Iranian Journal of Mathematical Sciences and Informatics Vol. 7, No. 1 (2012), pp 59-71

R-parts in hyperrings

H. Babaei^a, M. Jafarpour^b and S. Sh. Mousavi^{c,*}

 a Mathematics Department, Azad University of Kerman, Kerman, Iran b Mathematics Department, Vali-e-Asr University of Rafsanjan, Rafsanjan,

Iran

^cMathematics Department, Shahid Bahonar University of Kerman, Kerman,

Iran

ABSTRACT. In this article, first we generalize the concept of complete parts in hyperrings by introducing the concept \Re -parts in hyperrings and then we study \Re -closures in hyperrings. Finally we characterize \Re -closures in hyperfields.

Keywords: hyperrings, (semi)hypergroups, complete parts.

2000 Mathematics subject classification: 20N20.

1. INTRODUCTION

The theory of hyperstructures was introduced in 1934 by Marty [9] at the 8th Congress of Scandinavian Mathematicians. This theory has been subsequently developed by Corsini and Leoreanu [1, 2], Mittas [11, 12], Stratigopoulos [16], and by various authors. Basic definitions and propositions about the hyperstructures are found in [1, 2, 17]. Krasner [8] has studied the notion of hy-perfields, hyperrings, and then some researchers. Hyperrings are essentially rings with approximately modified axioms. There are different notions of hyperrings. If the addition + is a hyperoperation and the multiplication is a binary operation, then the hyperring is called Krasner (additive) hyperring [8].

^{*}Corresponding Author

E-mail addresses: babaei@iauk.ac.ir (H. Babaei), m.j@mail.vru.ac.ir (M. Jafarpour), smousavi@mail.uk.ac.ir (S. Sh. Mousavi)

Received 27 March 2011; Accepted 11 August 2011

 $[\]textcircled{C}2012$ Academic Center for Education, Culture and Research TMU

⁵⁹

Rota [14] introduced a multiplicative hyperring, where + is a binary operation and the multiplication is a hyperoperation. De Salvo [15] studied hyperrings in which the additions and the multiplications were hyperoperations. In 2007, Davvaz and Leoreanu-Fotea [4] published a book titled Hyperring Theory and Applications. Complete parts were introduced by Koskas [7] and studied then by Miglirato [10], Corsini and Sureau [1, 2]. Mousavi et al. [13] introduced the notion of \Re -parts in hypergroups as a generalization of complete parts in hypergroups. In this article we generalize the notion of complete parts by introducing *left* and *right* \Re -parts in hyperrings and we will study \Re -closures in hyperrings. Finally we characterize \Re -closures in *hyperfields*.

2. Preliminaries

A hypergroupoid (H, \circ) is a non-empty set H together with a hyperoperation \circ defined on H, that is a mapping of $H \times H$ into the family of non-empty subsets of H. If $(x, y) \in H \times H$, its image under \circ is denoted by $x \circ y$ and for simplicity by xy. If A, B are non-empty subsets of H then $A \circ B$ is given by $A \circ B = \bigcup \{xy \mid x \in A, y \in B\}$. $x \circ A$ is used for $\{x\} \circ A$ (resp. $A \circ x$). A hypergroupoid (H, \circ) is called a hypergroup in the sense of [9] if for all $x, y, z \in H$ the following two conditions hold: (i) x(yz) = (xy)z, (ii) xH = Hx = H, means that for any $x, y \in H$ there exist $u, v \in H$ such that $y \in xu$ and $y \in vx$. If (H, \circ) satisfies only the first axiom, then it is called a *semi-hypergroup* an exhaustive review updated to 1992 of hypergroup theory appears in [1]. A recent book [2] contains a wealth of applications. A hyperring [17] is a triple $(R, +, \circ)$ which satisfies the ring-like axioms in the following way: (i) (R, +) is a hypergroup, (ii) (R, \circ) is a semi-hypergroup, (iii) the multiplication is distributive with respect to the hyperoperation +. The hyperrings were studied by many authors, for example see [6], [3], [17], [5] and [19]. In [20] and [18] Vougiouklis defines the relation Γ on hyperring as follows: $x\Gamma y$ if and only if $x, y \subseteq u$, where u is a finite sum of finite products of elements of R, in fact there exist $n, k_i \in \mathbb{N}$ and $x_{ij} \in R$ such that $u = \sum_{i=1}^n \prod_{j=1}^{k_i} x_{ij}$. He proved that the quotient R/Γ^* , where Γ^* is the transitive closure of Γ , is a ring and also Γ^* is the smallest equivalent relation on R such that the quotient R/Γ^* is a fundamental ring. The both \oplus and \odot on R/Γ^* are defined as follow: $\forall z \in \Gamma^*(x) + \Gamma^*(y), 2\Gamma^*(x) \oplus \Gamma^*(y) = \Gamma^*(z);$

$$\forall z \in \Gamma^*(x) \circ \Gamma^*(y), 2\Gamma^*(x) \odot \Gamma^*(y) = \Gamma^*(z).$$

Let M be a non-empty subset of R. We say that M is a *complete part* if for every $n \in \mathbb{N}, i = 1, 2, ..., n, \forall k_i \in \mathbb{N}, \forall (z_{i1}, ..., z_{ik_i}) \in R^{k_i}$ we have:

$$\sum_{i=1}^{n} \prod_{j=1}^{k_i} z_{ij} \bigcap M \neq \emptyset \Rightarrow \sum_{i=1}^{n} \prod_{j=1}^{k_i} z_{ij} \subseteq M.$$

www.SID.ir

3. R-Parts

Let \mathcal{U} be the set of finite sums of finite products of elements of R and \Re be a relation on \mathcal{U} . In this section first we generalize the notion of complete parts by introducing the notion of \Re -parts and then we study \Re -closures.

Definition 3.1. Let R be a hyperring and \mathcal{U} be the set of finite sum of finite products of elements of R and \Re be a relation on \mathcal{U} . For a non-empty subset A of R we say:

(i) A is a left \Re -part of R with respect to \mathcal{U} (or briefly is $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part) if for all $\sum_{i=1}^{n} \prod_{j=1}^{k_i} x_{ij}$ and $\sum_{i=1}^{m} \prod_{j=1}^{t_i} y_{ij}$ in \mathcal{U} the following implication is valid: $\begin{bmatrix} \sum_{i=1}^{n} \sum_{j=1}^{k_i} x_{ij} \cap A \neq \emptyset 2 and 2 \\ (ii) A \text{ is a right } \Re\text{-part of } R \text{ with respect to } \mathcal{U} \text{ (or briefly is } \mathcal{R}\mathfrak{R}_{\mathcal{U}}\text{-part) if for } \end{bmatrix}$ all $\sum_{i=1}^{n} \prod_{i=1}^{k_i} x_{ij}$ and $\sum_{i=1}^{m} \prod_{j=1}^{t_i} y_{ij}$ in \mathcal{U} the following implication is valid: $\left[\sum_{i=1}^{n}\prod_{j=1}^{k_{i}}x_{ij}\bigcap A\neq\emptyset 2 \,and 2 \,\sum_{i=1}^{n}\prod_{j=1}^{k_{i}}x_{ij}2\Re 1 \,\sum_{i=1}^{m}\prod_{j=1}^{t_{i}}y_{ij}\right] \Rightarrow \sum_{i=1}^{m}\prod_{j=1}^{t_{i}}y_{ij}1\subseteq 1A;$

(iii) A is a \Re -part of R with respect to U (or briefly is \Re_u -part) if it is $\mathcal{L}\Re_{\mathcal{U}}$ -part and $\mathcal{R}\Re_{\mathcal{U}}$ -part.

