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Abstract. Let G and H be graphs. The tensor product G⊗H of G and

H has vertex set V (G ⊗ H) = V (G) × V (H) and edge set E(G ⊗ H) =

{(a, b)(c, d)|ac ∈ E(G) and bd ∈ E(H)}. In this paper, some results on

this product are obtained by which it is possible to compute the Wiener

and Hyper Wiener indices of Kn ⊗G.
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1. Introduction

A graph G consists of a set of vertices V (G) and a set of edges E(G). For

every vertices a, b ∈ V (G), the edge connecting a and b is denoted by ab. The

distance between two vertices in a connected graph G is the number of edges

in a shortest path between them. For vertices a and b of G, their distance

is shown by dG(a, b). This concept has been known for a very long time and

has received considerable attention as a subject of research in metric graph

theory. Graph operations play an important role in the study of graph decom-

positions into isomorphic subgraphs. For more details about graph operations

see [1, 4, 6, 7, 8, 9, 10, 11, 15]. For any two simple graphs G and H , the tensor

product of G and H has vertex set V (G ⊗ H) = V (G) × V (H) and edge set

E(G ⊗H) = {(a, b)(c, d)|ac ∈ E(G) and bd ∈ E(H)}. We refer the reader to
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[2] for the proof of this fact that |E(G ⊗H)| = 2|E(G)||E(H)|. The distance

between two vertices under tensor product of graphs is studied in [13]. Here we

obtain useful equality for distance of vertices in tensor product of graphs by a

new method and using simple concepts. Then we use these results for obtain-

ing simple proofs for some classical theorems [4]. One of the concepts related

to distance in graphs is the Wiener index [14]. It is not only an early index

which correlates well with many physico-chemical properties of organic com-

pounds but also a subject that has been studied by many mathematicians and

chemists. The Wiener index is the sum of distances between all vertex pairs in

a connected graph, W (G) =
∑

{a,b}⊆V (G) dG(a, b). The hyper-Wiener index of

acyclic graphs was introduced by Milan Randic in 1993. Then Klein et al. [12],

generalized Randics definition for all connected graphs, as a generalization of

the Wiener index. It is defined as WW (G) = 1
2W (G)+ 1

2

∑
{a,b}⊆V (G) d

2(a, b).

In last section of this paper, formula for the Wiener and hyper-Wiener indices

of the tensor product of complete graph Kn by a graph G are obtained. For

more details about Wiener and hyper-Wiener index see for example [3, 5].

2. Main Result and Discussion

In this section some new concepts are presented by which it is possible to

find new proof for some classical results.

Definition 1. Let G be a graph and x, y ∈ V (G) . Define d′G(x, y) as follows:
(i) If dG(x, y) is odd then d′G(x, y) is defined as the length of a shortest even walk

joining x and y in G, and if there is no shortest even walk then d′G(x, y) = +∞
.

(ii) If dG(x, y) is even then d′G(x, y) is defined as the length of a shortest

odd walk joining x and y in G, and if there is no shortest odd walk then

d′G(x, y) = +∞.

(iii) If dG(x, y) = +∞ , then d′G(x, y) = +∞.

Example 1. Let Kn be a complete graph with n ≥ 3. For each a, b ∈ V (Kn),

if a �= b then dKn(a, b) = 1 and d′Kn
(a, b) = 2 and if a = b then dKn(a, b) = 0

and d′Kn
(a, b) = 3. Also let C2n+1 be a cycle of order 2n + 1, then for each

two vertices a, b ∈ V (C2n+1), it is easy to see that, d′C2n+1
(a, b) = 2n + 1 −

dC2n+1(a, b). In every even cycle C2n, d
′
C2n

(a, b) = +∞, where a, b ∈ V (C2n) .

Proposition 1. Let G be a graph. Then G is not bipartite graph if and only

if there exists x, y ∈ V (G) such that d′G(x, y) < +∞.

Proof. Let G is not bipartite, then there is an odd cycle C in G. Suppose x

and y are two vertices on C. If dG(x, y) is even (odd) then there exists an

odd (even) path between x and y in C, so d′G(x, y) < +∞. Conversely, let

x, y ∈ V (G) and d′G(x, y) < +∞. . Therefore is odd and so there exists an odd
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closed walk contains x. Thus there is an odd cycle in G and this proves G is

non-bipartite. �

Note. If G is a connected and non-bipartite graph, then d′G(x, y) < +∞,

for all x, y ∈ V (G).

