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Abstract. In this article, first we generalize the concept of complete

parts in hyperrings by introducing the concept �-parts in hyperrings

and then we study �-closures in hyperrings. Finally we characterize �-

closures in hyperfields.
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1. Introduction

The theory of hyperstructures was introduced in 1934 by Marty [9] at the 8th

Congress of Scandinavian Mathematicians. This theory has been subsequently

developed by Corsini and Leoreanu [1, 2] , Mittas [11, 12], Stratigopoulos [16],

and by various authors. Basic definitions and propositions about the hyper-

structures are found in [1, 2, 17]. Krasner [8] has studied the notion of hy-

perfields, hyperrings, and then some researchers. Hyperrings are essentially

rings with approximately modified axioms. There are different notions of hy-

perrings . If the addition + is a hyperoperation and the multiplication is a

binary operation, then the hyperring is called Krasner (additive) hyperring [8].
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Rota [14] introduced a multiplicative hyperring, where + is a binary operation

and the multiplication is a hyperoperation. De Salvo [15] studied hyperrings

in which the additions and the multiplications were hyperoperations. In 2007,

Davvaz and Leoreanu-Fotea [4] published a book titled Hyperring Theory and

Applications. Complete parts were introduced by Koskas [7] and studied then

by Miglirato [10], Corsini and Sureau [1, 2]. Mousavi et al. [13] introduced

the notion of �-parts in hypergroups as a generalization of complete parts in

hypergroups. In this article we generalize the notion of complete parts by in-

troducing left and right �-parts in hyperrings and we will study �-closures in

hyperrings. Finally we characterize �-closures in hyperfields.

2. Preliminaries

A hypergroupoid (H, ◦) is a non-empty set H together with a hyperoperation

◦ defined on H , that is a mapping of H × H into the family of non-empty

subsets of H . If (x, y) ∈ H × H , its image under ◦ is denoted by x ◦ y and

for simplicity by xy. If A , B are non-empty subsets of H then A ◦ B is

given by A ◦ B =
⋃{xy | x ∈ A, y ∈ B}. x ◦ A is used for {x} ◦ A (resp.

A ◦ x). A hypergroupoid (H, ◦) is called a hypergroup in the sense of [9] if

for all x, y, z ∈ H the following two conditions hold: (i) x(yz) = (xy)z, (ii)

xH = Hx = H , means that for any x, y ∈ H there exist u, v ∈ H such

that y ∈ xu and y ∈ vx. If (H, ◦) satisfies only the first axiom, then it is

called a semi-hypergroup an exhaustive review updated to 1992 of hypergroup

theory appears in [1]. A recent book [2] contains a wealth of applications. A

hyperring [17] is a triple (R,+, ◦) which satisfies the ring-like axioms in the

following way:(i) (R,+) is a hypergroup , (ii) (R, ◦) is a semi-hypergroup, (iii)

the multiplication is distributive with respect to the hyperoperation +. The

hyperrings were studied by many authors, for example see [6], [3], [17], [5]

and [19]. In [20] and [18] Vougiouklis defines the relation Γ on hyperring as

follows: xΓy if and only if x, y ⊆ u, where u is a finite sum of finite products of

elements of R, in fact there exist n, ki ∈ N and xij ∈ R such that u =
n∑

i=1

ki∏
j=1

xij .

He proved that the quotient R/Γ∗, where Γ∗ is the transitive closure of Γ, is a

ring and also Γ∗ is the smallest equivalent relation on R such that the quotient

R/Γ∗ is a fundamental ring. The both ⊕ and � on R/Γ∗ are defined as follow:

∀z ∈ Γ∗(x) + Γ∗(y), 2Γ∗(x) ⊕ Γ∗(y) = Γ∗(z);

∀z ∈ Γ∗(x) ◦ Γ∗(y), 2Γ∗(x) � Γ∗(y) = Γ∗(z).

