2} = t_{i1}$. Therefore, $Q_2(x, y)$ is a sub-matrix of $[T]$,.

Example 12
 Archive 22 (*x*, *y*) be a sub-matrix of [*T*] for all $(x, y) \in C(T)$. Define the
 Archive of T on R^2 such that $[\hat{T}] = [Q_2(x_1, y_1)/\cdots/Q_2(x_r, y_r)]$, where
 x_i, y_i $\in C(T)$, $1 \le i \le r$. By elementary conversan Conversely, let $\mathcal{Q}_2(x, y)$ be a sub-matrix of [T] for all $(x, y) \in C(T)$. Define the linear operator \widehat{T} on R^2 such that $|\widehat{T}| = [\mathcal{Q}_2(x_1, y_1)/\cdots/\mathcal{Q}_2(x_r, y_r)],$ where $(x_i, y_i) \in C(T)$, $1 \leq i \leq r$. By elementary convex analysis, we know that $\max T(X) = \max \widehat{T}(X)$ and $\min T(X) = \min \widehat{T}(X)$ for all $X \in \mathbb{R}^2$. Hence it is enough to show that T is a linear preserver of \prec_{ℓ} . By Theorems 2.2 and 2.3, each $Q_2(x_i, y_i)$ is a linear preserver of \sim_{ℓ} . Thus, T is a linear preserver of \sim_{ℓ} .

3. LINEAR PRESERVERS ON \mathbb{R}^p

In this section we consider linear operators $T: \mathbb{R}^p \to \mathbb{R}^n$ for $p \geq 3$.

Lemma 3.1. *Let* $T: \mathbb{R}^p \to \mathbb{R}^n$, $p \geq 3$ *be a linear preserver of* \sim_{ℓ} *and let* **a**, **b** area *and a i* mean *f b s did in the following genericing hold are as in* (1)*. Then the following assertions hold,*

(i) $\mathbf{a} = \max T e_i$ and $\mathbf{b} = \min T e_i$ for all $i = 1, \ldots, n$. In particular every col u *umn of* [T] *contains at least one entry equal to* **a** *and at least one entry equal to* **b**. to **b**.
 \overrightarrow{a}

(*ii*) *If* $t_{ij} = \mathbf{a}$ *for some i*, *j then* $t_{ik} \leq 0$, *for all* $k \neq j$. Also *if* $t_{ij} = \mathbf{b}$ *for some* i, j *then* $t_{ik} \geq 0$ *, for all* $k \neq j$.

(*iii*) $p \leq n$.

Proof. (i) We have $e_i \sim_e e_j$ for all $1 \leq i, j \leq p$, hence $Te_i \sim_e Te_j$ which implies that $\max Te_i = \max Te_j$ and $\min Te_i = \min Te_j$, for all $1 \le i, j \le p$. By (1), $\mathbf{a} = \max T e_i$ and $\mathbf{b} = \min T e_i$, for all $1 \leq i \leq p$.

(ii) For $p \geq 3$, and for all $r, s \in \{1, \ldots, p\}$, $r \neq s$, we know $(e_r + e_s) \sim_e e_r$ so $(T e_r + T e_s) \sim_{\ell} T e_r$. Therefore, if the ith of [T] contains an entry equal to a (recovered) then all other entries of the ith new of [T] are pappertive to **a** (resp. **b**), then all other entries of the i^{th} row of [T] are nonpositive (resp. nonnegative).

(*iii*) By parts (*i*) and (*ii*) we know that each column of $[T]$ has at least one entry equal to **a** and each row of $[T]$ has at most one entry equal to **a**, hence $p \leq n$.

Now, we state the key theorem of this section.

Theorem 3.2. *Let* $T : \mathbb{R}^p \to \mathbb{R}^n$ *be a linear preserver of* \sim_{ℓ} *and let* **a** *and* **b** *b c a i n i l n i d j k c a i n i d j l a i d n j d n d be as in* (1)*. Then there exist* $0 \le \alpha \le \mathbf{a}$ *and* $\mathbf{b} \le \beta \le 0$ *such that* $\mathcal{P}_p(\mathbf{a}, \beta)$ *and* $\mathcal{P}_p(\alpha, \mathbf{b})$ *are sub-matrices of* [T].

Proof. Let $[T] = [t_{ij}]$, by Lemma 3.1 we know that in each column of $[T]$ there is at least one entry equal to **a** and at least one entry equal to **b**. Let $1 \leq k \leq p$, define $I_k = \{i : 1 \le i \le n, t_{ik} = \mathbf{a}\}\$ and $J_k = \{j : 1 \le j \le n, t_{jk} = \mathbf{b}.\}\$ Since T is a linear preserver of \sim_{ℓ} , the sets I_k and J_k are nonempty. Also, Lemma 3.1 follows that ^a row containing an entry **^a** (resp. **^b**) contains other positive (resp. negative) entries. That is $t_{il} \leq 0$ and $t_{jl} \geq 0$ whenever $i \in I_k$, $j \in J_k$ and $l \neq k$. For $i \in I_k$ and $j \in J_k$ we set $\beta_k^i = \sum_{l \neq k} t_{il} \leq 0$, $\alpha_k^j = \sum_{l \neq k} t_{jl} \geq 0$, and

