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Abstract. In this paper, by using the notion of fuzzy subsets, the con-

cept of F-permutation is introduced. Then by applying this notion the

concepts of presentation of an F-polygroup, graph of an F-permutation

and F-permutation matrices are investigated.
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1. Introduction

Some researchers applied this notion in many algebraic structures for exam-

ple [1, 9, 5, 6]. Zadeh in 1965 [13] introduced the notion of fuzzy subsets of a

non-empty set A as a function from A to [0, 1]. Rosenfeld in 1971 [9] defined

fuzzy subgroup and obtained some basic results. The hyper algebraic structure

theory was introduced in 1934 [8] by Marty at 8th Congress of Scandinavian

Mathematicians. Since then many researchers have worked on this area for

example [4, 10, 14]. A polygroup is a completely regular, reversible-in-itself

multigroup in the sense of Dresher and Ore [3]. Ioulidis in 1987 [7] studied

the concept of polygroup, which is a generalization of the concept of ordinary
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group. Zahedi, Bolurian and Hasankhani in 1995 [15] introduced the concept

of a fuzzy subpolygroup. Zahedi and Hasankhani [5] defined the notion of

F -polygroups, which is a generalization of polygroups.

In papers [2], [5], [6], by using the notion of fuzzy sets, the concept of groups,

rings, modules and vector spaces are generalized. In paper [11], the notion of

generalized permutation matrices is defined.

T. Vougiouklis in [12] by using the hyperalgebraic theory defined the notion

of generalized permutation.

In this paper by using the notion of fuzzy sets, we defined notion of fuzzy

permutation and proved some related results.

The motivations and applications of defining the notion of F-permutation

are giving:

1. A presentation for any F-polygroup,

2. Some graphs and matrices.

2. Preliminaries.

A fuzzy subset of the non-empty set X is a function from X into [0, 1] ⊆ R.
The set of all fuzzy subset of X is denoted by F (X). Let μ ∈ F (X). Then

by support of μ we mean the set, supp(μ) = {x ∈ X |μ(x) > 0}. We let

F∗(X) = {μ ∈ F (X)|supp(μ) �= ∅}. Each element of F∗(X) is called a non-

empty fuzzy subset of X . If μ, η ∈ F (X), then μ ≤ η iff μ(x) ≤ η(x), for all

x ∈ X .

Definition 2.1. [13] Let {μα | α ∈ Λ} be a family of fuzzy subsets of X . Then

the fuzzy sets
∨
α∈Λ

μα and
∧
α∈Λ

μα defined by, for all x ∈ X

i)

(∧
α∈Λ

μα

)
(x) =

∧
α∈Λ

(μα(x)) = inf
α∈Λ

μα(x)

ii)

(∨
α∈Λ

μα

)
(x) =

∨
α∈Λ

(μα(x)) = sup
α∈Λ

μα(x).

Definition 2.2. [5] i) Let A be a non-empty set. A function “ ∗ ” from A×A

into F∗(A) is called an F-hyperoperation on A, and (A, ∗) is called an F -

hypergroupoid.

ii) Let (A, ∗) be an F -hypergroupoid and μ, η ∈ F∗(A), then by μ∗η we mean:

μ ∗ η =
∨

x ∈ supp(μ)

y ∈ supp(η)

x ∗ y

Notation 2.1. [5] Let A be a non-empty set. B and C be non-empty subset

of A, a ∈ A and μ ∈ F∗(A), then
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i) χ
B
(x) =

{
1 x ∈ B

0 x �∈ B
, for all x ∈ A,

ii) by a ∗ μ and μ ∗ a we mean χ{a} ∗ μ and μ ∗ χ{a} respectively,

iii) by a ∗B, B ∗ a, B ∗μ and B ∗C we mean χ{a} ∗χB
, χ

B
∗χ{a}, χB

∗μ and

χ
B
∗ χ

C
respectively.