Let M be a non-empty subset of R. We say that M is a complete part if for

every n ∈ N, i = 1, 2, ..., n, ∀ki ∈ N, ∀(zi1, ..., ziki) ∈ Rki we have:

n∑
i=1

ki∏
j=1

zij
⋂

M 	= ∅ ⇒
n∑

i=1

ki∏
j=1

zij ⊆ M.
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3. �-parts
Let U be the set of finite sums of finite products of elements of R and � be

a relation on U . In this section first we generalize the notion of complete parts

by introducing the notion of �-parts and then we study �-closures.
Definition 3.1. Let R be a hyperring and U be the set of finite sum of finite

products of elements of R and � be a relation on U . For a non-empty subset

A of R we say:

(i) A is a left �-part of R with respect to U (or briefly is L�U -part) if for

all
n∑

i=1

ki∏
j=1

xij and
m∑
i=1

ti∏
j=1

yij in U the following implication is valid:

[
n∑

i=1

ki∏
j=1

xij

⋂
A 	= ∅2and2

m∑
i=1

ti∏
j=1

yij2�1
n∑

i=1

ki∏
j=1

xij ] ⇒
m∑
i=1

ti∏
j=1

yij1⊆1A;

(ii) A is a right �-part of R with respect to U (or briefly is R�U -part) if for

all
n∑

i=1

ki∏
j=1

xij and
m∑
i=1

ti∏
j=1

yij in U the following implication is valid:

[
n∑

i=1

ki∏
j=1

xij

⋂
A 	= ∅2and2

n∑
i=1

ki∏
j=1

xij2�1
m∑
i=1

ti∏
j=1

yij ] ⇒
m∑
i=1

ti∏
j=1

yij1⊆1A;

(iii) A is a �-part of R with respect to U (or briefly is �U -part) if it is

L�U -part and R�U -part.

Proposition 3.2. Let � be a relation on U and �−1 be the inverse of � then

(i) A is L�−1
U -part if and only if it is R�U -part;

(ii) A is R�−1
U -part if and only if it is L�U -part.

Definition 3.3. The intersection of L�U -parts (or R�U -parts, �-parts) which
contain A is called L�U -closure (or R�U -closure, �-closure) of A in R and it

will be denoted by L�U (A) (or R�U (A), �U (A)).

From now on R is a hyperring, U is the set of finite sum of finite products

of elements of R, u ∈ U means u =
n∑

i=1

ki∏
j=1

xij and A is a non-empty subset of

R.

Proposition 3.4. For a non-empty subset A of R we have:

(i) L�−1
U (A) = R�U (A);

(ii) R�−1
U (A) = L�U (A).

Proof. Follows from Proposition 3.2. �

Lemma 3.5. For a non-empty subset A of R define:

A

∑U
:
def
= {�1⊆1U×U | L�U (A) = A}and

∑U
A
:
def
= {�1⊆1U×U | R�U (A) = A}.
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If
A

∑U 	= ∅ (
resp.

∑U
A

	= ∅), then (
A

∑U
, ◦) (

resp. (
∑U

A
, ◦)) is a

semigroup, where ◦ is the operation of relation composition.

Proof. Suppose that �,�′ ∈
A

∑U
and (

n∑
i=1

ki∏
j=1

yij ,
m∑
i=1

ti∏
j=1

xij) ∈ U ×U are

given. Let
m∑
i=1

ti∏
j=1

xij

⋂
A 	= ∅ and

n∑
i=1

ki∏
j=1

yij1� ◦ �′1
n∑

i=1

ki∏
j=1

xij . So there ex-

ists
k∑

i=1

si∏
j=1

zij such that
k∑

i=1

si∏
j=1

zij1�1
m∑
i=1

ti∏
j=1

xij and
n∑

i=1

ki∏
j=1

yij1�′1
k∑

i=1

si∏
j=1

zij .

From
k∑

i=1

si∏
j=1

zij1�1
m∑
i=1

ti∏
j=1

xij and � ∈
A

∑U
, we have

k∑
i=1

si∏
j=1

zij⊆A. Since

�′ ∈
A

∑U
and

n∑
i=1

ki∏
j=1

yij1�′1
k∑

i=1

si∏
j=1

zij ,
n∑

i=1

ki∏
j=1

yij⊆A.

�

Theorem 3.6. If � is a permutation of finite order in SU (the symmetric group

on the set U), then the following are equivalent:

(i) A is L�U -part;

(ii) A is R�U -part;

(iii) A is �U -part.

