Iranian Journal of Mathematical Sciences and Informatics Vol. 7, No. 1 (2012), pp 59-71

-**-parts in hyperrings**

H. Babaei^a, M. Jafarpour^b and S. Sh. Mousavi^{c,*}

^aMathematics Department, Azad University of Kerman, Kerman, Iran b Mathematics Department, Vali-e-Asr University of Rafsanjan, Rafsanjan,

Iran

^cMathematics Department, Shahid Bahonar University of Kerman, Kerman,

Iran

ABSTRACT. In this article, first we generalize the concept of complete parts in hyperrings by introducing the concept \Re -parts in hyperrings and then we study \Re -closures in hyperrings. Finally we characterize \Re closures in hyperfields.

Keywords: hyperrings, (semi)hypergroups, complete parts.

2000 Mathematics subject classification: 20N20.

1. INTRODUCTION

Archive of SID The theory of hyperstructures was introduced in 1934 by Marty [9] at the 8th Congress of Scandinavian Mathematicians. This theory has been subsequently developed by Corsini and Leoreanu [1, 2] , Mittas [11, 12], Stratigopoulos [16], and by various authors. Basic definitions and propositions about the hyperstructures are found in [1, 2, 17]. Krasner [8] has studied the notion of *hyperfields, hyperrings*, and then some researchers. Hyperrings are essentially rings with approximately modified axioms. There are different notions of hyperrings. If the addition $+$ is a hyperoperation and the multiplication is a binary operation, then the hyperring is called Krasner (additive) hyperring [8].

[∗]Corresponding Author

E-mail addresses: babaei@iauk.ac.ir (H. Babaei), m.j@mail.vru.ac.ir (M. Jafarpour), smousavi@mail.uk.ac.ir (S. Sh. Mousavi)

Received 27 March 2011; Accepted 11 August 2011

c 2012 Academic Center for Education, Culture and Research TMU

⁵⁹

Rota [14] introduced a multiplicative hyperring, where $+$ is a binary operation and the multiplication is a hyperoperation. De Salvo [15] studied hyperrings in which the additions and the multiplications were hyperoperations. In 2007, Davvaz and Leoreanu-Fotea [4] published a book titled Hyperring Theory and Applications. Complete parts were introduced by Koskas [7] and studied then by Miglirato [10], Corsini and Sureau [1, 2]. Mousavi et al. [13] introduced the notion of R-parts in hypergroups as a generalization of complete parts in hypergroups. In this article we generalize the notion of complete parts by introducing *left* and *right* \Re -*parts* in hyperrings and we will study \Re -*closures* in hyperrings. Finally we characterize \Re -closures in *hyperfields*.

2. Preliminaries

A hypergroupoid (H, \circ) is a non-empty set H together with a hyperoperation
odefined on H , that is a mapping of $H \times H$ into the family of non-empty
subsets of H . If $(x, y) \in H \times H$, its image under \circ is denoted by A *hypergroupoid* (H, \circ) is a non-empty set H together with a hyperoperation \circ defined on H, that is a mapping of $H \times H$ into the family of non-empty subsets of H. If $(x, y) \in H \times H$, its image under \circ is denoted by $x \circ y$ and for simplicity by xy. If A, B are non-empty subsets of H then $A \circ B$ is given by $A \circ B = \bigcup \{ xy \mid x \in A, y \in B \}$. $x \circ A$ is used for $\{x\} \circ A$ (resp. $A \circ x$). A hypergroupoid (H, \circ) is called a *hypergroup* in the sense of [9] if for all $x, y, z \in H$ the following two conditions hold: (i) $x(yz)=(xy)z$, (ii) $xH = Hx = H$, means that for any $x, y \in H$ there exist $u, v \in H$ such that $y \in xu$ and $y \in vx$. If (H, \circ) satisfies only the first axiom, then it is called a *semi-hypergroup* an exhaustive review updated to 1992 of hypergroup theory appears in [1]. A recent book [2] contains a wealth of applications. A *hyperring* [17] is a triple $(R, +, \circ)$ which satisfies the ring-like axioms in the following way:(i) $(R,+)$ is a hypergroup, (ii) (R, \circ) is a semi-hypergroup, (iii) the multiplication is distributive with respect to the hyperoperation $+$. The hyperrings were studied by many authors, for example see [6], [3], [17], [5] and [19]. In [20] and [18] Vougiouklis defines the relation Γ on hyperring as follows: $x\Gamma y$ if and only if $x, y \subseteq u$, where u is a finite sum of finite products of elements of R, in fact there exist $n, k_i \in \mathbb{N}$ and $x_{ij} \in R$ such that $u = \sum_{i=1}^n$ k*i* $\bar{j=1}$ x_{ij} . He proved that the quotient R/Γ^* , where Γ^* is the transitive closure of Γ , is a ring and also Γ^* is the smallest equivalent relation on R such that the quotient R/Γ^* is a fundamental ring. The both \oplus and \odot on R/Γ^* are defined as follow: $\forall z \in \Gamma^*(x) + \Gamma^*(y), 2\Gamma^*(x) \oplus \Gamma^*(y) = \Gamma^*(z);$

$$
\forall z \in \Gamma^*(x) \circ \Gamma^*(y), 2\Gamma^*(x) \odot \Gamma^*(y) = \Gamma^*(z).
$$

Let M be a non-empty subset of R. We say that M is a *complete part* if for every $n \in \mathbb{N}, i = 1, 2, ..., n, \forall k_i \in \mathbb{N}, \forall (z_{i1}, ..., z_{ik_i}) \in R^{k_i}$ we have:

$$
\sum_{i=1}^n \prod_{j=1}^{k_i} z_{ij} \bigcap M \neq \emptyset \Rightarrow \sum_{i=1}^n \prod_{j=1}^{k_i} z_{ij} \subseteq M.
$$

<www.SID.ir>

$3.$ R -PARTS

Let U be the set of finite sums of finite products of elements of R and \Re be a relation on U . In this section first we generalize the notion of complete parts by introducing the notion of \Re -parts and then we study \Re -closures.

Definition 3.1. *Let* R *be a hyperring and* U *be the set of finite sum of finite products of elements of* R and R be a relation on U. For a non-empty subset A *of* R *we say:*

A is a right \Re *Archive of R* with respect to *U* (*n* briefly is $\Re R_u$ part) Φ *Archive of R with respect to U* (*or briefly is* $\Re R_u$ part) Φ for $\prod_{i=1}^{n} \prod_{j=1}^{n} x_{ij}$ and $\sum_{i=1}^{m} \prod_{j=1}^{n} y_{ij}$ in (i) A *is a left* \Re -part of R *with respect to* U *(or briefly is* \mathcal{LR}_u -part) if for *all* $\sum_{n=1}^{n}$ $\sum_{i=1}$ k*i* $j=1$ x_{ij} and \sum^m $\sum_{i=1}$ t*i* $\prod_{j=1}^{n} y_{ij}$ *in* U the following implication is valid: $\left[\sum_{n=1}^{n}\right]$ $\sum_{i=1}$ k*i* $\prod_{j=1}^{k_i} x_{ij} \bigcap A \neq \emptyset$ 2*and*2 $\sum_{i=1}^m$ t*i* $\prod_{j=1}^{t_i} y_{ij} 2 \Re 1 \sum_{i=1}^n$ $\sum_{i=1}$ k*i* $\prod_{j=1}^{k_i} x_{ij} \rightarrow \sum_{i=1}^m$ t*i* $\prod_{j=1}^{N} y_{ij} 1 \subseteq 1A;$ *(ii)* A *is a right* \Re -part of R *with respect to* U *(or briefly is* $\mathcal{R}\Re$ _{U}-part) *if for all* $\sum_{n=1}^{\infty}$ $\sum_{i=1}$ k*i* $j=1$ x_{ij} and \sum^m $\sum_{i=1}$ t*i* $\prod_{j=1}^{n} y_{ij}$ in U the following implication is valid: $\left[\sum_{n=1}^{n}\right]$ $\overline{\mathsf{H}}$ k*i* $x_{ij} \bigcap A \neq \emptyset 2$ *and* $2 \sum_{i=1}^{n}$ $\overline{\mathsf{H}}$ k*i* x_{ij} 2\R1 $\sum_{i=1}^{m}$ \prod^{t_i} y_{ij} \Rightarrow $\sum_{i=1}^{m}$ $\prod^{\dot{t}_i}$ y_{ij} 1⊆1 A ;

$$
i=1
$$
 $j=1$ $i=1$ $j=1$ $i=1$ $j=1$
(iii) A is a R-part of R with respect to U (or briefly is \Re_u -part) if it is
 \mathcal{LR}_u -part and \mathcal{RR}_u -part.