Proposition 3.2. Let \Re be a relation on \mathcal{U} and \Re^{-1} be the inverse of \Re then (i) A is $\mathcal{L}\Re^{-1}_{\mathcal{U}}$ -part if and only if it is $\mathcal{R}\Re_{\mathcal{U}}$ -part; (ii) A is $\mathcal{R}\Re^{-1}_{\mathcal{U}}$ -part if and only if it is $\mathcal{L}\Re_{\mathcal{U}}$ -part.

Definition 3.3. The intersection of $\mathcal{L}\Re_{\mu}$ -parts (or $\mathcal{R}\Re_{\mu}$ -parts, \Re -parts) which contain A is called $\mathcal{L}\Re_{\mathcal{U}}$ -closure (or $\mathcal{R}\Re_{\mathcal{U}}$ -closure, \Re -closure) of A in R and it will be denoted by $\overline{\mathcal{L}\mathfrak{R}_{\mathcal{U}}}(A)$ (or $\overline{\mathcal{R}\mathfrak{R}_{\mathcal{U}}}(A)$, $\overline{\mathfrak{R}_{\mathcal{U}}}(A)$).

From now on R is a hyperring, \mathcal{U} is the set of finite sum of finite products of elements of $R, u \in \mathcal{U}$ means $u = \sum_{i=1}^{n} \prod_{j=1}^{k_i} x_{ij}$ and A is a non-empty subset of R.

Proposition 3.4. For a non-empty subset A of R we have:

(i)
$$\mathcal{L}\mathfrak{R}_{\mathcal{U}}^{-1}(A) = \mathcal{R}\mathfrak{R}_{\mathcal{U}}(A);$$

(ii) $\overline{\mathcal{R}\mathfrak{R}_{\mathcal{U}}^{-1}}(A) = \overline{\mathcal{L}\mathfrak{R}_{\mathcal{U}}}(A).$

Proof. Follows from Proposition 3.2.

Lemma 3.5. For a non-empty subset A of R define:

$${}_{A}\sum^{\mathcal{U}} \stackrel{\text{\tiny def}}{=} \{ \Re 1 \subseteq 1\mathcal{U} \times \mathcal{U} \mid \overline{\mathcal{L}} \Re_{\mathcal{U}}(A) = A \} and \sum_{A}^{\mathcal{U}} \stackrel{\text{\tiny def}}{=} \{ \Re 1 \subseteq 1\mathcal{U} \times \mathcal{U} \mid \overline{\mathcal{R}} \Re_{\mathcal{U}}(A) = A \}.$$

If $\sum_{A} \mathcal{U} \neq \emptyset$ (resp. $\sum_{A} \mathcal{U} \neq \emptyset$), then $(\sum_{A} \mathcal{U}, \circ)$ (resp. $(\sum_{A} \mathcal{U}, \circ)$) is a semigroup, where \circ is the operation of relation composition.

Proof. Suppose that $\Re, \Re' \in \sum_{A} \mathcal{U}$ and $(\sum_{i=1}^{n} \prod_{j=1}^{k_i} y_{ij}, \sum_{i=1}^{m} \prod_{j=1}^{t_i} x_{ij}) \in \mathcal{U} \times \mathcal{U}$ are given. Let $\sum_{i=1}^{m} \prod_{j=1}^{t_i} x_{ij} \cap A \neq \emptyset$ and $\sum_{i=1}^{n} \prod_{j=1}^{k_i} y_{ij} 1 \Re \circ \Re' 1 \sum_{i=1}^{n} \prod_{j=1}^{k_i} x_{ij}$. So there exists $\sum_{i=1}^{k} \prod_{j=1}^{s_i} z_{ij}$ such that $\sum_{i=1}^{k} \prod_{j=1}^{s_i} z_{ij} 1 \Re 1 \sum_{i=1}^{m} \prod_{j=1}^{t_i} x_{ij}$ and $\sum_{i=1}^{n} \prod_{j=1}^{k_i} y_{ij} 1 \Re' 1 \sum_{i=1}^{k} \prod_{j=1}^{s_i} z_{ij}$. From $\sum_{i=1}^{k} \prod_{i=1}^{s_i} z_{ij} \mathbb{R} \mathbb{1} \sum_{i=1}^{m} \prod_{i=1}^{t_i} x_{ij}$ and $\Re \in \sum_{A \geq \mathcal{U}}^{\mathcal{U}}$, we have $\sum_{i=1}^{k} \prod_{i=1}^{s_i} z_{ij} \subseteq A$. Since $\Re' \in \sum_{A \geq \mathcal{U}} \text{ and } \sum_{i=1}^{n} \prod_{i=1}^{k_i} y_{ij} 1 \Re' 1 \sum_{i=1}^{k} \prod_{j=1}^{s_i} z_{ij}, \sum_{i=1}^{n} \prod_{j=1}^{k_i} y_{ij} \subseteq A.$

Theorem 3.6. If \Re is a permutation of finite order in S_{μ} (the symmetric group on the set \mathcal{U}), then the following are equivalent:

(i) A is $\mathcal{L}\Re_{\mu}$ -part; (ii) A is $\mathcal{R}\mathfrak{R}_{\mathcal{U}}$ -part;

(iii) A is \Re_{μ} -part.

Proof. (i) \Rightarrow (ii). For this reason suppose that A is $\mathcal{L}\Re_{\mathcal{U}}$ -part. So $\overline{\mathcal{L}}\Re_{\mathcal{U}}(A) =$ A and hence $\Re \in \sum_{A} \sum^{\mathcal{U}}$. Since \Re is a permutation of finite order in $S_{\mathcal{U}}$, $\langle \Re \rangle = \{ \Re^n \mid n \in \mathbb{N} \}$ is a subgroup of $A \sum^{\mathcal{U}}$ and so $\Re^{-1} \in A \sum^{\mathcal{U}}$. Therefore by Proposition 3.4 we have $A = \overline{\mathcal{L} \Re_{\mathcal{U}}^{-1}}(A) = \overline{\mathcal{R} \Re_{\mathcal{U}}}(A)$, thus $\Re \in \sum_{A}^{\mathcal{U}}$ and hence A is $\mathcal{R} \Re$ -part hence A is $\mathcal{R}\mathfrak{R}_{\mathcal{U}}$ -part.