Proof. (i)⇒ (ii). For this reason suppose that A is L�U -part. So L�U (A) =

A and hence � ∈
A

∑U
. Since � is a permutation of finite order in SU ,

〈�〉 = {�n | n ∈ N} is a subgroup of
A

∑U
and so �−1 ∈

A

∑U
. Therefore

by Proposition 3.4 we have A = L�−1
U (A) = R�U (A), thus � ∈

∑U
A

and

hence A is R�U -part. �

Theorem 3.7. Suppose that �1⊆1U × U .
(i) We pose KL

1,�(A) = A and

KL
n+1,�(A) = {x ∈ R | ∃(u, v) ∈ �, x ∈ u and v ∩KL

n,�(A) 	= ∅},
if we consider KL

� (A) = ∪
n≥1

KL
n,�(A), then KL

� (A) = L�U (A) and KL
� (A) is

the smallest L�U -part containing A;

(ii) We pose KR
1,�(A) = A and

KR
n+1,�(A) = {x ∈ R | ∃(v, u) ∈ �, x ∈ u and v ∩KR

n,�(A) 	= ∅},
if we consider KR

� (A) = ∪
n≥1

KR
n,�(A), then KR

� (A) = R�U (A) and KR
� (A) is

the smallest R�U -part containing A;

(iii) We pose K
1,�(A) = A and

K
n+1,�(A) = {x ∈ R | ∃(u, v) ∈ � ∪ �−1, x ∈ u and v ∩K

n,�(A) 	= ∅},
if K�(A) = ∪

n≥1
K

n,�(A), then K�(A) = �U (A) and K�(A) is the smallest

�U -part containing A.
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Proof. (i) It is necessary to prove:

(1) KL
� (A) is L�U -part,

(2) if A⊆B and B is L�U -part, then KL
� (A)⊆B.

For the proof (1) suppose that v
⋂
KL

� (A) 	= ∅ and u1�1v. Therefore there

exists n ∈ N such that v
⋂
KL

n,�(A) 	= ∅, from which follows u1⊆1KL
n+1,�(A)1⊆1KL

� (A).

Now we prove (2) by induction on n. We have KL
1,�(A)1 = 1A1⊆1B. Suppose

that KL
n,�(A)1⊆1B. We prove that KL

n+1,�(A)1⊆1B. If z ∈ KL
n+1,�(A), then

there exists (u, v) ∈ U × U such that z ∈ u, u1�1v and v
⋂
KL

n,�(A) 	= ∅.
Therefore v

⋂
B 	= ∅ and hence z ∈ u1⊆1B. So KL

n+1,�(A)1⊆1B.

(ii) We have

KR
� (A) = KL

�−1
U

(A)

= L�−1
U (A), 4by part (i)

= R�U (A), 4by Proposition 3.4.

(iii) Follows from (i) and (ii). �

Proposition 3.8. Suppose that B is a non-empty subset of R and � is a

relation on U . Then we have:

(i) L�U (B) =
⋃
b∈B

L�U (b);

(ii) R�U (B) =
⋃
b∈B

R�U (b);

(iii) �U (B) =
⋃
b∈B

�U (b).

Proof. (i) It is clear that for all b ∈ B, L�U (b)1⊆1L�U (B). By Theo-

rem 3.7(i), L�U (B) =
⋃
n≥1

KL
n,�(B). We follow the proposition by induction

on n. For n = 1, KL
1,�(B) = B =

⋃
b∈B

{b} =
⋃

b∈B

KL
1,�(b). Supposing it is

true for n, we show that KL
n+1,�(B)1⊆1

⋃
b∈B

KL
n+1,�(b). If z ∈ KL

n+1,�(B), then

there exists (u, v) ∈ � such that z ∈ u and v
⋂
KL

n,�(B) 	= ∅. From this

it follows, by the hypothesis of induction, v
⋂
(
⋃
b∈B

KL
n,�(b)) 	= ∅ and there-

fore b′ ∈ B exists such that v
⋂
KL

n,�(b
′) 	= ∅. So z ∈ KL

n+1,�(b
′) and hence

L�U (B)1⊆1
⋃
b∈B

L�U (b). �

Theorem 3.9. Suppose that �1⊆1U × U . The relation KL
� (resp. KR

� ) on R

defined by:

x1KL
� 1y ⇔ x ∈ KL

� (y)(x ∈ KR
� (y)),

where KL
� (y) = KL

� ({y}) (resp. KR
� (y) = KR

� ({y})) is a preorder. Further-

more if � is symmetric, then KL
� (resp. KR

� ) is an equivalence relation.
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Proof. It is easy to see that KL
� is reflexive. Now suppose that x1KL

� 1y and

y1KL
�1z. So x ∈ KL

� (y) and y ∈ KL
� (z). By Theorem 3.7(i) we have KL

� (z) is

L�U -part thus K
L
� (y)⊆KL

� (z) and hence x ∈ KL
� (z). ThereforeK

L
� is preorder.