Definition 2.3. [5] Let A be a non-empty set and “ ∗ ” an F-hyperoperation

on A. Then (A, ∗) is called an F-polygroup if for all x, y, z ∈ A,

i) (x ∗ y) ∗ z = x ∗ (y ∗ z),
ii) there exists e ∈ A such that

x ∈ supp(x ∗ e ∧ e ∗ x),
iii) for all x ∈ A, there exists the unique element x−1 in A such that

e ∈ supp(x ∗ x−1 ∧ x−1 ∗ x),
iv) z ∈ supp(x ∗ y) =⇒ x ∈ supp(z ∗ y−1) =⇒ y ∈ supp(x−1 ∗ z).
Definition 2.4. [5] Let (A, ∗) be an F-polygroup and H a non-empty subset

of A. Then H is said to be a sub F-polygroup of A if:

i) x ∈ H =⇒ x−1 ∈ H,

ii) x, y ∈ H =⇒ supp(x ∗ y) ⊆ H.

Lemma 2.1. Let (A, ∗) be an F-polygroup and H a sub F-polygroup of A.

Then for all x, y ∈ A

i) y ∈ supp(x ∗H) ⇐⇒ x ∈ supp(y ∗H),

ii) y ∈ supp(x ∗H) ⇐⇒ x ∗H = y ∗H.

Proof. (i) The proof is easy.

(ii) Let x, y ∈ A and y ∈ supp(x∗H), then y∗H ≤ x∗H ∗H ≤ x∗H. Similarly

by (i), x ∗H ≤ y ∗H . �

3. F-Permutation.

Definition 3.1. Let X be a non-empty set. The function f : X −→ F∗(X) is

called an F-permutation of X if⋃
x∈X

supp(f(x)) = X.

The set of all F-permutation of X is denoted by FP (X).

The above definition is a generalization of Definition 6.1.1 of [13] (page 84).

Definition 3.2. Let f ∈ FP (X). We define fI : X −→ F (X) by

(fI(y))(x) = (f(x))(y); ∀x, y ∈ X

in this case, the function fI is called the converse of f .
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Theorem 3.1. Let f ∈ FP (X). Then fI ∈ FP (X), where

(fI(y))(x) = (f(x))(y), ∀x, y ∈ X.

fI is called the converse of f .

Proof. Let x ∈ X . Then by Definition 3.1., x ∈ supp(f(t)) for some t ∈
X . In other words, t ∈ supp(fI(x)). So supp(fI(x)) �= ∅ and hence fI is a

function from X into F∗(X). Now let y ∈ X be an arbitrary element. Since

supp(f(y)) �= ∅, then there exists x ∈ X such that y ∈ supp(fI(x)). Therefore⋃
x∈X

supp(fI(x)) = X . �

Definition 3.3. Let f1, f2 ∈ FP (X). Then

(i) f1 is called a sub F-permutation of f2 if f1(x) ≤ f2(x), ∀x ∈ X . In this

case we write f1 ⊆ f2.

(ii) If f1 ⊆ f2 and supp(f1(x0)) �= supp(f2(x0)), for some x0 ∈ X , then we

say that f1 is a proper sub F-permutation of f2 and we write f1 ⊂ f2.

Note: If f1 ⊆ f2 then supp(f1(x)) ⊆ supp(f2(x)), for all x ∈ X .

Definition 3.4. Let f ∈ FP (X). Then f is said to be minimal if it has

no proper sub F-permutation. The set of all minimal elements of FP (X) is

denoted by MFP (X).

Notation 3.1. Let X be a countable set and f ∈ FP (X). We write:

f =

⎛⎜⎜⎝
x1 · · · xi−1 xi xi+1 · · ·

· · · · · · · · · tj1
(f(xi))(tj1 )

,
tj2

(f(xi))(tj2 )
, · · · · · · · · ·

⎞⎟⎟⎠ ;

where xj ∈ X and tjk ∈ supp(f(xj)) for k = 1, 2, . . ..