Lemma 1. Let G and H be graphs and (a, b)(c, d) ∈ V (G⊗H). Then

Max{dG(a, c), dH(b, d)} ≤ dG⊗H

(
(a, b), (c, d)

)
.(2.1)

Proof. If dG⊗H

(
(a, b), (c, d)

)
= +∞, then inequality (2.1) holds. Suppose that

dG⊗H

(
(a, b), (c, d)

)
= n. So the following path between (a, b) and (c, d) in

G⊗H exists:

P : (a, b) = (x0, y0), (x1, y1), ..., (xn, yn) = (c, d).

Obviously a = x0, x1, ..., xn = c is a walk with length n between a and c in G

and b = y1, y2, ...yn = d is a walk with length n between b and d in H . Hence

dG(a, c), dH(b, d) ≤ n and then,

Max{dG(a, c), dH(b, d)} ≤ n = dG⊗H

(
(a, b), (c, d)

)
.

�

Definition 2. Let G and H be two graphs and (a, b), (c, d) ∈ V (G⊗H). The

relation ∼ on the vertices of G⊗H is defined as follows:

(a, b) ∼ (c, d) if and only if dG(a, c), dH(b, d) < +∞ and dG(a, c) + dH(b, d) is

even.

Proposition 2. Let G and H be graphs and (a, b), (c, d) ∈ V (G ⊗ H) . If

(a, b) ∼ (c, d), then (a, b) and (c, d) are in the same component of G ⊗ H.

Moreover

Max{dG(a, c), dH(b, d)} = dG⊗H

(
(a, b), (c, d)

)
.

Proof. Suppose dG(a, c) = m, dH(b, d) = n and m ≤ n. The following paths

between a and c in G and b and d in H exist:

P1 : a = x0, x1, ..., xm = c and P2 : b = y1, y2, ..., yn = d.

Since (a, b) ∼ (c, d), then m+n and n−m are even. Therefore there exists the

following path between (a, b) and (c, d) in G⊗H , with length n:

P : (a, b) = (x0, y0), (x1, y1), ..., (xm, ym) = (c, ym),

(xm−1, ym+1), (xm, ym+2), ..., (xm, yn) = (c, d).

So dG⊗H

(
(a, b), (c, d)

) ≤ n = dH(b, d) = Max{dG(a, c), dH(b, d)} . Similarly,

if m > n, then dG⊗H

(
(a, b), (c, d)

) ≤ n = dG(a, c) = Max{dG(a, c), dH(b, d)}.
By using Lemma 1,Max{dG(a, c), dH(b, d)} ≤ dG⊗H

(
(a, b), (c, d)

)
, and this

completes the proof. �
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Proposition 3. Let G and H be graphs and (a, b), (c, d) ∈ V (G ⊗ H) . If

(a, b) � (c, d) then,

dG⊗H

(
(a, b), (c, d)

)
= Min

{
Max{dG(a, c), d′H(b, d)},Max{d′G(a, c), dH(b, d)}

}
.

Proof. At first we show that the following inequality is holds:

dG⊗H

(
(a, b), (c, d)

) ≤ Min
{

Max{dG(a, c), d′H(b, d)},

Max{d′G(a, c), dH(b, d)}
}
.(2.2)

If dG(a, c) = +∞ (dH(b, d) = +∞), then d′G(a, c) = +∞ (d′G(a, c) = +∞),

then the above inequality is satisfied.

We now assume that dG(a, c), dH(b, d) < +∞. It is enough to show the follow-

ing inequalities are hold:

dG⊗H

(
(a, b), (c, d)

) ≤ Max{dG(a, c), d′H(b, d)},(2.3)

dG⊗H

(
(a, b), (c, d)

) ≤ Max{d′G(a, c), dH(b, d)}.(2.4)

If d′H(b, d) = +∞ then inequality (2.3) holds. Suppose that d′H(b, d) = n and

dG(a, c) = m and m ≤ n. There exist the shortest path P : a = x0, x1, ..., xm =

c in G and the walk W : b = y0, y1, ..., yn = d in H . Since (a, b) � (c, d) then

n + m and n − m are even. Therefore there exist the path P ′ between (a, b)

and (c, d) in as follows:

P ′ : (a, b) = (x0, y0), (x1, y1), ..., (xm, ym) = (c, ym),

(xm−1, ym+1), (xm, ym+2), ..., (xm, yn) = (c, d).