Now let � be symmetric. We prove that KL
� is symmetric as well. To this end

the following is premised:

(1) for all n ≥ 2 and x ∈ R, KL
n,�(K

L
2,�(x)) = KL

n+1,�(x);

(2) x ∈ KL
n,�(y) if and only if y ∈ KL

n,�(x).

We prove (1) by induction on n. Suppose that z ∈ KL
2,�(K

L
2,�(x)) so there

exists (u, v) ∈ � such that z ∈ u and v
⋂
KL

2,�(x) 	= ∅. Thus z ∈ KL
3,�(x). Let

KL
n,�(K

L
2,�(x)) = KL

n+1,�(x) so we have:

z ∈ KL
n+1,�(K

L
2,�(x)) ⇔ ∃(u, v) ∈ �, z ∈ u, v ∩KL

n,�(K
L
2,�(x)) 	= ∅

⇔ ∃(u, v) ∈ �, z ∈ u, v ∩KL
n+1,�(x) 	= ∅

⇔ z ∈ KL
n+2,�(x).

We also prove (2) by induction on n. It is clear that x ∈ KL
2,�(y) if and

only if y ∈ KL
2,�(x). Suppose x ∈ KL

n,�(y) if and only if y ∈ KL
2,�(x). Let x ∈

KL
n+1,�(y) be given, so there exist (u, v) ∈ � such that x ∈ u and v

⋂
KL

n,�(y) 	=
∅. Therefore there exists b ∈ v

⋂
KL

n,�(y) and hence y ∈ KL
n,�(b). Since � is

symmetric and (u, v) ∈ �, b ∈ v and x ∈ u
⋂
KL

1,�(x) implies that b ∈ KL
2,�(x)

and hence y ∈ KL
n,�(K

L
2,�(x)) = KL

n+1,�(x). Similarly we can show if y ∈
KL

n+1,�(x), then x ∈ KL
n+1,�(x). �

Proposition 3.10. Let � be a relation on U and A be a non-empty subset of

the hyperring R. The following conditions are equivalent:

(i) A is a (R�U -part) L�U -part of R;

(ii) x ∈ A, (x1KL
� 1z)z1K

L
�1x ⇒ z ∈ A.

Proof. (i) ⇒ (ii) If x ∈ A and z ∈ R such that z1KL
� 1x, then there exists

(u, v) ∈ � such that z ∈ u and v ∩KL
n,�(A) 	= ∅ for some n ∈ N. Since A is a

L�U -part by Theorem 3.7, KL
n,�(A)1⊆1A and so v ∩A 	= ∅. Therefore u1⊆1A

and hence z ∈ A.

(ii) ⇒ (i) Let u ∩ A 	= ∅ and v1�1u. So there exists x ∈ A ∩ u and x ∈ u,

u ∩KL
1,�(x) 	= ∅. Now suppose that z ∈ v is given. So

v1�1u ⇒ z ∈ KL
2,�(x), 4 because x ∈ u

⇒ z1KL
�1x

⇒ z ∈ A, 15 because x ∈ A.

Therefore v1⊆1A and hence A is L�U -part of R. �
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4. Rings derived from hyperrings

In this section we give the notion of (strongly) normal relation on U and

then we construct a ring from a hyperring.

Definition 4.1. Suppose that �1⊆1U × U .
(i) for all (x, y) ∈ R2 define the relation ρL,� on R by:

x1ρL,�y ⇔ [x = y1 or 1∃(u, v) ∈ �2 such that 1x ∈ u1 and 1y ∈ v]

and ρ∗L,� is the transitive closure of ρL,� ;

(ii) for all (x, y) ∈ R2 define the relation ρR,� on R by:

x1ρR,�y ⇔ [x = y1 or 1∃(v, u) ∈ �2 such that 1x ∈ u1 and 1y ∈ v]

and ρ∗R,� is the transitive closure of ρR,� ;

(iii) for all (x, y) ∈ R2 define the relation ρ� on R by:

x1ρ�y ⇔ [x = y1 or 1∃(u, v) ∈ �
⋃

�−12 such that 1x ∈ u1 and 1y ∈ v]

and ρ∗� is the transitive closure of ρ� .

Theorem 4.2. Suppose that �1⊆1U × U . For all (x, y) ∈ R2 we have:

(i) x1KL
� 1y if and only if x1ρ∗L,�1y;

(ii) x1KR
� 1y if and only if x1ρ∗R,�1y.