Example 3.1. Let X = {1, 2, 3}, and α1, α2, α3, α4 ∈ (0, 1]

f =

⎛⎜⎜⎝
1 2 3

2

α1
,
3

α2

1

α3

3

α4

⎞⎟⎟⎠
(i.e. (f(1))(2) = α1, (f(1))(3) = α2, (f(1))(1) = (f(2))(2) = (f(2))(3) =

(f(3))(1) = (f(3))(2) = 0, (f(2))(1) = α3, (f(3))(3) = α4), and let

f ′ =

⎛⎜⎜⎝
1 2 3

2

α1

1

α3

3

α4

⎞⎟⎟⎠ .

Then f, f ′ ∈ FP (X), f ′ ⊂ f and f ′ ∈ MFP (X).

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

F-Permutations induce Some Graphs and Matrices 11

Theorem 3.2. Let f ∈ FP (X). Then f ∈ MFP (X) iff the following con-

dition is valid: if a �= b and supp(f(a)) ∩ supp(f(b)) �= ∅, then supp(f(a)) =

supp(f(b)) and supp(f(a)) is a singleton.

Proof. Let f ∈ MFP (X), a, b ∈ X , a �= b and supp(f(a)) ∩ supp(f(b)) �=
∅. It is enough to show that supp(f(a)) is a singleton. Suppose that u ∈
supp(f(a)) ∩ supp(f(b)) and supp(f(a)) is not a singleton. We define

f ′ : X −→ F∗(X)

as follows

(f ′(x))(y) =
{

(f(x))(y), if (x, y) �= (a, u)

0 otherwise.

Since |supp(f(a))| ≥ 2, then f ′(x) �= 0 and hence f ′(x) ∈ F∗(X), so f ′ is well

define. Let x ∈ X , then since supp(f(x)) �= ∅, we obtain that supp(f ′(x)) �= ∅
by definition of f ′. Now let x = a. Then since supp(f(a)) is not a singleton,

there exists t ∈ supp(f(a)) such that t �= u. By definition of f ′, t ∈ supp(f ′(a)).
In other word in this case supp(f ′(x)) �= ∅. On the other hand suppose that

y ∈ X be an arbitrary element. If y = u, then since u ∈ supp(f(b)) and b �= a,

y ∈ supp(f ′(b)). Now let y �= u. Then by Definition 3.1 for F and definition

of f ′ we get that y ∈ supp(f ′(x)), for some x ∈ X . Hence f ′ ∈ FP (X) which

is a contradiction, since f ′ ⊂ f and f ∈ MFP (X). Therefore supp(f(a)) is

a singleton. Similarly supp(f(b)) is a singleton, consequently supp(f(a)) =

supp(f(b)).

Conversely, suppose that f ′′ ⊂ f for some f ′′ ∈ FP (X). Let a ∈ X , choose

b ∈ supp(f(a))− supp(f ′′(a)), for some a ∈ X . By Definition 3.1. there exist

d ∈ X and d �= a such that:

b ∈ supp(f ′′(d)) ⊆ supp(f(d)),

for some d ∈ X and d �= a. Thus

b ∈ supp(f(a)) ∩ supp(f(d)), d �= a.

So supp(f(a)) is a singleton , which is a contradiction, since

{b} ∪ supp(f ′′(a)) ⊆ supp(f(a)).

Hence f ∈ MFP (X). �

Corollary 3.1. Let f ∈ FP (X). If f ∈ MFP (X), then P = {supp(f(x)) | x ∈
X} is a partition for X.

Proof. The proof follows from Theorem 3.2. �

The following example show that the converse of the Corollary 3.3 is not

true.
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Example 3.2. Let X = {1, 2, 3, 4}. Define g, g′ ∈ FP (X) as follows:

g =

⎛⎜⎝ 1 2 3 4

2

0.2
,
3

0.4

1

0.3

4

0.2

2

0.5
,
3

0.7

⎞⎟⎠ , g′ =

⎛⎜⎝ 1 2 3 4

2

0.2

1

0.3

4

0.2

2

0.5
,
3

0.7

⎞⎟⎠ .