Theorem 3.7. Suppose that $\Re 1 \subseteq 1\mathcal{U} \times \mathcal{U}$ (i) We pose $K_{1,\Re}^{\mathcal{L}}(A) = A$ and

$$K_{n+1,\Re}^{\mathcal{L}}(A) = \{ x \in R \mid \exists (u,v) \in \Re, x \in u \text{ and } v \cap K_{n,\Re}^{\mathcal{L}}(A) \neq \emptyset \},$$

if we consider $K_{\Re}^{\mathcal{L}}(A) = \bigcup_{n \ge 1} K_{n,\Re}^{\mathcal{L}}(A)$, then $K_{\Re}^{\mathcal{L}}(A) = \overline{\mathcal{L}\mathfrak{R}_{\mathcal{U}}}(A)$ and $K_{\Re}^{\mathcal{L}}(A)$ is the smallest $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part containing A; (ii) We pose $K_{1,\Re}^{\mathcal{R}}(A) = A$ and

$$K_{n+1,\mathfrak{R}}^{\mathcal{R}}(A) = \{ x \in R \mid \exists (v, u) \in \Re, x \in u \text{ and } v \cap K_{n,\mathfrak{R}}^{\mathcal{R}}(A) \neq \emptyset \},\$$

if we consider $K_{\Re}^{\mathcal{R}}(A) = \bigcup_{n \geq 1} K_{n,\Re}^{\mathcal{R}}(A)$, then $K_{\Re}^{\mathcal{R}}(A) = \overline{\mathcal{R}}_{\mathcal{H}}(A)$ and $K_{\Re}^{\mathcal{R}}(A)$ is the smallest $\mathcal{R}\mathfrak{R}_{\mu}$ -part containing A;

(iii) We pose $K_{1,\mathfrak{R}}(A) = A$ and

$$K_{n+1,\Re}(A) = \{ x \in R \mid \exists (u,v) \in \Re \cup \Re^{-1}, x \in u \text{ and } v \cap K_{n,\Re}(A) \neq \emptyset \},$$

if $K_{\mathfrak{R}}(A) = \bigcup_{n>1} K_{n,\mathfrak{R}}(A)$, then $K_{\mathfrak{R}}(A) = \overline{\mathfrak{R}_{\mathcal{U}}}(A)$ and $K_{\mathfrak{R}}(A)$ is the smallest $\Re_{\mathcal{U}}$ -part containing A.

Proof. (i) It is necessary to prove:

(1)
$$K_{\mathfrak{P}}^{\mathcal{L}}(A)$$
 is $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part.

(2) if $A \subseteq B$ and B is $\mathcal{L}\mathfrak{R}_{u}$ -part, then $K^{\mathcal{L}}_{\mathfrak{R}}(A) \subseteq B$.

For the proof (1) suppose that $v \cap K_{\Re}^{\mathcal{L}}(A) \neq \emptyset$ and $u1\Re 1v$. Therefore there exists $n \in \mathbb{N}$ such that $v \cap K_{n,\Re}^{\mathcal{L}}(A) \neq \emptyset$, from which follows $u1 \subseteq 1K_{n+1,\Re}^{\mathcal{L}}(A)1 \subseteq 1K_{\Re}^{\mathcal{L}}(A)$. Now we prove (2) by induction on n. We have $K_{1,\Re}^{\mathcal{L}}(A)1 = 1A1 \subseteq 1B$. Suppose that $K_{n,\Re}^{\mathcal{L}}(A)1 \subseteq 1B$. We prove that $K_{n+1,\Re}^{\mathcal{L}}(A)1 \subseteq 1B$. If $z \in K_{n+1,\Re}^{\mathcal{L}}(A)$, then there exists $(u,v) \in \mathcal{U} \times \mathcal{U}$ such that $z \in u$, $u1\Re 1v$ and $v \cap K_{n,\Re}^{\mathcal{L}}(A) \neq \emptyset$. Therefore $v \cap B \neq \emptyset$ and hence $z \in u1 \subseteq 1B$. So $K_{n+1,\Re}^{\mathcal{L}}(A)1 \subseteq 1B$.

(ii) We have

$$K_{\Re}^{\mathcal{R}}(A) = K_{\Re_{\mathcal{U}}^{-1}}^{\mathcal{L}}(A)$$

= $\overline{\mathcal{L}}_{\mathcal{H}}^{\mathcal{R}_{-1}^{-1}}(A)$, 4by part (i)
= $\overline{\mathcal{R}}_{\mathcal{H}}^{\mathcal{R}}(A)$, 4by Proposition 3.4.

(iii) Follows from (i) and (ii).

Proposition 3.8. Suppose that B is a non-empty subset of R and \Re is a relation on \mathcal{U} . Then we have:

$$\begin{split} (i) \ \overline{\mathcal{L}\mathfrak{R}_{u}}(B) &= \bigcup_{b \in B} \overline{\mathcal{L}\mathfrak{R}_{u}}(b); \\ (ii) \ \overline{\mathcal{R}\mathfrak{R}_{u}}(B) &= \bigcup_{b \in B} \overline{\mathcal{R}\mathfrak{R}_{u}}(b); \\ (iii) \ \overline{\mathfrak{R}_{u}}(B) &= \bigcup_{b \in B} \overline{\mathfrak{R}_{u}}(b). \end{split}$$

Proof. (i) It is clear that for all $b \in B$, $\overline{\mathcal{L}\mathfrak{R}_{u}}(b)1 \subseteq 1\overline{\mathcal{L}\mathfrak{R}_{u}}(B)$. By Theorem 3.7(i), $\overline{\mathcal{L}\mathfrak{R}_{u}}(B) = \bigcup_{n \geq 1} K_{n,\mathfrak{R}}^{\mathcal{L}}(B)$. We follow the proposition by induction on n. For n = 1, $K_{1,\mathfrak{R}}^{\mathcal{L}}(B) = B = \bigcup_{b \in B} \{b\} = \bigcup_{b \in B} K_{1,\mathfrak{R}}^{\mathcal{L}}(b)$. Supposing it is true for n, we show that $K_{n+1,\mathfrak{R}}^{\mathcal{L}}(B)1 \subseteq 1 \bigcup_{b \in B} K_{n+1,\mathfrak{R}}^{\mathcal{L}}(b)$. If $z \in K_{n+1,\mathfrak{R}}^{\mathcal{L}}(B)$, then there exists $(u, v) \in \mathfrak{R}$ such that $z \in u$ and $v \cap K_{n,\mathfrak{R}}^{\mathcal{L}}(B) \neq \emptyset$. From this it follows, by the hypothesis of induction, $v \cap (\bigcup_{b \in B} K_{n,\mathfrak{R}}^{\mathcal{L}}(b)) \neq \emptyset$ and therefore $b' \in B$ exists such that $v \cap K_{n,\mathfrak{R}}^{\mathcal{L}}(b') \neq \emptyset$. So $z \in K_{n+1,\mathfrak{R}}^{\mathcal{L}}(b')$ and hence $\overline{\mathcal{L}\mathfrak{R}_{u}}(B)1 \subseteq 1 \bigcup_{b \in B} \overline{\mathcal{L}\mathfrak{R}_{u}}(b)$.

Theorem 3.9. Suppose that $\Re 1 \subseteq 1\mathcal{U} \times \mathcal{U}$. The relation $K_{\Re}^{\mathcal{L}}$ (resp. $K_{\Re}^{\mathcal{R}}$) on R defined by:

$$x1K_{\mathfrak{P}}^{\mathcal{L}}1y \Leftrightarrow x \in K_{\mathfrak{P}}^{\mathcal{L}}(y)(x \in K_{\mathfrak{P}}^{\mathcal{R}}(y)),$$

where $K_{\Re}^{\mathcal{L}}(y) = K_{\Re}^{\mathcal{L}}(\{y\})$ (resp. $K_{\Re}^{\mathcal{R}}(y) = K_{\Re}^{\mathcal{R}}(\{y\})$) is a preorder. Furthermore if \Re is symmetric, then $K_{\Re}^{\mathcal{L}}$ (resp. $K_{\Re}^{\mathcal{R}}$) is an equivalence relation.