Proposition 3.2. Let \Re be a relation on U and \Re^{-1} be the inverse of \Re then (*i*) *A* is $\mathcal{LR}_{\mathcal{U}}^{-1}$ -part if and only if it is $\mathcal{RR}_{\mathcal{U}}$ -part;

(*ii*) A *is* $\mathcal{R}\tilde{\mathcal{R}}_{\iota}^{-1}$ -part *if and only if it is* $\mathcal{L}\mathcal{R}_{\iota}$ -part.

Definition 3.3. *The intersection of* \mathcal{LR}_u -parts (or \mathcal{RR}_u -parts, \Re -parts) which $\mathcal{L}(\mathbb{R}_{\text{C}})$ *closure* (or $\mathbb{R}(\mathbb{R}_{\text{C}})$ *-closure,* \mathbb{R} *-closure)* of A in R and it *will be denoted by* $\overline{\mathcal{LR}_u}(A)$ *(or* $\overline{\mathcal{RR}_u}(A)$ *,* $\overline{\mathcal{RL}_u}(A)$ *)*.

From now on R is a hyperring, U is the set of finite sum of finite products of elements of R, $u \in \mathcal{U}$ means $u = \sum_{i=1}^{n}$ k*i* $j=1$ x_{ij} and A is a non-empty subset of R.

Proposition 3.4. *For a non-empty subset* A *of* R *we have:*

(i)
$$
\overline{\mathcal{LR}_{\mathcal{U}}^{-1}(A)} = \overline{\mathcal{RR}_{\mathcal{U}}}(A);
$$
\n(ii)
$$
\overline{\mathcal{RR}_{\mathcal{U}}^{-1}(A)} = \overline{\mathcal{LR}_{\mathcal{U}}}(A).
$$

Proof. Follows from Proposition 3.2.

Lemma 3.5. *For a non-empty subset* A *of* R *define:*

$$
{}_{A}\sum^{\mathcal{U}}:\stackrel{\text{def}}{=} \{\Re 1\subseteq 1\mathcal{U}\times\mathcal{U}\mid \overline{\mathcal{LR}_{\mathcal{U}}}(A)=A\}\text{and}\sum_{A}^{\mathcal{U}}:\stackrel{\text{def}}{=} \{\Re 1\subseteq 1\mathcal{U}\times\mathcal{U}\mid \overline{\mathcal{RR}_{\mathcal{U}}}(A)=A\}.
$$

 \Box

 $If \sum_{A}^{\mathcal{U}} \neq \emptyset$ (resp. $\sum_{A}^{\mathcal{U}} \neq \emptyset$), then $\left(\sum_{A}^{\mathcal{U}} \circ \right)$ (resp. $\left(\sum_{A}^{\mathcal{U}} \circ \right)$) is a *semigroup, where* ◦ *is the operation of relation composition.*

Proof. Suppose that $\Re, \Re' \in \sum_{A}^{\mathcal{U}}$ and $\left(\sum_{A}^{n}\right)$ $\sum_{i=1}$ k*i* $\sum_{j=1}^{\infty}$ $y_{ij}, \sum_{i=1}^{m}$ $\sum_{i=1}$ t*i* $\prod_{j=1}^{n} x_{ij}$) $\in \mathcal{U} \times \mathcal{U}$ are given. Let $\sum_{m=1}^{m}$ $\sum_{i=1}$ t*i* $\bar{j=1}$ $x_{ij} \bigcap A \neq \emptyset$ and $\sum_{i=1}^{n}$ $\sum_{i=1}$ k*i* $\bar{j=1}$ y_{ij} 1 $\Re \circ \Re'$ 1 \sum^{n} $\sum_{i=1}$ k*i* $\bar{j=1}$ x_{ij} . So there exists $\sum_{k=1}^{k}$ $\sum_{i=1}$ s*i* $\tilde{j=1}$ z_{ij} such that $\sum_{i=1}^{k}$ $\sum_{i=1}$ s*i* $\prod_{j=1}^{s_i} z_{ij} 1 \Re 1 \sum_{i=1}^m$ $\sum_{i=1}$ t*i* $j=1$ x_{ij} and $\sum_{i=1}^{n}$ $\sum_{i=1}$ k*i* $\prod_{j=1}^{k_i} y_{ij} 1 \Re' 1 \sum_{i=1}^k$ $\sum_{i=1}$ s*i* $\sum_{j=1}^{\infty}$ z_{ij} . From $\sum_{k=1}^{k}$ $\sum_{i=1}$ s*i* $\prod_{j=1}^{s_i} z_{ij} 1 \Re 1 \sum_{i=1}^m$ $\sum_{i=1}$ t*i* $\prod_{j=1}^{t_i} x_{ij}$ and $\Re \in \sum_{A}^{\mathcal{U}}$, we have $\sum_{i=1}^k$ $\sum_{i=1}$ s*i* $\prod_{j=1}^{n} z_{ij} ⊆ A$. Since $\Re' \in \sum_{A}^{\mathcal{U}}$ and $\sum_{i=1}^{n}$ $\sum_{i=1}$ k*i* $\prod_{j=1}^{k_i} y_{ij} 1 \Re' 1 \sum_{i=1}^{k}$ $\sum_{i=1}$ s*i* $j=1$ $z_{ij}, \sum_{i=1}^{n}$ $\sum_{i=1}$ k*i* $\prod_{j=1}^{m} y_{ij} \subseteq A.$ \Box

Theorem 3.6. If \Re is a permutation of finite order in S_u (the symmetric group *on the set* U *), then the following are equivalent:*

- (i) A is $\mathcal{LR}_{\mathcal{U}}$ -part; (ii) A *is* \mathcal{RR}_u -part;
- (iii) *A is* $\Re_{\mathcal{U}}$ -part.

A \angle and \angle and *Proof.* (i) \Rightarrow (ii). For this reason suppose that A is $\mathcal{LR}_{\mathcal{U}}$ -part. So $\overline{\mathcal{LR}_{\mathcal{U}}}(A)$ = A and hence $\Re \in \sum_{A}^{\mathcal{U}}$. Since \Re is a permutation of finite order in $S_{\mathcal{U}}$, $\langle \Re \rangle = \{ \Re^n \mid n \in \mathbb{N} \}$ is a subgroup of $\sum_{A}^{\mathcal{U}}$ and so $\Re^{-1} \in \sum_{A}^{\mathcal{U}}$. Therefore by Proposition 3.4 we have $A = \overline{\mathcal{L} \mathbb{R}_{\mu}^{-1}}(A) = \overline{\mathcal{R} \mathbb{R}_{\mu}}(A)$, thus $\Re \in \sum_{A}^{U}$ and hence A is $\mathcal{R}\mathcal{R}_{\mathcal{U}}$ -part. u -part.