It is easy to show that P = {supp(g(x)) | x ∈ X} = {{2, 3}, {1}, {4}} is a

partition of X but g �∈ MFP (X), since g′ ⊂ g.

Theorem 3.3. Let f ∈ FP (X). Then

∀a ∈ X, |supp(f(a))| = 1 =⇒ f ∈ MFP (X).

Proof. By contrary, let f �∈ MFP (X). Then there exists f ′ ∈ FP (X) such

that f ′ ⊂ f . Hence there is a0 ∈ X such that supp(f ′(a0)) � supp(f(a0))

which implies that supp(f ′(a0)) = ∅ and it is a contradiction. �

The following example shows that the converse of the above theorem is not

true.

Example 3.3. Let X = {1, 2, 3} and

f =

⎛⎜⎝ 1 2 3

2

0.2
,
3

0.4

1

0.3

1

0.2

⎞⎟⎠ .

Clearly f ∈ MFP (X) and |supp(f(1))| = 2 �= 1.

4. Presentation of an F-Polygroup.

Definition 4.1. Let f, g ∈ FP (X), then the composition of f and g is denoted

by f ◦ g and defined by, for all x ∈ X

(f ◦ g)(x) =
∨

t∈supp(g(x))

f(t).

Theorem 4.1. Let X be a non-empty set, f, g, h ∈ FP (X) and J : X −→
F∗(X) a function which is defined by J(x) = χ{x} for all x ∈ X. Then

i) f ◦ g ∈ FP (X)

ii) f ◦ (g ◦ h) = (f ◦ g) ◦ h
iii) x ∈ supp(f ◦ fI(x)) ∩ supp(fI ◦ f(x))
iv) J ∈ MFP (X), (it is called the identity F-permutation of X).

v) f ◦ J = f .

Proof. The proof follows from Definitions 4.1, 3.2 and some manipulations. �

Definition 4.2. Let f ∈ FP (X). Then we say that f satisfies the condition

S if, for all x ∈ X , y ∈ supp(f(x)) implies that supp(f(x)) = supp(f(y)).

The set of all elements of FP (X) which satisfy in condition S, is denoted by

FPS(X).
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Example 4.1. Let X = {1, 2, 3},

f =

⎛⎜⎜⎝
1 2 3

1

α1
,
2

α2

1

α3
,
2

α4

3

α5

⎞⎟⎟⎠
where αi ∈ (0, 1], ∀i, 1 ≤ i ≤ 5. Then f ∈ FPS(X).

Definition 4.3. Let (A, ∗) be an F-polygroup, H be a sub polygroup of A and

a ∈ A. We define

ϕH : A −→ F∗(A) ϕa : A −→ F∗(A)
x �→ x ∗H x �→ a ∗ x

Theorem 4.2. Let (A, ∗) be an F-polygroup, H a sub F-polygroup of A. Then

ϕH ∈ FPS(A).

Proof. By Definition 2.4. e ∈ H and also x ∈ supp(x ∗ e), for all x ∈ A, then

x ∈ supp(x ∗ H). Hence ϕH ∈ FP (A). Now let y ∈ supp(ϕH(x)). Then by

Lemma 2.1, ϕH(x) = ϕH(y). Hence ϕH ∈ FPS(A). �

Lemma 4.1. Let (A, ∗) be an F-polygroup, a ∈ A. Then ϕa ∈ FP (A).

Proof. For all a, x ∈ A, since

x ∈ supp(e ∗ x) ⊆ supp(a ∗ (a−1 ∗ x)),
then x ∈ supp(a ∗ t), for some t ∈ supp(a−1 ∗ x). Therefore ϕa ∈ FP (A). �

Lemma 4.2. Let {fα|α ∈ Λ} be a family of F-permutation of X. Then∨
α∈Λ

fα ∈ FP (X).