 \square

Proof. It is easy to see that $K_{\mathfrak{R}}^{\mathcal{L}}$ is reflexive. Now suppose that $x1K_{\mathfrak{R}}^{\mathcal{L}}1y$ and $y1K_{\mathfrak{R}}^{\mathcal{L}}1z$. So $x \in K_{\mathfrak{R}}^{\mathcal{L}}(y)$ and $y \in K_{\mathfrak{R}}^{\mathcal{L}}(z)$. By Theorem 3.7(i) we have $K_{\mathfrak{R}}^{\mathcal{L}}(z)$ is $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part thus $K_{\mathfrak{R}}^{\mathcal{L}}(y)\subseteq K_{\mathfrak{R}}^{\mathcal{L}}(z)$ and hence $x \in K_{\mathfrak{R}}^{\mathcal{L}}(z)$. Therefore $K_{\mathfrak{R}}^{\mathcal{L}}$ is preorder. Now let \mathfrak{R} be symmetric. We prove that $K_{\mathfrak{R}}^{\mathcal{L}}$ is symmetric as well. To this end the following is premised:

(1) for all $n \geq 2$ and $x \in R$, $K_{n,\Re}^{\mathcal{L}}(K_{2,\Re}^{\mathcal{L}}(x)) = K_{n+1,\Re}^{\mathcal{L}}(x)$; (2) $x \in K_{n,\Re}^{\mathcal{L}}(y)$ if and only if $y \in K_{n,\Re}^{\mathcal{L}}(x)$.

We prove (1) by induction on *n*. Suppose that $z \in K_{2,\Re}^{\mathcal{L}}(K_{2,\Re}^{\mathcal{L}}(x))$ so there exists $(u, v) \in \Re$ such that $z \in u$ and $v \cap K_{2,\Re}^{\mathcal{L}}(x) \neq \emptyset$. Thus $z \in K_{3,\Re}^{\mathcal{L}}(x)$. Let $K_{n,\Re}^{\mathcal{L}}(K_{2,\Re}^{\mathcal{L}}(x)) = K_{n+1,\Re}^{\mathcal{L}}(x)$ so we have:

$$\begin{split} z \in K_{n+1,\Re}^{\mathcal{L}}(K_{2,\Re}^{\mathcal{L}}(x)) \Leftrightarrow \exists (u,v) \in \Re, z \in u, v \cap K_{n,\Re}^{\mathcal{L}}(K_{2,\Re}^{\mathcal{L}}(x)) \neq \emptyset \\ \Leftrightarrow \exists (u,v) \in \Re, z \in u, v \cap K_{n+1,\Re}^{\mathcal{L}}(x) \neq \emptyset \\ \Leftrightarrow z \in K_{n+2,\Re}^{\mathcal{L}}(x). \end{split}$$

We also prove (2) by induction on n. It is clear that $x \in K_{2,\Re}^{\mathcal{L}}(y)$ if and only if $y \in K_{2,\Re}^{\mathcal{L}}(x)$. Suppose $x \in K_{n,\Re}^{\mathcal{L}}(y)$ if and only if $y \in K_{2,\Re}^{\mathcal{L}}(x)$. Let $x \in K_{n+1,\Re}^{\mathcal{L}}(y)$ be given, so there exist $(u, v) \in \Re$ such that $x \in u$ and $v \bigcap K_{n,\Re}^{\mathcal{L}}(y) \neq \emptyset$. Therefore there exists $b \in v \bigcap K_{n,\Re}^{\mathcal{L}}(y)$ and hence $y \in K_{n,\Re}^{\mathcal{L}}(b)$. Since \Re is symmetric and $(u, v) \in \Re$, $b \in v$ and $x \in u \bigcap K_{1,\Re}^{\mathcal{L}}(x)$ implies that $b \in K_{2,\Re}^{\mathcal{L}}(x)$ and hence $y \in K_{n,\Re}^{\mathcal{L}}(K_{2,\Re}^{\mathcal{L}}(x)) = K_{n+1,\Re}^{\mathcal{L}}(x)$. Similarly we can show if $y \in K_{n+1,\Re}^{\mathcal{L}}(x)$, then $x \in K_{n+1,\Re}^{\mathcal{L}}(x)$.

Proposition 3.10. Let \Re be a relation on \mathcal{U} and A be a non-empty subset of the hyperring R. The following conditions are equivalent:

(i) A is a $(\mathcal{R}\mathfrak{R}_{\mathcal{U}}\operatorname{-part}) \mathcal{L}\mathfrak{R}_{\mathcal{U}}\operatorname{-part} of R;$ (ii) $x \in A, (x1K_{\mathfrak{R}}^{\mathcal{L}}1z)z1K_{\mathfrak{R}}^{\mathcal{L}}1x \Rightarrow z \in A.$

Proof. (i) \Rightarrow (ii) If $x \in A$ and $z \in R$ such that $z 1 K_{\Re}^{\mathcal{L}} 1 x$, then there exists $(u, v) \in \Re$ such that $z \in u$ and $v \cap K_{n,\Re}^{\mathcal{L}}(A) \neq \emptyset$ for some $n \in \mathbb{N}$. Since A is a $\mathcal{L}\Re_{u}$ -part by Theorem 3.7, $K_{n,\Re}^{\mathcal{L}}(A) 1 \subseteq 1A$ and so $v \cap A \neq \emptyset$. Therefore $u1 \subseteq 1A$ and hence $z \in A$.

(ii) \Rightarrow (i) Let $u \cap A \neq \emptyset$ and $v1\Re 1u$. So there exists $x \in A \cap u$ and $x \in u$, $u \cap K_{1,\Re}^{\mathcal{L}}(x) \neq \emptyset$. Now suppose that $z \in v$ is given. So

$$v1\Re 1u \Rightarrow z \in K_{2,\Re}^{\mathcal{L}}(x), 4 \text{ because } x \in u$$
$$\Rightarrow z1K_{\Re}^{\mathcal{L}}1x$$
$$\Rightarrow z \in A, 15 \text{ because } x \in A.$$

Therefore $v1 \subseteq 1A$ and hence A is $\mathcal{L}\Re_{\mathcal{U}}$ -part of R.

4. Rings derived from hyperrings

In this section we give the notion of (strongly) normal relation on \mathcal{U} and then we construct a ring from a hyperring.

Definition 4.1. Suppose that $\Re 1 \subseteq 1\mathcal{U} \times \mathcal{U}$.