Theorem 3.7. *Suppose that* $\Re 1 \subseteq 1 \mathcal{U} \times \mathcal{U}$ *.*

(*i*) We pose $K_{1,\Re}^{\mathcal{L}}(A) = A$ and

$$
K_{n+1,\mathfrak{m}}^{\mathcal{L}}(A) = \{x \in R \mid \exists (u,v) \in \mathfrak{R}, x \in u \text{ and } v \cap K_{n,\mathfrak{R}}^{\mathcal{L}}(A) \neq \emptyset\},\
$$

if we consider $K_{\mathbb{R}}^{\mathcal{L}}(A) = \bigcup_{n \geq 1} K_{n,\mathbb{R}}^{\mathcal{L}}(A)$ *, then* $K_{\mathbb{R}}^{\mathcal{L}}(A) = \overline{\mathcal{LR}_{\mathcal{U}}}(A)$ *and* $K_{\mathbb{R}}^{\mathcal{L}}(A)$ *is* the smallest $\mathcal{L}\Re_{\mathcal{U}}$ -part containing A ;

(*ii*) We pose $K_{1,\Re}^{\mathcal{R}}(A) = A$ and

$$
K^{\mathcal{R}}_{n+1,\Re}(A) = \{ x \in R \mid \exists (v,u) \in \Re, x \in u \text{ and } v \cap K^{\mathcal{R}}_{n,\Re}(A) \neq \emptyset \},\
$$

if we consider $K^{\mathcal{R}}_{\mathbb{R}}(A) = \bigcup_{n \geq 1} K^{\mathcal{R}}_{n,\mathbb{R}}(A)$ *, then* $K^{\mathcal{R}}_{\mathbb{R}}(A) = \overline{\mathcal{R}\mathcal{R}_{\mathcal{U}}}(A)$ *and* $K^{\mathcal{R}}_{\mathbb{R}}(A)$ *is* the smallest $\mathcal{RR}_{\mathcal{U}}^{\mathcal{U}}$ -part containing A ;

(iii) We pose $K_{1,\Re}(A) = A$ and

$$
K_{\scriptscriptstyle n+1,\Re}(A)=\{x\in R\mid \exists (u,v)\in \Re\cup \Re^{-1}, x\in u\ \textit{and}\ v\cap K_{\scriptscriptstyle n,\Re}(A)\neq \emptyset\},
$$

if $K_{\mathbb{R}}(A) = \bigcup_{n \geq 1} K_{n,\mathbb{R}}(A)$, then $K_{\mathbb{R}}(A) = \overline{\Re_{\mathcal{U}}}(A)$ and $K_{\mathbb{R}}(A)$ *is the smallest* $\Re_{\mathcal{U}}$ -part containing \AA .

Proof. (i) It is necessary to prove:

(1) $K_{\mathbb{R}}^{\mathcal{L}}(A)$ is $\mathcal{L}\mathbb{R}_{\mathcal{U}}$ -part,

(2) if $A \subseteq B$ and B is \mathcal{LR}_u -part, then $K^{\mathcal{L}}_{\mathcal{R}}(A) \subseteq B$.

For the proof (1) suppose that $v \bigcap K_{\mathcal{R}}^{\mathcal{L}}(A) \neq \emptyset$ and $u1\Re 1v$. Therefore there exists $n \in \mathbb{N}$ such that $v \cap K_{n,\mathfrak{m}}^{\mathcal{L}}(A) \neq \emptyset$, from which follows $u1 \subseteq 1K_{n+1,\mathfrak{m}}^{\mathcal{L}}(A)1 \subseteq 1K_{\mathfrak{m}}^{\mathcal{L}}(A)$. Now we prove (2) by induction on *n*. We have $K_{1,\Re}^{\mathcal{L}}(A)1 = 1A1\square B$. Suppose that $K_{n,\mathfrak{m}}^{\mathcal{L}}(A)1\subseteq 1B$. We prove that $K_{n+1,\mathfrak{m}}^{\mathcal{L}}(A)1\subseteq 1B$. If $z \in K_{n+1,\mathfrak{m}}^{\mathcal{L}}(A)$, then there exists $(u, v) \in \mathcal{U} \times \mathcal{U}$ such that $z \in u$, $u \in \mathbb{R}^2$ and $v \cap K_{n, \mathbb{R}}^{\mathcal{L}}(A) \neq \emptyset$. Therefore $v \bigcap B \neq \emptyset$ and hence $z \in u1 \subseteq 1B$. So $K^{\mathcal{L}}_{n+1,\Re}(A)1 \subseteq 1B$.

(ii) We have

$$
K_{\mathcal{R}}^{\mathcal{R}}(A) = K_{\mathcal{R}_{\mathcal{U}}^{-1}}^{\mathcal{L}}(A)
$$

= $\overline{\mathcal{L}\mathcal{R}_{\mathcal{U}}^{-1}}(A)$, 4by part (i)
= $\overline{\mathcal{R}\mathcal{R}_{\mathcal{U}}}(A)$, 4by Proposition 3.4.

(iii) Follows from (i) and (ii). \Box

Proposition 3.8. Suppose that B is a non-empty subset of R and \Re is a *relation on* U*. Then we have:*

(i)
$$
\overline{\mathcal{LR}_u}(B) = \bigcup_{b \in B} \overline{\mathcal{LR}_u}(b);
$$

\n(ii) $\overline{\mathcal{RR}_u}(B) = \bigcup_{b \in B} \overline{\mathcal{RR}_u}(b);$
\n(iii) $\overline{\mathcal{RR}_u}(B) = \bigcup_{b \in B} \overline{\mathcal{RR}_u}(b).$

 $\begin{array}{ll} &= \overline{\mathbb{Z}\mathfrak{R}_{\alpha-1}}(A), \text{dby part (i)}\\ &= \overline{\mathcal{R}\mathfrak{R}_{\alpha}}(A), \text{dby Proposition 3.4.}\\ &\text{(iii) Follows from (i) and (ii)}.\\ \textbf{Proposition 3.8.} \text{ Suppose that } B \text{ is a non-empty subset of } R \text{ and } \mathfrak{R} \text{ is a relation on } U. \text{ Then we have:}\\ &\text{(i) } \overline{\mathcal{R}\mathfrak{R}_{\alpha}}(B)=\bigcup_{b\in B} \overline{\mathcal{R}\mathfrak{R}_{\alpha}}(b);\\ &\text{(ii) } \over$ *Proof.* (i) It is clear that for all $b \in B$, $\overline{\mathcal{LR}_u}(b)1 \subseteq 1\overline{\mathcal{LR}_u}(B)$. By Theorem 3.7(i), $\overline{\mathcal{LR}_{\mathcal{U}}}(B) = \bigcup$ $n\geq 1$ $K_{n,\mathfrak{m}}^{\mathcal{L}}(B)$. We follow the proposition by induction on *n*. For $n = 1$, $K_{1,\Re}^{\mathcal{L}}(B) = B = \bigcup_{k \in \mathbb{N}}$ $b\bar{\in}B$ ${b} = U$ $b \epsilon B$ $K_{1,\Re}^{\mathcal{L}}(b)$. Supposing it is true for *n*, we show that $K^{\mathcal{L}}_{n+1,\Re}(B)$ $1 \subseteq 1$ $\bigcup_{l \in \mathcal{L}}$ $b\bar{\in}B$ $K^{\mathcal{L}}_{n+1,\mathfrak{R}}(b)$. If $z \in K^{\mathcal{L}}_{n+1,\mathfrak{R}}(B)$, then there exists $(u, v) \in \Re$ such that $z \in u$ and $v \cap K^{\mathcal{L}}_{n, \Re}(B) \neq \emptyset$. From this it follows, by the hypothesis of induction, $v \bigcap (\bigcup$ $b\bar{\in}B$ $K^{\mathcal{L}}_{n,\mathfrak{R}}(b)) \neq \emptyset$ and therefore $b' \in B$ exists such that $v \cap K_{n,\mathfrak{R}}^{\mathcal{L}}(b') \neq \emptyset$. So $z \in K_{n+1,\mathfrak{R}}^{\mathcal{L}}(b')$ and hence $\overline{\mathcal{LR}_{\mathcal{U}}}(B)$ 1⊆1 U $b\bar{\in}B$ $\mathcal{L}\Re$ $\overline{u}(b)$.