Proof. Since supp(fβ(x)) ⊆ supp(
∨
α∈Λ

fα(x)), ∀β ∈ Λ, the proof follows. �

Definition 4.4. Let T : X −→ FP (X) be a function, μ ∈ F∗(X). Then T (μ)

is defined by

T (μ) =
∨

x∈supp(μ)

T (x).

Definition 4.5. Let (A, ∗) be an F-polygroup and T : A −→ FP (A) a function.

Then T is called a presentation for A, if

T (a1 ∗ a2) = T (a1) ◦ T (a2), ∀a1, a2 ∈ A.

Example 4.2. In Definition 4.3, ϕa was introduces and in Theorem 4.5,

we show that by using this notion, we can defined a presentation for any F-

polygroup which is called left F-translation presentation.

Similarly we can defined right F-translation presentation which is different.

Therefore the converse of Theorem 4.5 is not true.
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Theorem 4.3. Let (A, ∗) be an F-polygroup. Define the function

T : A −→ FP (A) by T (a) = ϕa. Then T is a presentation for A.

Proof. By Lemma 4.3, T is well-defined. Now for all a, b, x ∈ A we have:

(T (a) ◦ T (b))(x) =
∨

ω∈supp(T (b))(x)

[(T (a))(ω)] =
∨

ω∈supp(b∗x)
a ∗ ω

= a ∗ (b ∗ x) = (a ∗ b) ∗ x =
∨

t∈supp(a∗b)
t ∗ x =

∨
t∈supp(a∗b)

ϕt(x)

= (
∨

t∈supp(a∗b)
T (t))(x) = T (a ∗ b)(x).

�

5. Graph of an F-Permutation.

In the recent article [11], were suggested the graph of a generalized permu-

tation and the new definition of generalized permutation matrices, associated

with the generalized permutation. In this and next sections we extended these

concepts to F-permutations.

Definition 5.1. Let X be a non empty set and f be an F-permutation on X .

We consider X , the set of vertices and we define a weighted directed arc from

“x” to “y”, if f(x)(y) > 0. The weighted directed graph of f , is denoted by

WDG(f).

Example 5.1. Let X = {1, 2, 3, 4, 5, 6} and f an F-permutation on X defined

by follows:

f =

⎛⎝ 1 2 3 4 5 6

2
0.2 ,

3
0.3

3
0.3

4
0.4

5
0.5

3
0.3

1
0.2 ,

6
0.6

⎞⎠
Hence WDG(f) has a loop in the vertex 6, see figure 1,

Figure 1. weighted directed graph of f .

and the converse of f is:

fI :=

⎛⎝ 1 2 3 4 5 6

6
0.2

1
0.2

1
0.3 ,

2
0.3 ,

5
0.3

3
0.4

4
0.5

6
0.6

⎞⎠
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Figure 2. weighted directed graph of fI .

In general the weighted directed graph of a converse fuzzy permutation f is

the same weighted directed graph of f which directed are opposite.

Remark 5.1. We recall that the number of the input or output arcs to a vertex

α is said to be input or output degree in α and denoted by id(α) or od(α),

respectively. In this article, for each loop in a vertex, we consider one degree

for input and one degree for output. Therefore in Example 5.1, id(6) = 1 and

od(6) = 2.

Lemma 5.1. Let f ∈ FP (X), then for all positive integer number n,

fn := f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n−times

is an F-permutation on X.

Proof. The proof follows from Theorem 4.1(i). �

Theorem 5.1. Let f be an F-permutation on the non empty and finite set X

with the weighted directed graph WDG(f). Then there is an element x ∈ X,

and there is a positive integer number n, such that x ∈ supp(fn(x)), in other

words, fn(x)(x) > 0.