Proof. (i) It is easy to see that ρ∗L,�1⊆1KL
� . Converesly suppose that x1K

L
� 1y

so by Theorem 3.9 we have x ∈ KL
n+1,�(y) for some n ∈ N. So there ex-

ists (u1, v1) ∈ � such that x ∈ u1 and v1
⋂
KL

n,�(y) 	= ∅ thus there ex-

ists x1 ∈ v1
⋂
KL

n,�(y) and hence x1ρL,�1x1. Since x1 ∈ KL
n,�(y), there

exists (u2, v2) ∈ � such that x1 ∈ u2 and v2
⋂
KL

n−1,�(y) 	= ∅. Therefore

x11ρL,�1x2, where x2 ∈ v2
⋂
KL

n−1,�(y). As a consequence we conclude that

xn ∈ vn
⋂
KL

n−(n−1),�(y) exists such that xn−11ρL,�1xn. Thus we have,

x1ρL,�1x11ρL,�1x21 . . . 1xn1ρL,�1y.

From this follows KL
� 1⊆1ρ∗L,� and the proof is complete.

Similarly we have (ii). �

Proposition 4.3. Suppose that � is a permutation of finite order in SU , then

ρ∗L,� = ρ∗� .

Proof. Since KL
� (y) is L�U -part by Theorem 3.6, KL

� (y) is R�U -part and

hence KR
� ⊆KL

� . Analogously KL
�⊆KR

� and so KL
� = KR

� . From this it follows

that ρ∗L,� = ρ∗� . �

Definition 4.4. If (R,+, ◦) is a hyperring and ρ1⊆1R×R is an equivalence,

then we set:

A
=
ρ B ⇔ a1ρ1b, 5∀a ∈ A, ∀b ∈ B,

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

66 H. Babaei, M. Jafarpour and S.Sh. mousavi

for all pairs (A,B) of non-empty subsets of R. The relation ρ is said to be

strongly regular to the left (resp. to the right) if (i) x1ρ1y ⇒ a + x
=
ρ a + y

and (ii) x1ρ1y ⇒ a ◦ x
=
ρ a ◦ y (resp. (i) x1ρ1y ⇒ x + a

=
ρ y + a and (ii)

x1ρ1y ⇒ a ◦ x =
ρ a ◦ y), for all (x, y, a) ∈ R3. ρ is called strongly regular if it is

(i) strongly regular to the right and to the left and moreover (ii) there exists e

in R such that: ρ(x) = ρ(t), for all t ∈ x ◦ e⋂ e ◦ x.
Definition 4.5. Let R be a hyperring, then

(i) a relation � on U is called normal if for all x ∈ R, one has KL
� (x) =

KR
� (x),

(ii) a normal relation � on U is called strongly normal to the left (resp. to

the right) if ρ∗L,� (resp. ρ∗R,�) is strongly regular to the left (resp. to the right),

(iii) a normal relation � on U is called strongly normal if ρ∗� is strongly

regular.

Suppose that �1⊆1U × U . For every element x of a hyperring R, set:

Pn
L,�(x) =

⋃{v1 | 1v1�1un, un =
n∑

i=1

ki∏
j=1

xij , x ∈ un};
PL,�(x) =

⋃
n�1

Pn
L,�(x)

⋃{x};
ρ∗L,�(x) = {y ∈ R1 | 1y1ρ∗L,�1x}.

Theorem 4.6. Let R be a hyperring and � be a relation on U . The following

conditions are equivalent:

(i) ρL,� is transitive;

(ii) for every x ∈ R, ρ∗L,�(x) = PL,�(x);

(iii) for every x ∈ R, PL,�(x) is a L�U -part of R.

Proof. (i) ⇒ (ii) For every pair (x, y) of elements of R we have:

y ∈ ρ∗L,�(x) ⇔ y1ρ∗L,�1x ⇔ y1ρL,�1x ⇔ y ∈ PL,�(x).

(ii) ⇒ (iii) Let (v, u) ∈ � such that u∩PL,�(x) 	= ∅ be given. So u∩ρ∗L,� (x) 	=
∅ and hence there exists z ∈ R such that z ∈ u and z ∈ ρ∗L,�(x), thus z ∈ KL

� (x),

by Theorem 4.2. On the other hand, z ∈ KL
� (z), so u ∩KL

� (z) 	= ∅ and hence

v1⊆1KL
� (z), because v1�1u and KL

� (z) is a L�U -part of R, by Theorem 3.7.