Theorem 3.9. *Suppose that* $\Re 1 \subseteq 1 \mathcal{U} \times \mathcal{U}$ *. The relation* $K^{\mathcal{L}}_{\Re}$ *(resp.* $K^{\mathcal{R}}_{\Re}$ *)* on R *defined by:*

$$
x1K_{\mathfrak{m}}^{\mathcal{L}}1y \Leftrightarrow x \in K_{\mathfrak{m}}^{\mathcal{L}}(y)(x \in K_{\mathfrak{m}}^{\mathcal{R}}(y)),
$$

where $K^{\mathcal{L}}_{\Re}(y) = K^{\mathcal{L}}_{\Re}(\{y\})$ (resp. $K^{\mathcal{R}}_{\Re}(y) = K^{\mathcal{R}}_{\Re}(\{y\})$) is a preorder. Further*more if* $\hat{\mathcal{R}}$ *is symmetric, then* $K^{\mathcal{L}}_{\Re}$ (resp. $K^{\mathcal{R}}_{\Re}$) *is an equivalence relation.*

Proof. It is easy to see that $K_{\mathcal{R}}^{\mathcal{L}}$ is reflexive. Now suppose that $x 1 K_{\mathcal{R}}^{\mathcal{L}} 1 y$ and $y1K_{\mathbb{R}}^{\mathcal{L}}1z$. So $x \in K_{\mathbb{R}}^{\mathcal{L}}(y)$ and $y \in K_{\mathbb{R}}^{\mathcal{L}}(z)$. By Theorem 3.7(i) we have $K_{\mathbb{R}}^{\mathcal{L}}(z)$ is $\mathcal{L}\mathbb{R}_{\mathcal{U}}^{\mathcal{I}}$ -part thus $K_{\mathcal{R}}^{\mathcal{L}}(y)\subseteq K_{\mathcal{R}}^{\mathcal{L}}(z)$ and hence $x \in K_{\mathcal{R}}^{\mathcal{L}}(z)$. Therefore $K_{\mathcal{R}}^{\mathcal{L}}$ is preorder. Now let \Re be symmetric. We prove that $K_{\Re}^{\mathcal{L}}$ is symmetric as well. To this end the following is premised:

(1) for all $n \ge 2$ and $x \in R$, $K_{n,\Re}^{\mathcal{L}}(K_{2,\Re}^{\mathcal{L}}(x)) = K_{n+1,\Re}^{\mathcal{L}}(x)$; (2) $x \in K^{\mathcal{L}}_{n,\mathfrak{R}}(y)$ if and only if $y \in K^{\mathcal{L}}_{n,\mathfrak{R}}(x)$.

We prove (1) by induction on *n*. Suppose that $z \in K^{\mathcal{L}}_{2,\Re}(K^{\mathcal{L}}_{2,\Re}(x))$ so there exists $(u, v) \in \Re$ such that $z \in u$ and $v \cap K_{2, \Re}^{\mathcal{L}}(x) \neq \emptyset$. Thus $z \in K_{3, \Re}^{\mathcal{L}}(x)$. Let $K_{n,\mathfrak{R}}^{\mathcal{L}}(K_{2,\mathfrak{R}}^{\mathcal{L}}(x)) = K_{n+1,\mathfrak{R}}^{\mathcal{L}}(x)$ so we have:

$$
z \in K_{n+1,\Re}^{\mathcal{L}}(K_{2,\Re}^{\mathcal{L}}(x)) \Leftrightarrow \exists (u,v) \in \Re, z \in u, v \cap K_{n,\Re}^{\mathcal{L}}(K_{2,\Re}^{\mathcal{L}}(x)) \neq \emptyset
$$

$$
\Leftrightarrow \exists (u,v) \in \Re, z \in u, v \cap K_{n+1,\Re}^{\mathcal{L}}(x) \neq \emptyset
$$

$$
\Leftrightarrow z \in K_{n+2,\Re}^{\mathcal{L}}(x).
$$

 $\begin{array}{l} \Leftrightarrow \exists (u,v) \in \Re, z \in u, v \cap K_{n+1,\Re}^{\mathcal{L}}(x) \neq \emptyset \\ \Leftrightarrow z \in K_{n+2,\Re}^{\mathcal{L}}(x). \end{array}$ We also prove (2) by induction on *n*. It is clear that $x \in K_{n,\Re}^{\mathcal{L}}(y)$ if and only if $y \in K_{2,\Re}^{\mathcal{L}}(x)$. Suppose $x \in K_{n$ We also prove (2) by induction on n. It is clear that $x \in K_{2,\mathbb{R}}^{\mathcal{L}}(y)$ if and only if $y \in K_{2,\mathbb{R}}^{\mathcal{L}}(x)$. Suppose $x \in K_{n,\mathbb{R}}^{\mathcal{L}}(y)$ if and only if $y \in K_{2,\mathbb{R}}^{\mathcal{L}}(x)$. Let $x \in$ $K_{n+1}^{\mathcal{L}}(y)$ be given, so there exist $(u, v) \in \Re$ such that $x \in u$ and $v \cap K_{n}^{\mathcal{L}}(y) \neq v$ *n*₊₁,^{*n*}(*s*) are given, so there exists $b \in v \cap K_{n,\Re}^{\mathcal{L}}(y)$ and hence $y \in K_{n,\Re}^{\mathcal{L}}(b)$. Since \Re is symmetric and $(u, v) \in \mathbb{R}$, $b \in v$ and $x \in u \cap K_{1, \mathbb{R}}^{\mathcal{L}}(x)$ implies that $b \in K_{2, \mathbb{R}}^{\mathcal{L}}(x)$ and hence $y \in K^{\mathcal{L}}_{n,\mathfrak{m}}(K^{\mathcal{L}}_{2,\mathfrak{m}}(x)) = K^{\mathcal{L}}_{n+1,\mathfrak{m}}(x)$. Similarly we can show if $y \in$ $K_{n+1,\mathfrak{m}}^{\mathcal{L}}(x)$, then $x \in K_{n+1,\mathfrak{m}}^{\mathcal{L}}(x)$.

Proposition 3.10. Let \Re be a relation on U and A be a non-empty subset of *the hyperring* R*. The following conditions are equivalent:*

(i) A is a ($\mathcal{R}\mathcal{R}_{\mathcal{U}}$ *-part)* $\mathcal{L}\mathcal{R}_{\mathcal{U}}$ -part of R ; (ii) $x \in A$, $(x1K_{\mathbb{R}}^{\mathcal{L}}1z)z1K_{\mathbb{R}}^{\mathcal{L}}1x \Rightarrow z \in A$.

Proof. (i) \Rightarrow (ii) If $x \in A$ and $z \in R$ such that $z1K_{\pi}^{\mathcal{L}}1x$, then there exists $(u, v) \in \Re$ such that $z \in u$ and $v \cap K_{n,\Re}^{\mathcal{L}}(A) \neq \emptyset$ for some $n \in \mathbb{N}$. Since A is a $\mathcal{L}\mathbb{R}_{u}$ -part by Theorem 3.7, $K_{n,\mathbb{R}}^{\mathcal{L}}(A)1\subseteq 1A$ and so $v \cap A \neq \emptyset$. Therefore $u1\subseteq 1A$ and hence $z \in A$.

(ii) \Rightarrow (i) Let $u \cap A \neq \emptyset$ and $v1 \Re 1u$. So there exists $x \in A \cap u$ and $x \in u$, $u \cap K_{1,\Re}^{\mathcal{L}}(x) \neq \emptyset$. Now suppose that $z \in v$ is given. So

$$
v1\Re 1u \Rightarrow z \in K_{2,\Re}^{\mathcal{L}}(x), 4 \text{ because } x \in u
$$

$$
\Rightarrow z1K_{\Re}^{\mathcal{L}}1x
$$

$$
\Rightarrow z \in A, 15 \text{ because } x \in A.
$$

Therefore $v1\subseteq 1A$ and hence A is \mathcal{LR}_u -part of R.

 \Box

4. Rings derived from hyperrings

In this section we give the notion of *(strongly) normal relation* on U and then we construct a ring from a hyperring.