Proof. If WDG(f) have a loop in vertex x, then x ∈ supp(f (x)), and the

problem solved. Let WDG(f) have no loop and y ∈ X , for every positive

integer numbers k, we consider the sets supp(fk(y)). Since fk ∈ FP (X),

the cardinal number of the set supp(fk(y)) is positive. Since
⋃

k∈N

supp(fk(y))

is a subset of the finite set X , hence there are natural numbers m and l,

such that m > l and supp(f l(y)) ∩ supp(fm(y)) is non empty set. Let m

and l be the smallest number with the above property. Since f have no loop,

there is x �= y, where x ∈ supp(f l(y)) ∩ supp(fm(y)), therefore we have a

sequence of elements X , y = y0, y1, y2, . . . , yl = x, yl+1, yl+2, . . . , ym = x,

such that yi ∈ supp(f(yi+1)), i = 1, 2, . . . ,m, therefore we have x = ym ∈
supp(f (ym−1)) ∩ supp(f2(ym−2)) ∩ · · · ∩ supp(fm−l(yl)), hence by choose n =

m − l > 0 we have x ∈ supp(fm−l(x)) or fn(x)(x) > 0 and the proof is

complete. �

Remark 5.2. We can not extend above theorem to all members of X . For

instance in Example 5.1, for all positive integer n, fn(1)(1) = 0.
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Remark 5.3. We recall that the directed graph WDG(f) is said to be strongly-

connected if there is a directed path from each vertex in the directed graph to

every other vertex.

Theorem 5.2. Let f be an F-permutation on the set X, then for every x ∈ X,

there is a positive integer (number) n, such that x ∈ supp(fn(x)) if and only if

each components of the directed graph WDG(f) is strongly-connected.

Proof. By Remark 5.3, the proof is straightforward. �

Definition 5.2. Let X and Y be two non empty sets and f : X −→ F∗(X)

and g : Y −→ F∗(Y ) be two F-permutations. We say f is equivalent to g

(denoted by f ∼ g) if there exists a bijection function h : X −→ Y , such that

K ◦ f = g ◦ h, where K : F∗(X) −→ F∗(Y ) defined by K(μ)(y) = μ(h−1(y)),

for all y ∈ Y and μ ∈ F∗(X).

X −→f F∗(X)

h ↓ � ↓ K

Y −→g F∗(Y )

Definition 5.3. Let X be a non empty set, B = {Y | card(Y ) = card(X)} and

A = {f |f ∈ FP (Y ), Y ∈ B}, where by card(Y ) we mean the cardinal number

of the set Y .

Theorem 5.3. The relation ∼ defined in the Definition 5.2 is an equivalence

relation on A.

Proof. The proof is straightforward. �

Theorem 5.4. If f and g be two equivalent F-permutations then their graphs

are isomorphic.

Proof. Let f and g be equivalent F-permutations on the non empty sets X

and Y respectively. Therefore, there is one to one correspondence functions

h : X −→ Y such that K ◦ f = g ◦ h, where K : F∗(X) −→ F∗(Y ) defined by

K(μ)(y) = μ(h−1(y)), for all y ∈ Y and μ ∈ F∗(X). Hence h is a one to one

correspondence between vertices WDG(f) and WDG(g). Now consider âb be

an arc in WDG(f) with weight w(a, b) then f(a)(b) = w(a, b) is positive. we

have:

g(h(a))(h(b)) = ((g ◦ h)(a))(h(b)) = ((K ◦ f)(a))(h(b))
= (K(f(a)))(h(b))

= f(a)(h−1(h(a)))

= f(a)(b) = w(a, b) > 0

Therefore ˆh(a)h(b) is a directed arc in WDG(f) with weight w(a, b) and the

proof is completed. �
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6. F-permutation Matrices.