(i) for all $(x, y) \in \mathbb{R}^2$ define the relation $\rho_{c, \infty}$ on \mathbb{R} by:

$$x1\rho_{c,w}y \Leftrightarrow [x = y1 \text{ or } 1\exists (u, v) \in \Re 2 \text{ such that } 1x \in u1 \text{ and } 1y \in v]$$

and $\rho_{c,\mathfrak{m}}^*$ is the transitive closure of $\rho_{c,\mathfrak{m}}$;

(ii) for all $(x, y) \in \mathbb{R}^2$ define the relation $\rho_{\mathcal{R},\mathfrak{P}}$ on \mathbb{R} by:

$$x1\rho_{\mathcal{R}} \otimes y \Leftrightarrow [x = y1 \text{ or } 1\exists (v, u) \in \Re 2 \text{ such that } 1x \in u1 \text{ and } 1y \in v]$$

and $\rho_{\mathcal{R},\mathfrak{R}}^*$ is the transitive closure of $\rho_{\mathcal{R},\mathfrak{R}}$;

(iii) for all $(x, y) \in \mathbb{R}^2$ define the relation ρ_{∞} on \mathbb{R} by:

 $x1\rho_{\mathfrak{p}}y \Leftrightarrow [x=y1 \text{ or } 1\exists (u,v) \in \Re [] \Re^{-1}2 \text{ such that } 1x \in u1 \text{ and } 1y \in v]$

and ρ_{\Re}^* is the transitive closure of ρ_{\Re} .

Theorem 4.2. Suppose that $\Re 1 \subseteq 1\mathcal{U} \times \mathcal{U}$. For all $(x, y) \in \mathbb{R}^2$ we have:

(i) $x1K_{\mathfrak{R}}^{\mathcal{L}}1y$ if and only if $x1\rho_{\mathcal{L},\mathfrak{R}}^*1y$; (ii) $x1K_{\mathfrak{R}}^{\mathcal{R}}1y$ if and only if $x1\rho_{\mathfrak{R},\mathfrak{R}}^*1y$.

Proof. (i) It is easy to see that $\rho_{\mathcal{L},\mathfrak{R}}^* 1 \subseteq 1K_{\mathfrak{R}}^{\mathcal{L}}$. Conversely suppose that $x 1K_{\mathfrak{R}}^{\mathcal{L}} 1y$ so by Theorem 3.9 we have $x \in K_{n+1,\mathfrak{R}}^{\mathcal{L}}(y)$ for some $n \in \mathbb{N}$. So there ex-ists $(u_1, v_1) \in \mathfrak{R}$ such that $x \in u_1$ and $v_1 \bigcap K_{n,\mathfrak{R}}^{\mathcal{L}}(y) \neq \emptyset$ thus there exists $x_1 \in v_1 \bigcap K_{n,\Re}^{\mathcal{L}}(y)$ and hence $x \mathbf{1} \rho_{\mathcal{L},\Re} \mathbf{1} x_1$. Since $x_1 \in K_{n,\Re}^{\mathcal{L}}(y)$, there exists $(u_2, v_2) \in \Re$ such that $x_1 \in u_2$ and $v_2 \bigcap K_{n-1,\Re}^{\mathcal{L}}(y) \neq \emptyset$. Therefore $x_1 1 \rho_{\mathcal{L},\Re}(x_1, y_2)$, where $x_2 \in v_2 \bigcap K_{n-1,\Re}^{\mathcal{L}}(y)$. As a consequence we conclude that $x_n \in v_n \bigcap K_{n-(n-1),\Re}^{\mathcal{L}}(y)$ exists such that $x_{n-1} 1 \rho_{\mathcal{L},\Re} 1 x_n$. Thus we have,

$$x1\rho_{\mathcal{L},\mathfrak{R}}1x_11\rho_{\mathcal{L},\mathfrak{R}}1x_21\ldots 1x_n1\rho_{\mathcal{L},\mathfrak{R}}1y.$$

From this follows $K^{\mathcal{L}}_{\mathfrak{R}} 1 \subseteq \mathbf{1} \rho^*_{\mathcal{L},\mathfrak{R}}$ and the proof is complete. Similarly we have (ii).

 \Box

Proposition 4.3. Suppose that \Re is a permutation of finite order in S_{μ} , then $\rho^*_{\mathcal{L},\mathfrak{R}} = \rho^*_{\mathfrak{R}}.$

Proof. Since $K_{\Re}^{\mathcal{L}}(y)$ is $\mathcal{L}\Re_{\mathcal{U}}$ -part by Theorem 3.6, $K_{\Re}^{\mathcal{L}}(y)$ is $\mathcal{R}\Re_{\mathcal{U}}$ -part and hence $K_{\Re}^{\mathcal{R}} \subseteq K_{\Re}^{\mathcal{L}}$. Analogously $K_{\Re}^{\mathcal{L}} \subseteq K_{\Re}^{\mathcal{R}}$ and so $K_{\Re}^{\mathcal{L}} = K_{\Re}^{\mathcal{R}}$. From this it follows that $\rho_{\mathcal{L},\mathfrak{R}}^* = \rho_{\mathfrak{R}}^*$.

Definition 4.4. If $(R, +, \circ)$ is a hyperring and $\rho 1 \subseteq 1R \times R$ is an equivalence, then we set:

$$A \ \overline{\rho} \ B \Leftrightarrow a1\rho 1b, 5 \forall a \in A, \forall b \in B,$$

for all pairs (A, B) of non-empty subsets of R. The relation ρ is said to be strongly regular to the left (resp. to the right) if (i) $x1\rho 1y \Rightarrow a + x \overline{\rho} a + y$ and (ii) $x1\rho 1y \Rightarrow a \circ x \overline{\rho} a \circ y$ (resp. (i) $x1\rho 1y \Rightarrow x + a \overline{\rho} y + a$ and (ii) $x1\rho 1y \Rightarrow a \circ x \overline{\rho} a \circ y$), for all $(x, y, a) \in \mathbb{R}^3$. ρ is called strongly regular if it is (i) strongly regular to the right and to the left and moreover (ii) there exists ein R such that: $\rho(x) = \rho(t)$, for all $t \in x \circ e \bigcap e \circ x$.

Definition 4.5. Let R be a hyperring, then

(i) a relation \Re on \mathcal{U} is called normal if for all $x \in R$, one has $K_{\Re}^{\mathcal{L}}(x) = K_{\Re}^{\mathcal{R}}(x)$,

(ii) a normal relation \Re on \mathcal{U} is called strongly normal to the left (resp. to the right) if $\rho_{\mathcal{L},\Re}^*$ (resp. $\rho_{\mathcal{R},\Re}^*$) is strongly regular to the left (resp. to the right),

(iii) a normal relation \Re on ${\cal U}$ is called strongly normal if ρ_{\Re}^* is strongly regular.

Suppose that $\Re 1 \subseteq 1\mathcal{U} \times \mathcal{U}$. For every element x of a hyperring R, set:

$$\begin{split} P_{\mathcal{L},\Re}^n(x) &= \bigcup \{v1 \mid 1v1\Re 1u_n, u_n = \sum_{i=1}^n \prod_{j=1}^n x_{ij}, x \in u \\ P_{\mathcal{L},\Re}(x) &= \bigcup_{n \ge 1} P_{\mathcal{L},\Re}^n(x) \bigcup \{x\}; \\ \rho_{\mathcal{L},\Re}^*(x) &= \{y \in R1 \mid 1y1\rho_{\mathcal{L},\Re}^*1x\}. \end{split}$$

Theorem 4.6. Let R be a hyperring and \Re be a relation on \mathcal{U} . The following conditions are equivalent:

- (i) $\rho_{\mathcal{L},\mathfrak{R}}$ is transitive;
- (ii) for every $x \in R$, $\rho_{\mathcal{L},\mathfrak{R}}^*(x) = P_{\mathcal{L},\mathfrak{R}}(x)$;
- (iii) for every $x \in R$, $P_{\mathcal{L},\mathfrak{R}}(x)$ is a $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part of R.