(3)
$$
\beta_k := \min\{\beta_k^i, i \in I_k\}, \quad \alpha_k := \max\{\alpha_k^j, j \in J_k\}.
$$

Define $X_k = -(N+1)e_k + e$. Choose N_0 large enough such that for all $N \ge N_0$ and $1 \leq i \leq n$,

(4)
$$
\min T(X_k) = -N\mathbf{a} + \beta_k \le -Nt_{ik} + \sum_{l \neq k} t_{il} \le -N\mathbf{b} + \alpha_k = \max T(X_k).
$$

3) $\beta_k := \min\{\beta_k^j, i \in I_k\}, \quad \alpha_k := \max\{\alpha_k^j, j \in J_k\}.$

Define $X_k = -(N+1)e_k + e$. Choose N_0 large enough such that for all $N \ge N_0$

and $1 \le i \le n$,

4) $\min T(X_k) = -N\mathbf{a} + \beta_k \le -Nt_{ik} + \sum_{i \ne k} t_{il} \le -Nb + \alpha_k = \max T(X_k).$

We know that $X_k \sim$ We know that $X_k \sim_{\ell} X_r = -(N+1)e_r + e$, $1 \leq r \leq p$ and T is a linear
presenter of \sim Hence by (4) \approx in \approx p and β in β in β in \leq p and β preserver of \sim_{ℓ} . Hence by (4), $\alpha := \alpha_k = \alpha_r$ and $\beta := \beta_k = \beta_r, 1 \leq r \leq p$. Also, $X_k \sim_{\ell} -Ne_i + e_j$, $i \neq j$. For each $N \geq N_0$, there exists $1 \leq h \leq n$
such that $N_1^* + \cdots + \cdots = \min_{k=1}^n T_{k-1}^* (N_0 + e_k) = \min_{k=1}^n T_{k-1}^* (X_k) = N_0 + \beta$ and for such that $-Nt_{hi} + t_{hj} = \min T(-Ne_i + e_j) = \min T(X_k) = -N**a** + \beta$ and for each $1 \leq i \leq p$, $1 \leq j \leq p$ and $N \geq N_0$, there exists $1 \leq h \leq n$ such that $-N(\mathbf{a}-t_{hi})=t_{hj}-\beta.$ It follows that $t_{hi}=a, t_{hj}=\beta.$ Hence $\mathcal{P}_p(\mathbf{a}, \beta)$ is a submatrix of [T]. Similarly, there exists N_1 , such that for each $N \geq N_1$, there exists $1 \leq h \leq n$ such that $-Nt_{hi}+t_{hj} = \max T(-Ne_i+e_j) = \max T(X_k) = -Nb+\alpha$ and $-N(\mathbf{b} - t_{hi}) = t_{hj} - \alpha$. Thus, $t_{hi} = \mathbf{b}$ and $t_{hj} = \alpha$. Since $1 \le i \ne j \le p$ was arbitrary, $\mathcal{P}_p(\mathbf{b}, \alpha)$ is a sub-matrix of [T]. Therefore, $\mathcal{P}_p(\mathbf{a}, \beta)$ and $\mathcal{P}_p(\mathbf{b}, \alpha)$ are sub-matrices of $[T]$.

In the following example we will show that for all $n \geq p$ there exists $T: \mathbb{R}^p \to \mathbb{R}^n$ which preservers \sim_{ℓ} .

Example 3.3. Let $p \leq n$. Assume I is the $p \times p$ identity matrix and E is an $(n - p) \times p$ *row stochastic matrix. Define* $T: \mathbb{R}^p \to \mathbb{R}^n$ by $|T| = |I/E|$. By *Theorem* 1.5, *we know that T is a linear preserver of* \prec_{ℓ} . *Hence, by Lemma 1.8 T is a linear preserver of s*. 1.8, T is a *linear* preserver of \sim_{ℓ}

Theorem 3.4. $T: \mathbb{R}^p \to \mathbb{R}^p$, $p \geq 3$ *is a linear preserver of* \sim_{ℓ} *if and only if* $T Y = e D Y$ *for aggregation properties matrix* $P_e \circ \mathbb{R}^p$ and for all $Y \in \mathbb{R}^p$ $TX = cPX$, for some $p \times p$ permutation matrix $P, c \in \mathbb{R}$ and for all $X \in \mathbb{R}^p$.