Definition 4.1. *Suppose that* $\Re 1 \subseteq 1 \mathcal{U} \times \mathcal{U}$ *.*

(i) for all $(x, y) \in R^2$ define the relation $\rho_{\text{L}, \Re}$ on R by:

$$
x1\rho_{\mathcal{L},\mathfrak{R}}y \Leftrightarrow [x=y1 \text{ or } 1\exists (u,v) \in \Re 2 \text{ such that } 1x \in u1 \text{ and } 1y \in v]
$$

and $\rho_{\mathcal{L}, \Re}^*$ *is the transitive closure of* $\rho_{\mathcal{L}, \Re}$ *;*

(*ii*) for all $(x, y) \in R^2$ define the relation $\rho_{\mathcal{R}, \mathcal{R}}$ on R by:

$$
x1\rho_{\mathcal{R},\mathbb{R}}y \Leftrightarrow [x = y1 \text{ or } 1\exists (v,u) \in \Re 2 \text{ such that } 1x \in u1 \text{ and } 1y \in v]
$$

and $\rho_{\mathcal{R},\Re}^*$ *is the transitive closure of* $\rho_{\mathcal{R},\Re}$ *;*

(*iii*) for all $(x, y) \in R^2$ define the relation ρ_{\Re} on R by:

$$
x1\rho_{\Re} y \Leftrightarrow [x = y1 \text{ or } 1 \exists (u, v) \in \Re \bigcup \Re^{-1}2 \text{ such that } 1x \in u1 \text{ and } 1y \in v]
$$

and ρ^*_{\Re} *is the transitive closure of* ρ_{\Re} *.*

Theorem 4.2. *Suppose that* $\Re 1 \subseteq 1 \mathcal{U} \times \mathcal{U}$ *. For all* $(x, y) \in R^2$ *we have:*

(i) $x \cdot 1K_n^{\mathcal{L}} \cdot 1y$ *if and only if* $x \cdot 1\rho_{\mathcal{L},\Re}^* \cdot 1y$ *; (ii)* $x \cdot 1K_{\mathbb{R}}^{\mathcal{R}} \cdot 1$ *y if and only if* $x \cdot 1 \rho_{\mathcal{R},\mathbb{R}}^* \cdot 1$ *y*.

And $\mathbf{p}_{\pi,n}^*$ is the transitive closure of $\mathbf{p}_{\pi,n}$;

(iii) for all $(x,y) \in R^2$ define the relation \mathbf{p}_n on R by:
 $x1\mathbf{p}_s y \Leftrightarrow [x = y1 \text{ or } 1\exists (u, v) \in \Re \bigcup \Re^{-1}2$ such that $1x \in u1$ and $y \in v1$
 $x1\mathbf{p}_$ *Proof.* (i) It is easy to see that $\rho_{\ell,\Re}^* \mathbb{1} \subseteq 1 \mathbb{K}_{\Re}^{\mathcal{L}}$. Conversely suppose that $x \mathbb{1} \mathbb{K}_{\Re}^{\mathcal{L}} \mathbb{1} y$ so by Theorem 3.9 we have $x \in K^{\mathcal{L}}_{n+1,\Re}(y)$ for some $n \in \mathbb{N}$. So there exists $(u_1, v_1) \in \Re$ such that $x \in u_1$ and $v_1 \bigcap K_{n, \Re}^{\mathcal{L}}(y) \neq \emptyset$ thus there exists $x_1 \in v_1 \cap K_{n,\mathfrak{m}}^{\mathcal{L}}(y)$ and hence $x_1 \cap \mathfrak{L}_{\mathcal{L},\mathfrak{m}}^{\mathcal{L}} 1x_1$. Since $x_1 \in K_{n,\mathfrak{m}}^{\mathcal{L}}(y)$, there $\text{exists } (u_2, v_2) \in \Re \text{ such that } x_1 \in u_2 \text{ and } v_2 \cap K_{n-1,\Re}^{\mathcal{L}}(y) \neq \emptyset. \text{ Therefore, }$ $x_1 1 \rho_{\mathcal{L},\Re} 1 x_2$, where $x_2 \in v_2 \cap K_{n-1,\Re}^{\mathcal{L}}(y)$. As a consequence we conclude that $x_n \in v_n \cap K_{n-(n-1),\Re}^{\mathcal{L}}(y)$ exists such that $x_{n-1}1\rho_{\mathcal{L},\Re}1x_n$. Thus we have,

$$
x1\rho_{\mathcal{L},\mathfrak{R}} 1x_1 1\rho_{\mathcal{L},\mathfrak{R}} 1x_2 1 \ldots 1x_n 1\rho_{\mathcal{L},\mathfrak{R}} 1y.
$$

From this follows $K_{\mathcal{R}}^{\mathcal{L}}1\subseteq 1\rho_{\mathcal{L},\mathcal{R}}^*$ and the proof is complete.

Similarly we have (ii). \Box

 \Box

Proposition 4.3. *Suppose that* \Re *is a permutation of finite order in* S_u *, then* $\rho_{\mathcal{L},\Re}^* = \rho_{\Re}^*$.

Proof. Since $K_{\mathcal{R}}^{\mathcal{L}}(y)$ is $\mathcal{LR}_{\mathcal{U}}$ -part by Theorem 3.6, $K_{\mathcal{R}}^{\mathcal{L}}(y)$ is $\mathcal{RR}_{\mathcal{U}}$ -part and hence $K_{\mathcal{R}}^{\mathcal{R}} \subseteq K_{\mathcal{R}}^{\mathcal{L}}$. Analogously $K_{\mathcal{R}}^{\mathcal{L}} \subseteq K_{\mathcal{R}}^{\mathcal{R}}$ and so $K_{\mathcal{R}}^{\mathcal{L}} = K_{\mathcal{R}}^{\mathcal{R}}$. From this it follows that $\rho_{\mathcal{L},\Re}^* = \rho_{\Re}^*$ \mathbb{R}^* . The contract of \Box

Definition 4.4. *If* $(R, +, \circ)$ *is a hyperring and* $\rho_1 \subseteq 1R \times R$ *is an equivalence, then we set:*

$$
A \stackrel{\equiv}{\rho} B \Leftrightarrow a1\rho 1b, 5\forall a \in A, \forall b \in B,
$$

for all pairs (A, B) *of non-empty subsets of* R*. The relation* ρ *is said to be strongly regular to the left (resp. to the right) if (i)* $x1\rho 1y \Rightarrow a + x \stackrel{=}{\rho} a + y$ *and (ii)* $x1\rho 1y \Rightarrow a \circ x \stackrel{\equiv}{\rho} a \circ y$ *(resp. (i)* $x1\rho 1y \Rightarrow x + a \stackrel{\equiv}{\rho} y + a$ *and (ii)* $x1\rho 1y \Rightarrow a \circ x \stackrel{\equiv}{\rho} a \circ y$, for all $(x, y, a) \in R^3$. ρ is called strongly regular if it is *(i) strongly regular to the right and to the left and moreover (ii) there exists* e *in R such that:* $\rho(x) = \rho(t)$ *, for all* $t \in x \circ e \cap e \circ x$ *.*

Definition 4.5. *Let* R *be a hyperring, then*

(*i*) a relation \Re on U is called normal if for all $x \in R$, one has $K_{\Re}^{\mathcal{L}}(x) =$ n. $K^{\mathcal{R}}_{\Re}(x),$

 $\hat{f}(ii)$ a normal relation \Re on $\mathcal U$ is called strongly normal to the left (resp. to *the right) if* $\rho_{\mathcal{L},\Re}^*$ (resp. $\rho_{\mathcal{R},\Re}^*$) is strongly regular to the left (resp. to the right),

(iii) a normal relation \Re on $\mathcal U$ is called strongly normal if ρ^*_{\Re} is strongly *regular.*

Suppose that $\Re 1\subseteq 1\mathcal{U}\times\mathcal{U}$. For every element x of a hyperring R, set:

$$
P_{\mathcal{L},\mathfrak{m}}^n(x) = \bigcup \{v1 \mid 1v1\Re 1u_n, u_n = \sum_{i=1}^n \prod_{j=1}^{k_i} x_{ij}, x \in u_n \};
$$

\n
$$
P_{\mathcal{L},\mathfrak{m}}(x) = \bigcup_{n \geq 1} P_{\mathcal{L},\mathfrak{m}}^n(x) \bigcup \{x\};
$$

\n
$$
\rho_{\mathcal{L},\mathfrak{m}}^*(x) = \{ y \in R1 \mid 1y1\rho_{\mathcal{L},\mathfrak{m}}^* 1x \}.
$$

Theorem 4.6. Let R be a hyperring and \Re be a relation on \mathcal{U} . The following *conditions are equivalent:*

- (i) $\rho_{\mathcal{L},\Re}$ *is transitive;*
- *(ii)* for every $x \in R$, $\rho_{\mathcal{L}, \Re}^*(x) = P_{\mathcal{L}, \Re}(x)$;
- *(iii) for every* $x \in R$, $P_{\mathcal{L}, \mathfrak{m}}(x)$ *is a* $\mathcal{L} \mathfrak{R}_{\mathcal{U}}$ -part of R.