Let n be a positive integer number and X = {1, 2, . . . , n}. By definition of

F-permutation, we can define an F-permutation matrix as follows:

Definition 6.1. The fuzzy set μ : {0, 1} −→ [0, 1], such that supp(μ) = {1},
is fuzzy unit and denoted by 1̃.

Definition 6.2. Let FM be a square matrix with entries in F∗({0, 1}), which
entries of each row and column of FM have at least one or more elements

one 1̃ and all other entries are zero with degree 1. Then FM is called an

F-permutation matrix.

Theorem 6.1. Let X = {1, 2, . . . , n} be a non empty set and μ : X −→ F∗(X)

be an F-permutation on X. The matrix FMμ is defined as:

FMμ :=

⎛⎜⎜⎜⎝
eμ(1)
eμ(2)
...

eμ(n)

⎞⎟⎟⎟⎠
n×n

,

with for non empty fuzzy subset μ(i) of X, eμ(i) = (γi1 γi2 · · · γin)1×n,

i = 1, 2, . . . , n; where:

Case 1: If supp(μ(i)) �= X, then for

αj =

{
1 if j ∈ supp(μ(i))

0 if j �∈ supp(μ(i))
, γij(αj) =

{
μ(i)(1), j = i

0 j �= i
, j = 1, 2, . . . , n.

Case 2: If supp(μ(i)) = X, γij(1) = μ(i)(j), γij(0) = 0, j = 1, 2, . . . , n. Then

FMμ is an F-permutation matrix.

Proof. Since μ is an F-permutation, hence for each i ∈ X , μ(i) is a non empty

fuzzy subset of X , therefore supp (μ(i)) is non empty. Let ki ∈ supp(μ(i)),

we show that γiki = 1̃. We have αki = 1 and hence γiki (1) = μ(i)(ki) > 0 is

positive. Moreover γiki(0) = 0. So in each row, there is at least one 1̃. On

the other hand, since
n⋃

i=1

supp(μ(i)) = X , hence for each column j, there is an

i ∈ X , such that j ∈ supp(μ(i)) for i = 1, 2, . . . , n, and hence γij = 1̃. So there

is at least one 1̃ in each column. Then FMμ is an F-permutation matrix. �

Example 6.1. Let g an F-permutation on {1, 2, 3} defined by follows:

f =

⎛⎝ 1 2 3

2
0.2

3
0.3

1
0.1 ,

2
0.2 ,

3
0.3

⎞⎠

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

18 A. Hasankhani and N. Shajareh-Poursalavati

The F-permutation matrix associated to g is :

FMg :=

⎛⎜⎜⎜⎜⎜⎝
0
1 ,

1
0

0
0 ,

1
0.2

0
1 ,

1
0

0
1 ,

1
0

0
1 ,

1
0

0
0 ,

1
0.3

0
0 ,

1
0.2

0
0 ,

1
0.2

0
1 ,

1
0.3

⎞⎟⎟⎟⎟⎟⎠
3×3

For simplicity the matrix FMg is denoted by

FMg :=

⎛⎜⎜⎜⎜⎜⎝
0
1

1
0.2

0
1

0
1

0
1

1
0.3

1
0.1

1
0.2

1
0.3

⎞⎟⎟⎟⎟⎟⎠
3×3

Example 6.2. By the simplicity of Example 6.1, if f be an F-permutation

defined in Example 5.1. The F-permutation matrix associated to f is :

FMf :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1

1
0.2

1
0.3

0
1

0
1

0
1

0
1

0
1

1
0.3

0
1

0
1

0
1

0
1

0
1

0
1

1
0.5

0
1

0
1

0
1

0
1

0
1

0
1

1
0.5

0
1

0
1

0
1

1
0.3

0
1

0
1

0
1

1
0.2

0
1

0
1

0
1

0
1

1
0.6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
6×6

Theorem 6.2. There is a one-to-one corresponding between all F-permutations

on X = {1, 2, . . . , n} and all F-permutation matrices on X.