Proof. (i) \Rightarrow (ii) For every pair (x, y) of elements of R we have:

 $y\in \mathsf{p}^*_{\scriptscriptstyle\mathcal{L},\Re}(x)\Leftrightarrow y1\mathsf{p}^*_{\scriptscriptstyle\mathcal{L},\Re}1x\Leftrightarrow y1\mathsf{p}_{\scriptscriptstyle\mathcal{L},\Re}1x\Leftrightarrow y\in P_{\scriptscriptstyle\mathcal{L},\Re}(x).$

(ii) \Rightarrow (iii) Let $(v, u) \in \Re$ such that $u \cap P_{\mathcal{L}, \Re}(x) \neq \emptyset$ be given. So $u \cap \rho_{\mathcal{L}, \Re}^*(x) \neq \emptyset$ and hence there exists $z \in R$ such that $z \in u$ and $z \in \rho_{\mathcal{L}, \Re}^*(x)$, thus $z \in K_{\Re}^{\mathcal{L}}(x)$, by Theorem 4.2. On the other hand, $z \in K_{\Re}^{\mathcal{L}}(z)$, so $u \cap K_{\Re}^{\mathcal{L}}(z) \neq \emptyset$ and hence $v1 \subseteq 1K_{\Re}^{\mathcal{L}}(z)$, because $v1\Re 1u$ and $K_{\Re}^{\mathcal{L}}(z)$ is a $\mathcal{L}\mathfrak{R}_{u}$ -part of R, by Theorem 3.7. Now suppose that $t \in v$ is an arbitrary element, thus $t \in K_{\Re}^{\mathcal{L}}(x)$ and hence $t1\rho_{\mathcal{L},\Re}^*1x$. Therefore $t \in \rho_{\mathcal{L},\Re}^*(x) = P_{\mathcal{L},\Re}(x)$ and so $v1\subseteq 1P_{\mathcal{L},\Re}(x)$.

(iii) \Rightarrow (i) Let x, y and z in R be given such that $x1\rho_{\mathcal{L},\mathfrak{R}}1y$ and $y1\rho_{\mathcal{L},\mathfrak{R}}1z$. Since $x1\rho_{\mathcal{L},\mathfrak{R}}1y$, there exists $(u, v) \in \mathfrak{R}$ such that $x \in u$ and $y \in v$. Therefore $v \cap P_{\mathcal{L},\mathfrak{R}}(y) \neq \emptyset$ and since $P_{\mathcal{L},\mathfrak{R}}(y)$ is a $\mathcal{L}\mathfrak{R}_u$ -part, $u1\subseteq 1P_{\mathcal{L},\mathfrak{R}}(y)$ and hence $x \in P_{\mathcal{L},\mathfrak{R}}(y)$. We can see that $P_{\mathcal{L},\mathfrak{R}}(y)1\subseteq 1P_{\mathcal{L},\mathfrak{R}}(z)$, because $y1\rho_{\mathcal{L},\mathfrak{R}}1z$ and so by above $y \in P_{\mathcal{L},\mathfrak{R}}(z)$. Therefore $x \in P_{\mathcal{L},\mathfrak{R}}(z)$ and hence $x1\rho_{\mathcal{L},\mathfrak{R}}(z)$.

Proposition 4.7. If \Re is a normal relation on \mathcal{U} , then:

(i) \Re^{-1} is a normal relation;

(ii) $\rho_{\mathcal{L},\mathfrak{R}}^* = \rho_{\mathfrak{R}}^*$ and $\rho_{\mathcal{L},\mathfrak{R}}^*$ is an equivalence relation.

Proof. The proof follows from Proposition 3.4 and Theorem 4.2.

Theorem 4.8. Suppose that $(R, +, \circ)$ is a hyperring and \Re is a strongly normal relation on \mathcal{U} . A ring structure turns out to be define on R/ρ_{\Re}^* with respect to the operations:

$$\begin{split} \rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) &= \rho_{\Re}^{*}(z), 2where 1z \in x + y. \\ \rho_{\Re}^{*}(x) \odot \rho_{\Re}^{*}(y) &= \rho_{\Re}^{*}(z), 2where 1z \in x \circ y. \end{split}$$

Proof. We will prove that the operation \oplus is well defined. Let $\rho_{\Re}^*(x_0) = \rho_{\Re}^*(x_1)$ and $\rho_{\Re}^*(y_0) = \rho_{\Re}^*(y_1)$. It is necessary to verify that $\rho_{\Re}^*(x_0) \oplus \rho_{\Re}^*(y_0) = \rho_{\Re}^*(x_1) \oplus \rho_{\Re}^*(y_1)$. By hypothesis $(m,n) \in \mathbb{N}^2$, $(z_0, z_1, ..., z_m) \in \mathbb{R}^{m+1}$ and $(t_0, t_1, ..., t_n) \in \mathbb{R}^{n+1}$ exist such that

$$x_0 = z_0 1 \rho_{\mathfrak{R}} 1 z_1 1 \rho_{\mathfrak{R}} 1 z_2 1 \dots 1 z_{m-1} 1 \rho_{\mathfrak{R}} 1 z_m = z_0 1 \rho_{\mathfrak{R$$

and

$$y_0 = t_0 1 \rho_{\mathfrak{R}} 1 t_1 1 \rho_{\mathfrak{R}} 1 t_2 1 \dots 1 t_{n-1} 1 \rho_{\mathfrak{R}} 1 t_n = y_1$$

Since \Re is normal, for all $u \in z_{s-1}+t_{s-1}$ and $v \in z_s+t_s$, where $1 \leq s \leq k$ and $k = \min\{m, n\}$, we have $u1\rho_{\Re}^* v$. Therefore $\rho_{\Re}^*(x_0) \oplus \rho_{\Re}^*(y_0) = \rho_{\Re}^*(z_1) \oplus \rho_{\Re}^*(t_1) = \dots = \rho_{\Re}^*(z_k) \oplus \rho * (t_k) = \rho_{\Re}^*(a_{k+i}) \oplus \rho_{\Re}^*(b_{k+i})$, where $k+1 \leq k+i \leq \max\{m, n\}$ and:

$$(a_{k+i}, b_{k+i}) = \begin{cases} (x_1, t_{k+i}) & \text{if } 1k = m; \\ (z_{k+i}, y_1) & \text{if } 1k = n. \end{cases}$$