Proof. (i) \Rightarrow (ii) For every pair (x, y) of elements of R we have:

 $y \in \rho_{\mathcal{L},\Re}^*(x) \Leftrightarrow y1\rho_{\mathcal{L},\Re}^* 1x \Leftrightarrow y1\rho_{\mathcal{L},\Re} 1x \Leftrightarrow y \in P_{\mathcal{L},\Re}(x).$

(iii) a normal relation \Re on \mathcal{U} is called strongly normal if ρ^*_s is strongly

Suppose that $\Re 1 \subseteq 1 \mathcal{U} \times \mathcal{U}$. For every element x of a hyperring R , set:
 $P^*_{x,s}(x) = \bigcup \{v1 \mid 1 v1 \Re 1 u_n, u_n = \sum_{i=1}^n$ (i) ⇒ (iii) Let $(v, u) \in \mathbb{R}$ such that $u \cap P_{\mathcal{L}, \mathbb{R}}(x) \neq \emptyset$ be given. So $u \cap \rho_{\mathcal{L}, \mathbb{R}}^*(x) \neq$ \emptyset and hence there exists $z \in R$ such that $z \in u$ and $z \in \rho_{\mathcal{L}, \Re}^*(x)$, thus $z \in K_{\Re}^{\mathcal{L}}(x)$, by Theorem 4.2. On the other hand, $z \in K_{\mathcal{R}}^{\mathcal{L}}(z)$, so $u \cap K_{\mathcal{R}}^{\mathcal{L}}(z) \neq \emptyset$ and hence $v1\subseteq 1K_{\mathcal{R}}^{\mathcal{L}}(z)$, because $v1\Re 1u$ and $K_{\mathcal{R}}^{\mathcal{L}}(z)$ is a $\mathcal{L}\Re_{u}$ -part of R , by Theorem 3.7. Now suppose that $t \in v$ is an arbitrary element, thus $t \in K_{\pi}^{\mathcal{L}}(x)$ and hence $t1\rho_{\mathcal{L},\Re}^*$ 1x. Therefore $t \in \rho_{\mathcal{L},\Re}^*(x) = P_{\mathcal{L},\Re}(x)$ and so $v1\subseteq 1P_{\mathcal{L},\Re}(x)$.

(iii) \Rightarrow (i) Let x, y and z in R be given such that $x1\rho_{\mathcal{L},\Re}$ and $y1\rho_{\mathcal{L},\Re}$ 1z. Since $x1\rho_{\mathcal{L},\mathfrak{R}}1y$, there exists $(u, v) \in \mathfrak{R}$ such that $x \in u$ and $y \in v$. Therefore $v \cap P_{\mathcal{L},\mathbb{R}}(\tilde{y}) \neq \emptyset$ and since $P_{\mathcal{L},\mathbb{R}}(y)$ is a $\mathcal{L}\mathbb{R}_{\mathcal{U}}$ -part, $u1 \subseteq 1P_{\mathcal{L},\mathbb{R}}(y)$ and hence $x \in P_{\mathcal{L}, \mathfrak{R}}(y)$. We can see that $P_{\mathcal{L}, \mathfrak{R}}(y) \leq 1 P_{\mathcal{L}, \mathfrak{R}}(z)$, because $y 1 \rho_{\mathcal{L}, \mathfrak{R}} 1 z$ and so by above $y \in P_{\mathcal{L}, \mathcal{R}}(z)$. Therefore $x \in P_{\mathcal{L}, \mathcal{R}}(z)$ and hence $x 1 \rho_{\mathcal{L}, \mathcal{R}} 1 z$.

Proposition 4.7. If \Re is a normal relation on \mathcal{U} , then:

 (i) \mathbb{R}^{-1} *is a normal relation;*

(*ii*) $\rho_{\mathcal{L},\Re}^* = \rho_{\Re}^*$ and $\rho_{\mathcal{L},\Re}^*$ is an equivalence relation.

Proof. The proof follows from Proposition 3.4 and Theorem 4.2.

Theorem 4.8. Suppose that $(R, +, \circ)$ is a hyperring and \Re is a strongly normal *relation on* U *. A ring structure turns out to be define on* $R/\rho_{\mathbb{R}}^*$ *with respect to the operations:*

$$
\begin{aligned} \rho^*_{\Re}(x) \oplus \rho^*_{\Re}(y) &= \rho^*_{\Re}(z), 2where 1z \in x + y. \\ \rho^*_{\Re}(x) \odot \rho^*_{\Re}(y) &= \rho^*_{\Re}(z), 2where 1z \in x \circ y. \end{aligned}
$$

Proof. We will prove that the operation \oplus is well defined. Let $\rho^*_{\mathcal{R}}(x_0)$ = $\rho^*_{\Re}(x_1)$ and $\rho^*_{\Re}(y_0) = \rho^*_{\Re}(y_1)$. It is necessary to verify that $\rho^*_{\Re}(x_0) \oplus \rho^*_{\Re}(y_0) =$ $\rho_{\Re}^*(x_1) \oplus \rho_{\Re}^*(y_1)$. By hypothesis $(m, n) \in \mathbb{N}^2$, $(z_0, z_1, ..., z_m) \in R^{m+1}$ and $(t_0, t_1, ..., t_n) \in R^{n+1}$ exist such that

$$
x_0 = z_0 1 \rho_{\Re} 1 z_1 1 \rho_{\Re} 1 z_2 1 \dots 1 z_{m-1} 1 \rho_{\Re} 1 z_m = x_{\frac{1}{2}}
$$

and

$$
y_0 = t_0 1 \rho_{\Re} 1 t_1 1 \rho_{\Re} 1 t_2 1 \dots 1 t_{n-1} 1 \rho_{\Re} 1 t_n = y_1
$$

Since \Re is normal, for all $u \in z_{s-1}+t_{s-1}$ and $v \in z_s+t_s$, where $1 \leqslant s \leqslant k$ and $k=min\{m,n\}$, we have $u1\rho_{\Re}^*v$. Therefore $\rho_{\Re}^*(x_0)\oplus \rho_{\Re}^*(y_0)=\rho_{\Re}^*(z_1)\oplus \rho_{\Re}^*(t_1)=$ $... = \rho_{\Re}^*(z_k) \oplus \rho * (t_k) = \rho_{\Re}^*(a_{k+i}) \oplus \rho_{\Re}^*(b_{k+i}),$ where $k+1 \leq k+i \leq max\{m, n\}$ and:

$$
(a_{k+i}, b_{k+i}) = \begin{cases} (x_1, t_{k+i}) & \text{if } 1k = m; \\ (z_{k+i}, y_1) & \text{if } 1k = n. \end{cases}
$$

 $\label{eq:2.1} \begin{array}{ll} \displaystyle \delta^2_{\mathfrak{B}}(x_1)\oplus \mathfrak{p}^*_\mathfrak{B}(y_1). & \text{By}\text{ hypotheses } (m,n)\in\mathbb{N}^2,\ (z_0,z_1,...,z_m)\in R^{m+1} \text{ and} \\ \displaystyle x_0=z_01\rho_{\mathfrak{B}}1z_11\rho_{\mathfrak{B}}1z_21\ldots 1z_{m-1}1\rho_{\mathfrak{B}}1z_m=x_1\\ \displaystyle \mathrm{Since}\;\Re\;\mbox{is normal, for all}\; u\in z_{\kappa-1}+t_{\kappa-1}\;\m$ Hence \oplus is well defined. Similarly the operation \odot is well defined and Theorem 31 of [2] shows that $(R/\rho_{\Re}^*, \oplus)$ is a group. By strongly normality of \Re we conclude that $(R/\rho_{\Re}^*, \odot)$ is a monoid with unit $\rho_{\Re}^*(e)$. The commutativity of \oplus is related with the existence of the unit in multiplication. Since \Re is strong, there exists e in R such that $\rho(x) = \rho(t)$ for all $t \in x \circ e \cap e \circ x$ which means $\rho_{\mathcal{R}}^*(e)$ is the unit of multiplication so we have:

 $\big[\rho^*_{\scriptscriptstyle{\mathfrak{R}}}(x)\oplus\rho^*_{\scriptscriptstyle{\mathfrak{R}}}(y)\big]\odot[\rho^*_{\scriptscriptstyle{\mathfrak{R}}}(e)\oplus\rho^*_{\scriptscriptstyle{\mathfrak{R}}}(e)] = (\rho^*_{\scriptscriptstyle{\mathfrak{R}}}(x)\odot[\rho^*_{\scriptscriptstyle{\mathfrak{R}}}(e)\oplus\rho^*_{\scriptscriptstyle{\mathfrak{R}}}(e)]) \oplus (\rho^*_{\scriptscriptstyle{\mathfrak{R}}}(y)\odot$ $[\rho^*_\Re(e)\oplus\rho^*_\Re(e)])=(\rho^*_\Re(x)\oplus\rho^*_\Re(x))\oplus(\rho^*_\Re(y)\oplus\rho^*_\Re(y))\text{ and also }[\rho^*_\Re(x)\oplus\rho^*_\Re(y)]\odot$ $[\rho_{\Re}^{*}(e) \oplus \rho_{\Re}^{*}(e)] = ([\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y)] \odot \rho_{\Re}^{*}(e)) \oplus ([\rho_{\Re}^{*}(x) \oplus \rho_{\Re}^{*}(y)] \odot \rho_{\Re}^{*}(e)) =$ $(\rho_{\Re}^*(x) \oplus \rho_{\Re}^*(y)) \oplus (\rho_{\Re}^*(x) \oplus \rho_{\Re}^*(y)).$ $\text{So } (\rho_{\Re}^*(x) \oplus \rho_{\Re}^*(x)) \oplus (\rho_{\Re}^*(y) \oplus \rho_{\Re}^*(y)) = (\rho_{\Re}^*(x) \oplus \rho_{\Re}^*(y)) \oplus (\rho_{\Re}^*(x) \oplus \rho_{\Re}^*(y))$ gives, $\rho^*_{\Re}(x) \oplus \rho^*_{\Re}(y) = \rho^*_{\Re}(y) \oplus \rho^*_{\Re}(x)$.

Let $(R, +, \circ)$ and $(R', +', \circ')$ be two hyperrings. We say that $f: R \to R'$ is a homomorphism if for every $(x, y) \in R^2$ we have $f(x + y) = f(x) + f(y)$ and $f(x \circ y) = f(x) \circ' f(y).$

 \Box

Definition 4.9. Let R is a hyperring and R be a strongly normal relation on U. If $\varphi_{\Re} : R \to R/\rho_{\Re}^*$ be the canonical projection, we set $\omega_{\Re} = \varphi_{\Re}^{-1}(1_{R/\rho_{\Re}^*}),$ *and called the heart of* φ_{\Re} .

Theorem 4.10. *Let* $(R, +, \circ)$ *is a hyperfield (i.e,* $(R, +, \circ)$ *be a hyperring and* (R, \circ) *is a hypergroup) and* B *is a non-empty subset of* R, then we have $\omega_{\Re} \circ B =$ $B \circ \omega_{\Re} = \varphi_{\Re}^{-1}(\varphi_{\Re}(B)).$

Proof. Clearly $\varphi_{\mathbb{R}}^{-1}(\varphi_{\mathbb{R}}(B)) = \{x \in R \mid \exists b \in B : \varphi_{\mathbb{R}}(b) = \varphi_{\mathbb{R}}(x)\}.$ Let $y \in \varphi_{\Re}^{-1}(\varphi_{\Re}(B))$, thus for some $b \in B$, $\varphi_{\Re}(b) = \varphi_{\Re}(y)$. Since (R, \circ) is a hypergroup, $u \in R$ exists such that $y \in b \circ u$, so $\varphi_{\Re}(y) = \varphi_{\Re}(b) \odot \varphi_{\Re}(u)$. Since $(R/\rho^*_{\Re}, \odot)$ is a group and $\varphi_{\Re}(b) = \varphi_{\Re}(y)$, we obtain $\varphi_{\Re}(u) = 1_{R/\rho^*_{\Re}}$ and so $u \in \varphi_{\Re}^{-1}(1_{R/\rho_{\Re}^*}) = \omega_{\Re}$. Therefore, $\varphi_{\Re}^{-1}(\varphi_{\Re}(B)) \subseteq B \circ \omega_{\Re}$.

Converesly if $z \in B \circ \omega_{\Re}$, then $\varphi_{\Re}(z) \in \varphi_{\Re}(B)$ and so $z \in \varphi_{\Re}^{-1}(\varphi_{\Re}(B)).$ It is proved that $\omega_{\Re} \circ B = \varphi_{\Re}^{-1}(\varphi_{\Re}(B))$ by a similar way and we obtain $\varphi_{\Re}^{-1}(\varphi_{\Re}(B)) = \omega_{\Re} \circ B = B \circ \omega_{\Re}.$

Theorem 4.11. *If* $(R, +, \circ)$ *is a hyperfield and B is a non-empty subset of* R *, then we have* $\omega_{\Re} \circ B = B \circ \omega_{\Re} = \overline{\Re_u}(B)$ *.*

Proof. If
$$
\varphi_{\Re}(b) = \varphi_{\Re}(x)
$$
 then $x \in \overline{\Re_u}(b)$. Therefore $\varphi_{\Re}^{-1}(\varphi_{\Re}(B)) = \bigcup_{b \in B} \overline{\Re_u}(b) = \overline{\Re_u}(B)$.

5. R-PARTS AND A_R -HYPERRINGS

Archives $\varphi_R^{-1}(\varphi_R(B)) = \varphi_R^{-1}(\varphi_R(B))$.
 $\varphi_R(\varphi_R(B)) = \varphi_R^{-1}(\varphi_R(B))$ and so $z \in \varphi_R^{-1}(\varphi_R(B))$.

It is proved that $\omega_R \circ B = \varphi_R^{-1}(\varphi_R(x))$ by a similar way and we obtain
 $\varphi_R^{-1}(\varphi_R(B)) = \omega_R \circ B = B \circ \omega_R$.
 Theorem 4.11. $H(R,$ We recall that a K_H hypergroup is a hypergroup constructed from a hypergroup (H, \circ) and a family $\{A(x)\}_{x \in H}$ of non-empty subsets that are mutually disjoint. Put $K_H = \bigcup A(x)$ and define the hyperoperation $*$ on K_H as fol $x\bar{\in}H$ lowing,

$$
\forall (a,b) \in K^2_{\scriptscriptstyle H}, 2a \in A(x), b \in A(y), 3a * b : \stackrel{def}{=} \bigcup_{z \in x \circ y} A(z).
$$

 (H, \circ) is a hypergroup if and only if $(K_H, *)$ is a hypergroup. In this case K_H is said to be a K_H -*hypergroup generated by* H.

Now let (R, \dagger, \star) be a commutative hyperring, S_r , $r \in R$ be a family of nonempty sets indexed in R such that for all $r_1, r_2 \in R$, $r_1 \neq r_2$, $S_{r_1} \cap S_{r_2} = \emptyset$. We set $A = \bigcup_{r \in R} S_r$ and we define the hyperoperations \forall and \odot in A in the following way:

$$
\forall (x,y)\in S_{r_1}\times S_{r_2}, \quad x\uplus y=\bigcup_{t\in r_1\dagger r_2}S_t \quad and \quad x\odot y=\bigcup_{u\in r_1\star r_2}S_u.
$$

It is easy to see that the structure (A, \forall, \Diamond) is a hyperring. The hyperring (A, \forall, \odot) is called a A_R -*hyperring with suport* A or A_R -*hyperring generated by* R. For all $P \in P^*(R)$, let $S(P) = \bigcup$ $x\bar{\in}F$ S_x .