Hence, dG⊗H ≤ n = d′H(b, d) = Max{dG(a, c), d′H(b, d)}. Similarly, if n < m

then the inequality (2.3) is satisfied. By a similar argument, one can prove the

inequality (2.4). By above argument we have shown inequality (2.2) is satisfied.

We now prove the following:

dG⊗H

(
(a, b), (c, d)

) ≥ Min
{

Max{dG(a, c), d′H(b, d)},

Max{d′G(a, c), dH(b, d)}
}
.(2.5)

If (a, b) and (c, d) are not in the same component of tensor product of G and

H then, dG⊗H

(
(a, b), (c, d)

)
= +∞ and (2.5) is satisfied. Suppose (a, b) and

(c, d) are in the same component. Then a and c ( b and d) are in the same

component of G (H). If dG⊗H

(
(a, b), (c, d)

)
= n then the path P ′′ exists,

P ′′ : (a, b) = (x0, y0), (x1, y1), ..., (xn, yn) = (c, d) . Since (a, b) � (c, d) then

dG(a, c) + dH(b, d) is odd. We can suppose that dG(a, c) is odd and dH(b, d) is

even. Our main proof consider the following cases:

Case 1 : If n is odd, then the walk W1 : b = y0, y1, ..., yn = d is an

odd walk with length n between b and d in H . So by definition of d′H(b, d),
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it is clear that d′H(b, d) ≤ n. It is easy to see dG(a, c) ≤ n. Therefore

Max{dG(a, c), d′H(b, d)} ≤ n.

Case 2 : If n is even, then by a similar method we can see

Max{d′G(a, c), dH(b, d)} ≤ n.

Hence

Min
{
Max{dG(a, c), d′H(b, d)},Max{d′G(a, c), dH(b, d)}} ≤ dG⊗H

(
(a, b), (c, d)

)
.

and the proof is complete. �

Corollary 1. Let G and H be graphs and (a, b), (c, d) ∈ V (G⊗H). Then

dG⊗H

(
(a, b), (c, d)

)
=

{
d1
(
(a, b), (c, d)

)
(a, b) ∼ (c, d)

d1
(
(a, b), (c, d)

)
(a, b) � (c, d)

where,

d1
(
(a, b), (c, d)

)
= Max{dG(a, c), dH(b, d)}

and

d2
(
(a, b), (c, d)

)
= Min

{
Max{dG(a, c), d′H(b, d)},Max{d′G(a, c), dH(b, d)}}.

3. Application

In this section at first we present new simple proofs for some classical the-

orems related to the tensor product of graphs and then as an application of

previous results, we compute the Wiener and Hyper Wiener indices of the ten-

sor product of Kn and G, where Kn is the complete graph of order n and G is

a connected graph.

Proposition 4. ([4]) Let G and H be connected graphs with at least two ver-

tices. Then G⊗H is connected if and only if G or H is not bipartite.

If G or H are not bipartite then by Proposition 4, G⊗H is connected and

has just one component. Now suppose G and H are bipartite. If |V (G)| =
|V (H)| = 2, then G ⊗ H also is connected and has just one component. Let

|V (G)| > 2 or |V (H)| > 2. Since G is bipartite, there exists the path P :

a1, a2, a3 in G. Obviously dG(a1, a3) = 2. Let b1 and b2 are adjacent vertices

in H . Since (a1, b1) � (a2, b1) , then by using Proposition 3 or Corollary

1, dG⊗H

(
(a1, b1), (a2, b1)

)
= +∞ . Then (a1, b1) and (a2, b1) are in different

components. For each (a, b) ∈ V (G⊗H), two cases are considered:

Case 1 : If dG(a, a1)+dH(b, b1) is even, then (a, b) ∼ (a1, b1) and by Corollary

1, (a, b) and (a1, b1) are in the same component.