Hence \oplus is well defined. Similarly the operation \odot is well defined and Theorem 31 of [2] shows that $(R/\rho_{\Re}^*, \oplus)$ is a group. By strongly normality of \Re we conclude that $(R/\rho_{\Re}^*, \odot)$ is a monoid with unit $\rho_{\Re}^*(e)$. The commutativity of \oplus is related with the existence of the unit in multiplication. Since \Re is strong, there exists e in R such that $\rho(x) = \rho(t)$ for all $t \in x \circ e \bigcap e \circ x$ which means $\rho_{\Re}^*(e)$ is the unit of multiplication so we have:

$$\begin{split} & \left[\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right] \odot \left[\rho_{\Re}^{*}(e) \oplus \rho_{\Re}^{*}(e) \right] = \left(\rho_{\Re}^{*}(x) \odot \left[\rho_{\Re}^{*}(e) \oplus \rho_{\Re}^{*}(e) \right] \right) \oplus \left(\rho_{\Re}^{*}(y) \odot \left[\rho_{\Re}^{*}(e) \oplus \rho_{\Re}^{*}(e) \right] \right] = \left(\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(x) \right) \oplus \left(\rho_{\Re}^{*}(y) \oplus \rho_{\Re}^{*}(y) \right) \text{ and also } \left[\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right] \odot \left[\rho_{\Re}^{*}(e) \oplus \rho_{\Re}^{*}(e) \right] = \left(\left[\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right] \odot \rho_{\Re}^{*}(e) \right) \oplus \left(\left[\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right] \odot \rho_{\Re}^{*}(e) \right) = \left(\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right) \oplus \left(\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right) \odot \left(\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right) \oplus \left(\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right) = \left(\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right) \oplus \left(\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right) = \left(\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right) \oplus \left(\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right) = \left(\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right) \oplus \left(\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right) = \left(\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right) \oplus \left(\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right) = \left(\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right) \oplus \left(\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right) = \left(\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y) \right) = \left(\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(x) \right) = \left(\rho_{\Re}^{*}(x) \oplus \rho_$$

Let $(R, +, \circ)$ and $(R', +', \circ')$ be two hyperrings. We say that $f : R \to R'$ is a homomorphism if for every $(x, y) \in R^2$ we have f(x + y) = f(x) + f(y) and $f(x \circ y) = f(x) \circ' f(y)$.

Definition 4.9. Let R is a hyperring and \Re be a strongly normal relation on \mathcal{U} . If $\varphi_{\Re} : R \to R/\rho_{\Re}^*$ be the canonical projection, we set $\omega_{\Re} = \varphi_{\Re}^{-1}(1_{R/\rho_{\Re}^*})$, and called the heart of φ_{\Re} .

Theorem 4.10. Let $(R, +, \circ)$ is a hyperfield (i.e, $(R, +, \circ)$ be a hyperring and (R, \circ) is a hypergroup) and B is a non-empty subset of R, then we have $\omega_{\Re} \circ B = B \circ \omega_{\Re} = \varphi_{\Re}^{-1}(\varphi_{\Re}(B)).$

Proof. Clearly $\varphi_{\Re}^{-1}(\varphi_{\Re}(B)) = \{x \in R \mid \exists b \in B : \varphi_{\Re}(b) = \varphi_{\Re}(x)\}$. Let $y \in \varphi_{\Re}^{-1}(\varphi_{\Re}(B))$, thus for some $b \in B$, $\varphi_{\Re}(b) = \varphi_{\Re}(y)$. Since (R, \circ) is a hypergroup, $u \in R$ exists such that $y \in b \circ u$, so $\varphi_{\Re}(y) = \varphi_{\Re}(b) \odot \varphi_{\Re}(u)$. Since $(R/\rho_{\Re}^*, \odot)$ is a group and $\varphi_{\Re}(b) = \varphi_{\Re}(y)$, we obtain $\varphi_{\Re}(u) = 1_{R/\rho_{\Re}^*}$ and so $u \in \varphi_{\Re}^{-1}(1_{R/\rho_{\Re}^*}) = \omega_{\Re}$. Therefore, $\varphi_{\Re}^{-1}(\varphi_{\Re}(B)) \subseteq B \circ \omega_{\Re}$.

Converesly if $z \in B \circ \omega_{\Re}$, then $\varphi_{\Re}(z) \in \varphi_{\Re}(B)$ and so $z \in \varphi_{\Re}^{-1}(\varphi_{\Re}(B))$. It is proved that $\omega_{\Re} \circ B = \varphi_{\Re}^{-1}(\varphi_{\Re}(B))$ by a similar way and we obtain $\varphi_{\Re}^{-1}(\varphi_{\Re}(B)) = \omega_{\Re} \circ B = B \circ \omega_{\Re}$.

Theorem 4.11. If $(R, +, \circ)$ is a hyperfield and B is a non-empty subset of R, then we have $\omega_{\Re} \circ B = B \circ \omega_{\Re} = \overline{\Re_{\mathcal{U}}}(B)$.

$$\begin{array}{l} Proof. \ \mathrm{If} \, \varphi_{\Re}(b) = \varphi_{\Re}(x) \, \mathrm{then} \, x \in \overline{\Re_{\iota}}(b). \ \mathrm{Therefore} \, \varphi_{\Re}^{-1}(\varphi_{\Re}(B)) = \bigcup_{b \in B} \overline{\Re_{\iota}}(b) = \overline{\Re_{\iota}}(B). \end{array}$$

5. \Re -parts and A_{R} -hyperrings

We recall that a K_H hypergroup is a hypergroup constructed from a hypergroup (H, \circ) and a family $\{A(x)\}_{x \in H}$ of non-empty subsets that are mutually disjoint. Put $K_H = \bigcup_{x \in H} A(x)$ and define the hyperoperation * on K_H as following,

$$\forall (a,b) \in K^2_{\scriptscriptstyle H}, 2a \in A(x), b \in A(y), 3a * b : \stackrel{def}{=} \bigcup_{z \in x \circ y} A(z).$$

 (H, \circ) is a hypergroup if and only if $(K_{_H}, *)$ is a hypergroup. In this case $K_{_H}$ is said to be a $K_{_H}$ -hypergroup generated by H.

Now let (R, \dagger, \star) be a commutative hyperring, S_r , $r \in R$ be a family of nonempty sets indexed in R such that for all $r_1, r_2 \in R$, $r_1 \neq r_2$, $S_{r_1} \cap S_{r_2} = \emptyset$. We set $A = \bigcup_{r \in R} S_r$ and we define the hyperoperations \boxplus and \odot in A in the following way:

$$\forall (x,y) \in S_{r_1} \times S_{r_2}, \ x \uplus y = \bigcup_{t \in r_1 \dagger r_2} S_t \ and \ x \odot y = \bigcup_{u \in r_1 \star r_2} S_u$$

It is easy to see that the structure (A, \uplus, \odot) is a hyperring. The hyperring (A, \uplus, \odot) is called a $A_{\mathbb{R}}$ -hyperring with support A or $A_{\mathbb{R}}$ -hyperring generated by

R. For all $P \in P^*(R)$, let $S(P) = \bigcup_{x \in P} S_x$.

Theorem 5.1. Let \Re be a relation on \mathcal{U} . Then P is $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part of R if and only if S(P) is $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part of A_R , where the relation \mathfrak{R} is defined as follows:

$$\sum_{i=1}^{n} \prod_{j=1}^{t_i} x_{ij} \Re \sum_{i=1}^{m} \prod_{j=1}^{k_i} y_{ij} \Leftrightarrow \bigcup_{v \in \sum_{i=1}^{n} \prod_{j=1}^{t_i} x_{ij}} S_v 3 \widehat{\Re} 1 \bigcup_{u \in \sum_{i=1}^{m} \prod_{j=1}^{k_i} y_{ij}} S_u$$