Theorem 5.1. Let \Re be a relation on U. Then P is \mathcal{LR}_u -part of R if and only *if* $S(P)$ *is* $\mathcal{L}\widehat{\mathbb{R}}_u$ -part of A_{R} , where the relation $\widehat{\mathbb{R}}$ *is defined as follows:*

$$
\sum_{i=1}^{n} \prod_{j=1}^{t_i} x_{ij} \Re \sum_{i=1}^{m} \prod_{j=1}^{k_i} y_{ij} \Leftrightarrow \bigcup_{\substack{v \in \sum_{i=1}^{n} \prod_{j=1}^{t_i} x_{ij}} S_v 3 \Re 1 \bigcup_{u \in \sum_{i=1}^{m} \prod_{j=1}^{k_i} y_{ij}} S_u.
$$

Archive of Suppose that $t \in \prod_{v \in \prod_{i=1}^{n} x_i}^{n}$ *Archive of Suppose that* $t \in \prod_{v \in \prod_{i=1}^{n} y_i}^{n}$
 $\Rightarrow \exists p \in P$, such that $p \in \prod_{u \in \prod_{i=1}^{n} y_i}^{n}$
 $\Rightarrow \exists p \in P$, such that $S_p1 \subseteq 1$
 $\Rightarrow \exists p \in P$, such that $S_p1 \subseteq$ *Proof.* Let $S(P)$ be a $\mathcal{L}\widehat{\mathbb{R}}_u$ -part of A_R and $\left(\prod_{i=1}^n\right)$ x_i, \prod^m $\prod_{i=1}^{m} y_i$ $\in \Re$ such that $\prod_{i=1}^{m}$ $i=1$ $y_i \cap P \neq \emptyset$ be given. So U $v \in \prod_{i=1}^n x_i$ $S_v 3\hat{R}1$ U u ∈ \prod ^{*m*} $\prod_{i=1}^m y_i$ S_u and we have, \prod^m $\overline{i=1}$ $y_i \cap P \neq \emptyset \Rightarrow \exists p \in P$, such that $p \in \prod^{m}$ $i=1$ y_i $\Rightarrow \exists p \in P$, such that $S_p 1 \subseteq 1$ $u \in \prod^m$ $\prod_{i=1}^m y_i$ S_u \Rightarrow [] $u ∈ \prod_{i=1}^{m}$ $\prod_{i=1}^m y_i$ $S_u \cap S(P) \neq \emptyset$ ⇒ $v \in \prod_{i=1}^n x_i$ $S_v1\subseteq 1S(P)$, because $S(P)$ is a $\mathcal{L}\widehat{\mathbb{R}}_u$ – part.

Now suppose that $t \in \prod_{i=1}^{n} x_i$ is given. Then $S_t 1 \subseteq 1S(P)$ and so there exists $q \in P$ such that $S_t \cap S_q \neq \emptyset$. Therefore $t = q$ and hence $t \in P$, thus $\prod_{i=1}^{n}$ $\prod_{i=1}^{n} x_i 1 \subseteq 1$ P. For the proof of the converse implication let $\sum_{i=1}^{n}$ t*i* $\prod_{j=1}^{N} z_{ij} \bigcap S(P) \neq \emptyset$ and $\sum_{i=1}^{s}$ $\sum_{i=1}$ \prod $\prod_{j=1}^{l_i} t_{ij} 1 \widehat{\Re} 1 \sum_{i=1}^n$ t*i* $\prod_{j=1}^{n} z_{ij}$ be given. Therefore there exists $x_{ij} \in A$ such that for all $1 \leq i \leq m', 1 \leq j \leq k'_i, z_{ij} \in S_{x_{ij}}$. Suppose that $u \in \bigcup$ $y \in \sum_{n=1}^{n}$ *i*=1 $\prod_{j=1}^{t_i} x_{ij}$ S_y , thus

 $u \in S_{y_0}$ for some $y_0 \in \prod_{i=1}^n x_i$. Since $u \in S(P)$, then there exists $y_1 \in P$ such that $u \in S_{y_1}$. Therefore $S_{y_0} \cap S_{y_1} \neq \emptyset$, which implies $y_0 = y_1 \in \prod_{i=1}^n x_i \cap P$. Since

$$
P \text{ is } \mathcal{L}\Re_{\mathcal{U}}\text{-part of } R \text{ and } \sum_{i=1}^s \prod_{j=1}^{l_i} x_{ij}' 1 \Re 1 \prod_{i=1}^n x_i, \text{ where } t_{ij} \in S_{x_{ij}'} \text{ for all } 1 \leq i \leq s,
$$

then
$$
\sum_{i=1}^s \prod_{j=1}^{l_i} x_{ij}' 1 \subseteq 1 P. \text{ So } \sum_{i=1}^s \prod_{j=1}^{l_i} t_{ij} = \bigcup_{\substack{w \in \sum_{i=1}^s \prod_{j=1}^{l_i} x_{ij}'}} S_w 1 \subseteq 1 \bigcup_{u \in P} S_u = S(P). \qquad \Box
$$

6. Conclusion

In this paper we introduce and analyze a generalization of the notion of a complete part in a hyperring. We call this generalization \Re -part of a hyperring. Several properties are investigated, such as the structure of \Re -closures of a subset. This research can be continuated, for instance in the study of some particular classes of hyperrings.

REFERENCES

- *Archive Consisting Photometrical of Archive Consisting Photometrical of Hyperstropy Theory, Supplement to Riv, Mat. Pura Appl.*

2nd ed. Aviani Editor, Triessimo, 1993.

2. P. Corsini, V. Leoreanu, *Applications of Hypers* 1. P. Corsini, *Prolegomena of Hypergroup Theory*, Supplement to Riv. Mat. Pura Appl. 2nd ed. Aviani Editor, Tricesimo, 1993.
- 2. P. Corsini, V. Leoreanu, *Applications of Hyperstructures Theory*, Advanced in Mathematics, Kluwer Academic Publishers, 2003.
- 3. B. Davaz, Isomorphism theorms of hyperrings, *Indian J. Pure Appl. Math.*, **35**(3) (2004), 321-331.
- 4. B. Davvaz, V. Leoreanu-Fotea, *Hyperring Theory and Applications*, International Academic Press, Palm Harbor, Fla, USA, 2007.
- 5. B. Davvaz, A. Salasi, A relation of hyperrings, *Comm. Algebra*, **34**(12) (2006), 4389– 4000.
- 6. D. Freni, A new characterization of the derived hypergroup via strongly regular equivalences, *Communications in Algebra*, **30**(8) (2002), 3977–3989.
- 7. M. Koskas, Groupoides, demi-hypergroupes et hypergroupes, *J. Math. Pures Appl.*, **49** (1970), 155–192.
- 8. M. Krasner, A class of hyperrings and hyperfields, *International Journal of Mathematics and Mathematical Sciences*, **6**(2) (1983), 307–311.
- 9. F. Marty, *Sur uni Generalization de la Notion de Group*, 8th Congress Math. Scandenaves, Stockholm, Sweden, 1934, pp. 45–49.
- 10. R. Migliorato, Semi-ipergruppi e Ipergruppi n-completi, *Ann. Sci. Univ. Clermont II, S`er Math.*, **23** (1986), 99–123.
- 11. J. Mittas, Hypergroupes canoniques, *Mathematica Balkanica*, **2** (1972), 165–179 .
- 12. J. Mittas, *Hyperanneaux et certaines de leurs proprietes*, **269**9 (1969), A623–A626.
- 13. S. Sh. Mousavi, V. Leoreanu, M. Jafarpour, \Re -parts in hypergroups, **190** (2011), 667–680, DOI 10.1007/s10231-010-0168-8.
- 14. R. Rota, Strongly distributive multiplicative hyperrings, *Journal of Geometry*, **39**(1-2) (1990), 130–138.
- 15. M. De Salvo, Hyperrings and hyperfields, *Annales Scientifiques de l'Universite de Clermont-Ferrand II*, **22** (1984), 89–107.
- 16. D. Stratigopoulos, *Certaines classes d'hypercorps et d'hyperanneaux in Hypergroups*, Other Multivalued Structures and Their Applications, 105–110, University of Udine, Udine, Italy, 1985.
- 17. T. Vougiouklis, Representation of hypergroups, hypermatrices, *Rivista di Mat. Pure ed Appl.*, **2** (1987), 7–19.
- 18. T. Vougiouklis, *The fundamentalrelation hyperrings.The general hyperfield*, Proc. Forth Int. Congress on Algebraic hyperstructures and Applications, 1991, Word scientific.
- 19. T. Vougiouklis, *Hyperstructures and their representation*, Hadronic press, Inc, palm Harber, USA, **115**, 1994.
- 20. T. Vougiouklis, B. Davvaz, Commutative rings obtained from hyperrings (Hv-rings) with α^* – *relations, Comm. Algebra*, **35** (2007), 3307–3320.

Archive of SID