Case 2 : If dG(a, a2)+dH(b, b1) is even, then (a, b) ∼ (a2, b1) and by Corollary

1, (a, b) and (a2, b1) are in the same component. Notice that if dG(a, a1) +

dH(b, b1) and dG(a, a2)+dH(b, b1) are odd, then both of dG(a, a1) and dG(a, a2)

are even or odd. So dG(a, a1)+dG(a, a2) is even, and hence there exists an even

walk between a1 and a2. So there exists an odd closed walk in G containing
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which is a contradiction.

Therefore we can conclude the following well known result.

Proposition 5. ([4]) Suppose G and H are connected graphs with at least two

vertices, then G⊗H has at most two components.

In the following propositions the Wiener and Hyper Wiener indices of the

tensor product of Kn and a connected graph G are computed.

Proposition 6. Let G be connected graph of order m. Then the Wiener index

of the tensor product of Kn and G is given by:

W (Kn ⊗G) = n2W (G) + 2
(

n

2

)
|V (G)| + 2n|E(G)| − n|TG|,

where n ≥ 3 and TG = {ab ∈ E(G)|ab is contained in a triangle} .

Proof. By definition of the Wiener index,

W (Kn ⊗G) =
∑

{(a,b),(c,d)}⊆V (Kn⊗G)

dKn⊗G

(
(a, b), (c, d)

)

We consider a partition of V (Kn ⊗G) into the following parts:

A1 =
{{(a, b), (c, d)}|a �= c, b �= d, (a, b) ∼ (c, d)

}
,

A2 =
{{(a, b), (c, d)}|a �= c, b �= d, (a, b) � (c, d)

}
,

A3 =
{{(a, b), (c, d)}|a �= c, b = d

}
,

A4 =
{{(a, b), (c, d)}|a = c, b �= d, (a, b) ∼ (c, d)

}
,

A5 =
{{(a, b), (c, d)}|a = c, b �= d, (a, b) � (c, d)

}
.

Therefore,

W (Kn ⊗G) =∑
{(a,b),(c,d)}∈A1

dKn⊗G

(
(a, b), (c, d)

)
+

∑
{(a,b),(c,d)}∈A2

dKn⊗G

(
(a, b), (c, d)

)
+

∑
{(a,b),(c,d)}∈A3

dKn⊗G

(
(a, b), (c, d)

)
+

∑
{(a,b),(c,d)}∈A4

dKn⊗G

(
(a, b), (c, d)

)
+

+
∑

{(a,b),(c,d)}∈A5

dKn⊗G

(
(a, b), (c, d)

)
.

We evaluate each summation separately. It is obvious that if {a, c} ⊆ V (Kn),

then dKn(a, c) = 1 and d′Kn
(a, c) = 2. Apply Proposition 3, if (a, b) ∼ (c, d)

and a �= c, b �= d then,

Min
{
Max{dKn(a, c), d

′
G(b, d)},Max{d′Kn

(a, c), dG(b, d)}
}
= dG(b, d)

and

Max{dKn(a, c), dG(b, d)} = dG(b, d).
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Therefore,∑
{(a,b),(c,d)}∈A1∪A2

dKn⊗G

(
(a, b), (c, d)

)
=

∑
{(a,b),(c,d)}∈A1

dKn⊗G

(
(a, b), (c, d)

)

+
∑

{(a,b),(c,d)}∈A2

dKn⊗G

(
(a, b), (c, d)

)

= 2
∑

{a,c}⊆V (Kn)

∑
{b,d)}⊆V (G)

dG(b, d)

= 2
(

n

2

)
W (G).

By considering the set A3, we have:∑
{(a,b),(c,d)}∈A3

dKn⊗G

(
(a, b), (c, d)

)
=

∑
{a,c}⊆V (Kn)

b∈V (G)

2 = 2|V (G)|
(

n

2

)
.

For computing our summation over the set A4, we notice that,

A4 =
{{(a, b)(a, d)}|a ∈ V (Kn), {b, d} ⊆ V (G) and 2|dG(b, d)

}
.