Proof. Let S(P) be a $\mathcal{L}\widehat{\Re}_{u}$ -part of A_{R} and $(\prod_{i=1}^{n} x_{i}, \prod_{i=1}^{m} y_{i}) \in \Re$ such that $\prod_{i=1}^{m} y_{i} \cap P \neq \emptyset$ be given. So $\bigcup_{v \in \prod_{i=1}^{n} x_{i}} S_{v} \Im\widehat{\Re} 1 \bigcup_{u \in \prod_{i=1}^{m} y_{i}} S_{u}$ and we have, $\prod_{i=1}^{m} y_{i} \cap P \neq \emptyset \Rightarrow \exists p \in P$, such that $p \in \prod_{i=1}^{m} y_{i}$ $\Rightarrow \exists p \in P$, such that $S_{p} 1 \subseteq 1 \bigcup_{u \in \prod_{i=1}^{m} y_{i}} S_{u}$ $\Rightarrow \bigcup_{u \in \prod_{i=1}^{m} y_{i}} S_{u} \cap S(P) \neq \emptyset$ $\Rightarrow \bigcup_{v \in \prod_{i=1}^{n} x_{i}} S_{v} 1 \subseteq 1S(P)$, because S(P) is a $\mathcal{L}\widehat{\Re}_{u}$ – part.

Now suppose that $t \in \prod_{i=1}^{n} x_i$ is given. Then $S_t 1 \subseteq 1S(P)$ and so there exists $q \in P$ such that $S_t \cap S_q \neq \emptyset$. Therefore t = q and hence $t \in P$, thus $\prod_{i=1}^{n} x_i 1 \subseteq 1P$. For the proof of the converse implication let $\sum_{i=1}^{n} \prod_{j=1}^{t_i} z_{ij} \cap S(P) \neq \emptyset$ and $\sum_{i=1}^{s} \prod_{j=1}^{l_i} t_{ij} 1 \Re 1 \sum_{i=1}^{n} \prod_{j=1}^{t_i} z_{ij}$ be given. Therefore there exists $x_{ij} \in A$ such that for all $1 \leq i \leq m', 1 \leq j \leq k'_i, z_{ij} \in S_{x_{ij}}$. Suppose that $u \in \bigcup_{y \in \sum_{i=1}^{n} \prod_{j=1}^{t_i} x_{ij}} S_y$, thus

 $u \in S_{y_0}$ for some $y_0 \in \prod_{i=1}^n x_i$. Since $u \in S(P)$, then there exists $y_1 \in P$ such that $u \in S_{y_1}$. Therefore $S_{y_0} \cap S_{y_1} \neq \emptyset$, which implies $y_0 = y_1 \in \prod_{i=1}^n x_i \cap P$. Since

$$P \text{ is } \mathcal{L}\Re_{u}\text{-part of } R \text{ and } \sum_{i=1}^{s} \prod_{j=1}^{l_{i}} x'_{ij} 1 \Re 1 \prod_{i=1}^{n} x_{i}, \text{ where } t_{ij} \in S_{x'_{ij}} \text{ for all } 1 \leqslant i \leqslant s,$$

then $\sum_{i=1}^{s} \prod_{j=1}^{l_{i}} x'_{ij} 1 \subseteq 1P.$ So $\sum_{i=1}^{s} \prod_{j=1}^{l_{i}} t_{ij} = \bigcup_{w \in \sum_{i=1}^{s} \prod_{j=1}^{l_{i}} x'_{ij}} S_{w} 1 \subseteq 1 \bigcup_{u \in P} S_{u} = S(P).$ \Box

6. CONCLUSION

In this paper we introduce and analyze a generalization of the notion of a complete part in a hyperring. We call this generalization \Re -part of a hyperring. Several properties are investigated, such as the structure of \Re -closures of a subset. This research can be continuated, for instance in the study of some particular classes of hyperrings.

References

- 1. P. Corsini, *Prolegomena of Hypergroup Theory*, Supplement to Riv. Mat. Pura Appl. 2nd ed. Aviani Editor, Tricesimo, 1993.
- P. Corsini, V. Leoreanu, Applications of Hyperstructures Theory, Advanced in Mathematics, Kluwer Academic Publishers, 2003.
- 3. B. Davaz, Isomorphism theorms of hyperrings, *Indian J. Pure Appl. Math.*, **35**(3) (2004), 321-331.
- B. Davvaz, V. Leoreanu-Fotea, *Hyperring Theory and Applications*, International Academic Press, Palm Harbor, Fla, USA, 2007.
- B. Davvaz, A. Salasi, A relation of hyperrings, *Comm. Algebra*, **34**(12) (2006), 4389–4000.
- D. Freni, A new characterization of the derived hypergroup via strongly regular equivalences, Communications in Algebra, 30(8) (2002), 3977–3989.
- M. Koskas, Groupoides, demi-hypergroupes et hypergroupes, J. Math. Pures Appl., 49 (1970), 155–192.
- M. Krasner, A class of hyperrings and hyperfields, International Journal of Mathematics and Mathematical Sciences, 6(2) (1983), 307–311.
- F. Marty, Sur uni Generalization de la Notion de Group, 8th Congress Math. Scandenaves, Stockholm, Sweden, 1934, pp. 45–49.
- R. Migliorato, Semi-ipergruppi e Ipergruppi n-completi, Ann. Sci. Univ. Clermont II, Sèr Math., 23 (1986), 99–123.
- 11. J. Mittas, Hypergroupes canoniques, $Mathematica\ Balkanica,\ \mathbf{2}\ (1972),\ 165–179$.
- 12. J. Mittas, Hyperanneaux et certaines de leurs proprietes, 2699 (1969), A623-A626.
- S. Sh. Mousavi, V. Leoreanu, M. Jafarpour, *R-parts in hypergroups*, **190** (2011), 667–680, DOI 10.1007/s10231-010-0168-8.
- R. Rota, Strongly distributive multiplicative hyperrings, Journal of Geometry, 39(1-2) (1990), 130–138.
- M. De Salvo, Hyperrings and hyperfields, Annales Scientifiques de l'Universite de Clermont-Ferrand II, 22 (1984), 89–107.
- D. Stratigopoulos, Certaines classes d'hypercorps et d'hyperanneaux in Hypergroups, Other Multivalued Structures and Their Applications, 105–110, University of Udine, Udine, Italy, 1985.
- T. Vougiouklis, Representation of hypergroups, hypermatrices, *Rivista di Mat. Pure ed Appl.*, 2 (1987), 7–19.

- T. Vougiouklis, The fundamental relation hyperrings. The general hyperfield, Proc. Forth Int. Congress on Algebraic hyperstructures and Applications, 1991, Word scientific.
- T. Vougiouklis, Hyperstructures and their representation, Hadronic press, Inc, palm Harber, USA, 115, 1994.
- 20. T. Vougiouklis, B. Davvaz, Commutative rings obtained from hyperrings (Hv-rings) with α^* relations, Comm. Algebra, **35** (2007), 3307–3320.