Now suppose that t ∈ v is an arbitrary element, thus t ∈ KL
� (x) and hence

t1ρ∗L,�1x. Therefore t ∈ ρ∗L,�(x) = PL,�(x) and so v1⊆1PL,�(x).

(iii) ⇒ (i) Let x, y and z in R be given such that x1ρL,�1y and y1ρL,�1z.

Since x1ρL,�1y, there exists (u, v) ∈ � such that x ∈ u and y ∈ v. Therefore

v ∩ PL,�(y) 	= ∅ and since PL,�(y) is a L�U -part, u1⊆1PL,�(y) and hence

x ∈ PL,�(y). We can see that PL,�(y)1⊆1PL,�(z), because y1ρL,�1z and so by

above y ∈ PL,�(z). Therefore x ∈ PL,�(z) and hence x1ρL,�1z. �

Proposition 4.7. If � is a normal relation on U , then:
(i) �−1 is a normal relation;
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(ii) ρ∗L,� = ρ∗� and ρ∗L,� is an equivalence relation.

Proof. The proof follows from Proposition 3.4 and Theorem 4.2. �

Theorem 4.8. Suppose that (R,+, ◦) is a hyperring and � is a strongly normal

relation on U . A ring structure turns out to be define on R/ρ∗� with respect to

the operations:

ρ∗�(x) ⊕ ρ∗�(y) = ρ∗�(z), 2where1z ∈ x+ y.

ρ∗�(x)� ρ∗�(y) = ρ∗�(z), 2where1z ∈ x ◦ y.
Proof. We will prove that the operation ⊕ is well defined. Let ρ∗�(x0) =

ρ∗�(x1) and ρ∗�(y0) = ρ∗�(y1). It is necessary to verify that ρ∗�(x0) ⊕ ρ∗�(y0) =
ρ∗�(x1) ⊕ ρ∗�(y1). By hypothesis (m,n) ∈ N

2, (z0, z1, ..., zm) ∈ Rm+1 and

(t0, t1, ..., tn) ∈ Rn+1 exist such that

x0 = z01ρ�1z11ρ�1z21 . . . 1zm−11ρ�1zm = x1

and

y0 = t01ρ�1t11ρ�1t21 . . . 1tn−11ρ�1tn = y1

Since � is normal, for all u ∈ zs−1+ts−1 and v ∈ zs+ts, where 1 � s � k and

k = min{m,n}, we have u1ρ∗�v. Therefore ρ∗�(x0)⊕ρ∗�(y0) = ρ∗�(z1)⊕ρ∗�(t1) =
... = ρ∗�(zk)⊕ρ∗ (tk) = ρ∗�(ak+i)⊕ρ∗�(bk+i), where k+1 � k+ i � max{m,n}
and:

(ak+i, bk+i) =

{
(x1, tk+i) if 1k = m;

(zk+i, y1) if1k = n.

Hence ⊕ is well defined. Similarly the operation � is well defined and Theorem

31 of [2] shows that (R/ρ∗� ,⊕) is a group. By strongly normality of � we

conclude that (R/ρ∗� ,�) is a monoid with unit ρ∗�(e). The commutativity of

⊕ is related with the existence of the unit in multiplication. Since � is strong,

there exists e in R such that ρ(x) = ρ(t) for all t ∈ x ◦ e⋂ e ◦ x which means

ρ∗�(e) is the unit of multiplication so we have:

[ρ∗�(x) ⊕ ρ∗�(y)] � [ρ∗�(e) ⊕ ρ∗�(e)] = (ρ∗�(x) � [ρ∗�(e) ⊕ ρ∗�(e)]) ⊕ (ρ∗�(y) �
[ρ∗�(e)⊕ρ∗�(e)]) = (ρ∗�(x)⊕ρ∗�(x))⊕ (ρ∗�(y)⊕ρ∗�(y)) and also [ρ∗�(x)⊕ρ∗�(y)]�
[ρ∗�(e) ⊕ ρ∗�(e)] = ([ρ∗�(x) ⊕ ρ∗�(y)] � ρ∗�(e)) ⊕ ([ρ∗� (x) ⊕ ρ∗�(y)] � ρ∗�(e)) =