Proof. If μ be an F-permutation, in Theorem 6.1, we obtained an F-permutation

matrix correspond FMμ. Conversely, let FM be an F-permutation matrix, we

defined map μFM as follows:

μFM : X → F∗(X)

i �→ μFM (i) : X → [0 , 1]

j �→
{

γij(1), γij = 1̃

0 otherwise

Now, since in each row at least one 1̃ appear, hence supp(μFM (i)) �= ∅, for all
i ∈ X . First we show that

n⋃
i=1

supp(μFM (i)) = X. To do this, let j ∈ X , hence

there exists k ∈ X , such that γkj = 1̃ which implies that (μFM )(k)(j) > 0.

It is easy to show that FM = FMμFM and μ = μFMµ and proof completes. �
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Theorem 6.3. Let μ be an F-permutation, then FMμI = FMT
μ , where FMT

μ

is the transpose of FMμ.

Proof. The proof is straightforward. �

7. Conclusion

In this paper we have given the following results:

1. By using F-permutation, all minimal F-permutations characterized (Theo-

rem 3.2).

2. An useful presentation for any F-polygroup is introduced (Theorem 4.5).

3. Some F-permutations induce directed graphs which each components is

strongly-connected (Theorem 5.3).

4. There is a one-to-one corresponding between all F-permutations on n-letters

and all F-permutation matrices (Theorem 6.2).

8. Further research

By using level subsets, how we can relate between hyper permutations [12]

and F-permutations?

Acknowledgments

The authors thank the referees for their valuable comments.

References

[1] A. Broumand Saied, Redefined fuzzy subalgebra (with thresholds) of BCK/BCI-algebra,

Iranian Journal of Mathematical Sciences and Informatics, 4(2) (2009), 9–29.

[2] I. Cristea and B. Davvaz, Atanassov’s intuitionistic fuzzy grade of hypergroup, Inform.

Sci., 180 (2010), 1506–1517.

[3] M. Dresher and O. Ore, Theory of multigroup, Amer. J. Math. 60 (1938), 705–733.

[4] M. Golmohamadian and M.M. Zahedi, BCK-algebra and hyper BCK-algebra induced

by a finite automaton, Iranian Journal of Mathematical Sciences and Informatics, 4(1)

(2009), 79–98.

[5] A. Hasankhani and M.M. Zahedi, F-Polygroups (1), J. Fuzzy Math., 4(3) (1996), 553–

548.

[6] A. Hasankhani and M.M. Zahedi, F-Polygroups (2), J. Information Sciences, 89 (1996,)

225–243.

[7] S. Ioulidis, Polygroupes et certaines de leurs properties, Bull. Greek. Math. Soc., 22

(1987), 95–104.

[8] F. Marty, Sur une generation de la notion de groups, 8 Congress Math. Scandinaves,

Stockholm (1934), 45–49.

[9] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517.

[10] R. Roudbari and M.M. Zahedi, Some results on simple huper K-algebras, Iranian Jour-

nal of Mathematical Sciences and Informatics, 3(2) (2008), 29–48.

[11] N. Shajareh-Poursalavati, Properties of the generalized Permutations, Stud. Cercet. Sti-

int., Ser.Math., 16 (2006), 263–268.

[12] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press Monographs

in Mathematics, Palm Harbor, FL, 1994.

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

20 A. Hasankhani and N. Shajareh-Poursalavati

[13] L.A. Zadeh, Fuzzy sets, Information and control, 8 (1965), 338-353.

[14] M.M. Zahedi, A review on hyper K-algebra, Iranian Journal of Mathematical Sciences

and Informatics, 1(1) (2006), 55–112.

[15] M.M. Zahedi and M. Bolurian and A. Hasankhani, On polygroups and fuzzy subpoly-

groups, J. Fuzzy Math., 3(1) (1995), 1–15.

www.SID.ir

www.SID.ir