Proof. Let T be a linear preserver of \sim_{ℓ} , by Lemma 3.1 each column of [T] has at least, one entry equal to **a** and one entry equal to **b**. Also each row of $[T]$ has at most, one entry equal to **a** and one entry equal to **b**. Since [T] is $p \times p$, then all rows and all columns of $[T]$ have exactly one entry equal to **a** and one entry equal to **b** with all other entries equal to zero. Without loss of generality let $t_{11} = \mathbf{a}, t_{12} = \mathbf{b}$ and $t_{1k} = 0$ for all $k \neq 1, 2$. Therefore max $T(e_1 - e_2) = \mathbf{a} - \mathbf{b}$, but max $T(e_1 - e_3) = a$. We know that $T(e_1 - e_2) \sim_{\ell} T(e_1 - e_3)$, since T is a linear preserver of \sim_{ℓ} and $(e_1 - e_2) \sim_{\ell} (e_1 - e_3)$. Hence $\max T(e_1 - e_2) =$
 $\max T(e_1 - e_2)$, which is $e_1 - e_2$. Therefore $h = 0$ and $[T] = e B$ for some $\max T(e_1 - e_3)$ which is $\mathbf{a} - \mathbf{b} = \mathbf{a}$. Therefore $\mathbf{b} = 0$ and $|T| = \mathbf{a}P$ for some $P \in \mathcal{P}(p).$

Conversely, Let $Tx = cPx$ for all $x \in \mathbb{R}^p$ and $P \in \mathcal{P}(p)$. Since T is a linear preserver of \sim_{ℓ} if and only if αT for $\alpha \in \mathbb{R}$ is a linear preserver of \sim_{ℓ} , we can assume $c \geq 0$. Let $x \sim_{\ell} y$ and $m = \min x = \min y$ and $M = \max x = \max y$.
Obviously $cm = \min Tx = \min Tx$ and $cM = \max Tx = \max Tx$. Therefore Obviously $cm = \min Tx = \min Ty$ and $cM = \max Tx = \max Ty$. Therefore $Tx \sim_{\ell} Ty$.

By [6] we know that for $p \geq 3$, $T: \mathbb{R}^p \to \mathbb{R}^p$ is a linear preserver of \prec_{ℓ} if and only if T has the form $x \mapsto eBx$ for some $x \in \mathbb{R}$ and some $B \in \mathcal{D}(x)$ only if T has the form $x \rightarrow aPx$, for some $a \in \mathbb{R}$ and some $P \in \mathcal{P}(p)$.

Corollary 3.5. $T: \mathbb{R}^p \to \mathbb{R}^p$, $p \geq 3$ *is a linear preserver of* \sim_{ℓ} *if and only if* T *is a linear preserver* T is a linear preserver of \prec_{ℓ} .

Problem. Let $3 \leq p \leq n$ be given. It will be nice to characterize all linear preservers of \sim_{ℓ} from \mathbb{R}^p to \mathbb{R}^n .

By [6] we know that for $p \geq 3$, $T: \mathbb{R}^p \to \mathbb{R}^p$ is a linear preserver of \prec_{ℓ} if and
only if T has the form $x \mapsto aPx$, for some $a \in \mathbb{R}$ and some $P \in \mathcal{P}(p)$.
Corollary 3.5. $T: \mathbb{R}^p \to \mathbb{R}^p$, $p \ge$ **Acknowledgement.** The Authors would like to thank the anonymous referee for useful comments.The research has been supported by the SBUK Center of Excellence in Linear Algebra and Optimization.

REFERENCES

- [1] T. Ando, Majorization, Doubly stochastic matrices, and comparison of eigenvalues, *Linear Algebra and its Applications*, **118**, (1989), 163-248.
- [2] A. Armandnejad and H. R. Afshin, Linear functions preserving multivariate and directional majorization , *Iranian Journal of Mathematical Sciences and Informatics* , **5**(1), (2010), 1-5.
- [3] A. Armandnejad and A. Salemi, The Structure of linear preservers of gs-majorization, *Bulletin of the Iranian Mathematical Society*, **32**(2), (2006), 31-42.
- [4] L. B. Beasley, S.-G. Lee and Y.-H. Lee, A characterization of strong preservers of matrix majorization, *Iranian Journal of Mathematical Siences and Informatics*, **5**(1), (2010), 1-5.
- [5] R. Bhatia, *Matrix Analysis*, Springer-Verlag, New York, 1997.
- [6] A. M. Hasani and M. Radjabalipour, Linear preserver of Matrix majorization. International Journal of Pure and Applied Mathematics, 32(4) (2006), 475-482.
- [7] A. M. Hasani and M. Radjabalipour,On linear preservers of (right) matrix majorization, *Linear Algebra and its Applications*, **423**(2-3), (2007), 255-261.
- [8] F. Khalooei, M. Radjabalipour and P. Torabian, Linear preservers of left matrix majorization, *Electronic Journal of Linear Algebra*, **17**, (2008), 304-315.
- [9] F. Khalooei, A. Salemi, The structure of linear preservers of left matrix majorization on *R*p, *Electronic Journal of Linear Algebra*, **18** (2009), 88-97.
- [10] C. K. Li and E. Poon, Linear operators preserving directional majorization, *Linear Algebra and its Applications*, **325** (2001), 141-14.

[11] F. D. Martínez Pería, P. G. Massey, and L. E. Silvestre, Weak Matrix-Majorization, *Linear Algebra and its Applications*, **403**, (2005), 343-368.

Archive of SID