(ρ∗�(x)⊕ ρ∗�(y))⊕ (ρ∗�(x) ⊕ ρ∗�(y)).
So (ρ∗� (x) ⊕ ρ∗�(x)) ⊕ (ρ∗�(y) ⊕ ρ∗�(y)) = (ρ∗�(x) ⊕ ρ∗�(y)) ⊕ (ρ∗�(x) ⊕ ρ∗�(y))
gives, ρ∗�(x)⊕ ρ∗�(y) = ρ∗�(y)⊕ ρ∗�(x). �

Let (R,+, ◦) and (R′,+′, ◦′) be two hyperrings. We say that f : R → R′ is
a homomorphism if for every (x, y) ∈ R2 we have f(x+ y) = f(x) +′ f(y) and
f(x ◦ y) = f(x) ◦′ f(y).
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Definition 4.9. Let R is a hyperring and � be a strongly normal relation on

U . If ϕ� : R → R/ρ∗� be the canonical projection, we set ω� = ϕ−1
� (1R/ρ∗

�
),

and called the heart of ϕ�.

Theorem 4.10. Let (R,+, ◦) is a hyperfield (i.e, (R,+, ◦) be a hyperring and

(R, ◦) is a hypergroup) and B is a non-empty subset of R, then we have ω�◦B =

B ◦ ω� = ϕ−1
� (ϕ�(B)).

Proof. Clearly ϕ−1
� (ϕ�(B)) = {x ∈ R | ∃b ∈ B : ϕ�(b) = ϕ�(x)}. Let

y ∈ ϕ−1
� (ϕ�(B)), thus for some b ∈ B , ϕ�(b) = ϕ�(y). Since (R, ◦) is a

hypergroup, u ∈ R exists such that y ∈ b◦u , so ϕ�(y) = ϕ�(b)�ϕ�(u). Since
(R/ρ∗� ,�) is a group and ϕ�(b) = ϕ�(y), we obtain ϕ�(u) = 1R/ρ∗

�
and so

u ∈ ϕ−1
� (1R/ρ∗

�
) = ω�. Therefore, ϕ−1

� (ϕ�(B)) ⊆ B ◦ ω�.

Converesly if z ∈ B ◦ ω�, then ϕ�(z) ∈ ϕ�(B) and so z ∈ ϕ−1
� (ϕ�(B)).

It is proved that ω� ◦ B = ϕ−1
� (ϕ�(B)) by a similar way and we obtain

ϕ−1
� (ϕ�(B)) = ω� ◦B = B ◦ ω�. �

Theorem 4.11. If (R,+, ◦) is a hyperfield and B is a non-empty subset of R,

then we have ω� ◦B = B ◦ ω� = �U (B).

Proof. If ϕ�(b) = ϕ�(x) then x ∈ �U (b). Therefore ϕ
−1
� (ϕ�(B)) =

⋃
b∈B

�U (b) =

�U (B). �

5. �-parts and A
R
-hyperrings

We recall that a K
H
hypergroup is a hypergroup constructed from a hyper-

group (H, ◦) and a family {A(x)}x∈H of non-empty subsets that are mutually

disjoint. Put K
H

=
⋃

x∈H

A(x) and define the hyperoperation ∗ on K
H

as fol-

lowing,

∀(a, b) ∈ K2
H
, 2a ∈ A(x), b ∈ A(y), 3a ∗ b :def=

⋃
z∈x◦y

A(z).

(H, ◦) is a hypergroup if and only if (KH , ∗) is a hypergroup. In this case KH

is said to be a K
H
-hypergroup generated by H .

Now let (R, †, �) be a commutative hyperring, Sr , r ∈ R be a family of non-

empty sets indexed in R such that for all r1, r2 ∈ R, r1 	= r2, Sr1

⋂
Sr2 = ∅.

We set A =
⋃

r∈R Sr and we define the hyperoperations � and � in A in the

following way:

∀(x, y) ∈ Sr1 × Sr2 , x � y =
⋃

t∈r1†r2
St and x� y =

⋃
u∈r1�r2

Su.

It is easy to see that the structure (A,�,�) is a hyperring. The hyperring

(A,�,�) is called a A
R
-hyperring with suport A or A

R
-hyperring generated by
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R.

For all P ∈ P ∗(R), let S(P ) =
⋃

x∈P

Sx.