Hence,∑
{(a,b),(c,d)}∈A4

dKn⊗G

(
(a, b), (c, d)

)
=

∑
{b,d}⊆V (G)

a∈V (Kn)
2|dG(b,d)

dKn⊗G

(
(a, b), (c, d)

)

=
∑

{b,d}⊆V (G)
a∈V (Kn)
2|dG(b,d)

dG(b, d) = n
∑

{b,d}⊆V (G)
2|dG(b,d)

dG(b, d).

Compute our summation over A5, we have:

∑
{(a,b),(c,d)}∈A5

dKn⊗G

(
(a, b), (c, d)

)
=

∑
{b,d}⊆V (G)

a∈V (Kn)
2�dG(b,d)

dKn⊗G

(
(a, b), (c, d)

)
.

If dG(b, d) is odd then by Proposition 3,

dKn⊗G

(
(a, b), (c, d)

)
= Min

{
Max{dKn(a, a), d

′
G(b, d)},

Max{d′Kn
(a, a), dG(b, d)}

}

= Min
{
d′G(b, d),Max{3, dG(b, d)}

}
.

By a case by case calculations, one can see that

Min
{
d′G(b, d),Max{3, dG(b, d)}

}
=

⎧⎨
⎩

dG(b, d) dG(b, d) ≥ 3

2 dG(b, d) = 1 and d′G(b, d) = 2

3 dG(b, d) = 1 and d′G(b, d) ≥ 4
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Define:

A′
5 =

{
{(a, b), (c, d)}|a ∈ V (Kn), dG(b, d) ≥ 3 and dG(b, d) is odd

}
,

A′′
5 =

{
{(a, b), (c, d)}|a ∈ V (Kn), dG(b, d) = 1 and d′G(b, d) = 2

}
,

A′′′
5 =

{
{(a, b), (c, d)}|a ∈ V (Kn), dG(b, d) = 1 and d′G(b, d) ≥

}
.

Such that A5 = A′
5 ∪A′′

5 ∪A′′′
5 . Hence,∑

{(a,b),(c,d)}∈A5

dKn⊗G

(
(a, b), (c, d)

)
=

∑
{(a,b),(c,d)}∈A′

5

dKn⊗G

(
(a, b), (c, d)

)
+

∑
{(a,b),(c,d)}∈A′′

5

dKn⊗G

(
(a, b), (c, d)

)
+

∑
{(a,b),(c,d)}∈A′′′

5

dKn⊗G

(
(a, b), (c, d)

)
=

∑
{(a,b),(c,d)}∈A′

5

dG(b, d) +
∑

{(a,b),(c,d)}∈A′′
5

2 +
∑

{(a,b),(c,d)}∈A′′′
5

3 =

n
( ∑

{(b,d}⊆V (G)
2�dG(b,d)

dG(b, d)− |E(G)|
)
+ 2n|TG|+ 3n(|E(G)| − |TG|).

By the above calculations, one can see that,

W (Kn ⊗G) = n2W (G) + 2
(

n

2

)
|V (G)| + 2n|E(G)| − n|TG|.

�
Corollary 2. The following statements are hold:

a) Let G be a triangle-free graph then,

W (Kn ⊗G) = n2W (G) + 2
(

n

2

)
|V (G)|+ 2n|E(G)|.

b) The Wiener index of two complete graphs of orders m and n is computed

as follows:

W (Kn ⊗Km) = n(n+ 1)
(

m

2

)
+ n(n− 1)m.

Proof. a) It is immediate by Proposition 6.

b) In complete graph Kn , we can see that TKm = E(Km) and so by Propo-

sition 6,

W (Kn ⊗Km) = n2W (Km) + 2
(

n

2

)
m+ 2n

(
m

2

)
− n

(
m

2

)

= n(n+ 1)
(

m

2

)
+ n(n− 1)m.

�
Proposition 7. Let G be connected graph of order m. Then the hyper Wiener

index of the tensor product of Kn and G is given by:

WW (Kn ⊗G) =
(

n+1

2

)
WW (G) + 3

(
n

2

)
|V (G)|+ 5n|E(G)| − 3n|TG|.
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Proof. The proof is similar to the proof of Proposition 6. �

Corollary 3. The hyper Wiener index of two complete graphs of orders m and

n is computed as follows:

WW (Kn ⊗Km) =
(

n+1

2

)
m(m− 1) + 3

(
n

2

)
m+ 5n

m(m− 1)

2
− 3nm(m− 1).
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