Theorem 5.1. Let � be a relation on U . Then P is L�U -part of R if and only

if S(P ) is L�̂U -part of AR
, where the relation �̂ is defined as follows:

n∑
i=1

ti∏
j=1

xij�
m∑
i=1

ki∏
j=1

yij ⇔
⋃

v∈
n∑

i=1

ti∏

j=1

xij

Sv3�̂1
⋃

u∈
m∑

i=1

ki∏

j=1

yij

Su.

Proof. Let S(P ) be a L�̂U -part of AR and (
n∏

i=1

xi,
m∏
i=1

yi) ∈ � such that

m∏
i=1

yi
⋂
P 	= ∅ be given. So

⋃
v∈

n∏

i=1

xi

Sv3�̂1
⋃

u∈
m∏

i=1

yi

Su and we have,

m∏
i=1

yi ∩ P 	= ∅ ⇒ ∃p ∈ P, such that p ∈
m∏
i=1

yi

⇒ ∃p ∈ P, such that Sp1⊆1
⋃

u∈
m∏

i=1

yi

Su

⇒
⋃

u∈
m∏

i=1

yi

Su ∩ S(P ) 	= ∅

⇒
⋃

v∈
n∏

i=1

xi

Sv1⊆1S(P ), because S(P ) is a L�̂U − part.

Now suppose that t ∈
n∏

i=1

xi is given. Then St1⊆1S(P ) and so there ex-

ists q ∈ P such that St ∩ Sq 	= ∅. Therefore t = q and hence t ∈ P , thus
n∏

i=1

xi1⊆1P . For the proof of the converse implication let
n∑

i=1

ti∏
j=1

zij
⋂
S(P ) 	= ∅

and
s∑

i=1

li∏
j=1

tij1�̂1
n∑

i=1

ti∏
j=1

zij be given. Therefore there exists xij ∈ A such that

for all 1 � i � m′,1 � j � k′i, zij ∈ Sxij . Suppose that u ∈ ⋃
y∈

n∑

i=1

ti∏

j=1

xij

Sy, thus

u ∈ Sy0 for some y0 ∈
n∏

i=1

xi. Since u ∈ S(P ), then there exists y1 ∈ P such

that u ∈ Sy1 . Therefore Sy0∩Sy1 	= ∅, which implies y0 = y1 ∈
n∏

i=1

xi∩P . Since
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P is L�U -part of R and
s∑

i=1

li∏
j=1

x′
ij1�1

n∏
i=1

xi, where tij ∈ Sx′
ij

for all 1 � i � s,

then
s∑

i=1

li∏
j=1

x′
ij1⊆1P . So

s∑
i=1

li∏
j=1

tij =
⋃

w∈
s∑

i=1

li∏

j=1

x′
ij

Sw1⊆1
⋃

u∈P

Su = S(P ). �

6. Conclusion

In this paper we introduce and analyze a generalization of the notion of a

complete part in a hyperring. We call this generalization �-part of a hyperring.

Several properties are investigated, such as the structure of �-closures of a

subset. This research can be continuated, for instance in the study of some

particular classes of hyperrings.

References

1. P. Corsini, Prolegomena of Hypergroup Theory, Supplement to Riv. Mat. Pura Appl.

2nd ed. Aviani Editor, Tricesimo, 1993.

2. P. Corsini, V. Leoreanu, Applications of Hyperstructures Theory, Advanced in Mathe-

matics, Kluwer Academic Publishers, 2003.

3. B. Davaz, Isomorphism theorms of hyperrings, Indian J. Pure Appl. Math., 35(3) (2004),

321-331.

4. B. Davvaz, V. Leoreanu-Fotea, Hyperring Theory and Applications, International Aca-

demic Press, Palm Harbor, Fla, USA, 2007.

5. B. Davvaz, A. Salasi, A relation of hyperrings, Comm. Algebra, 34(12) (2006), 4389–

4000.

6. D. Freni, A new characterization of the derived hypergroup via strongly regular equiva-

lences, Communications in Algebra, 30(8) (2002), 3977–3989.

7. M. Koskas, Groupoides, demi-hypergroupes et hypergroupes, J. Math. Pures Appl., 49

(1970), 155–192.

8. M. Krasner, A class of hyperrings and hyperfields, International Journal of Mathematics

and Mathematical Sciences, 6(2) (1983), 307–311.

9. F. Marty, Sur uni Generalization de la Notion de Group, 8th Congress Math. Scande-

naves, Stockholm, Sweden, 1934, pp. 45–49.

10. R. Migliorato, Semi-ipergruppi e Ipergruppi n-completi, Ann. Sci. Univ. Clermont II,
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