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1. Introduction

The purpose of this paper is to continue the study of p-Carleson and re-

lated measures in the unit disk. In recent years many papers appeared where

p-Carleson measures were studied intensively from various point of view by

many authors (see [9], [10] and references therein). We intend to study again

p-Carleson measures in complex plane in simplest case, namely in the unit disk.

Our intention in particular is to provide some direct generalizations of known

one dimensional results about p-Carleson measures (or Qp analytic classes).

On the other hand, the intention of this note is to provide sharp embeddings

for certain new analytic spaces in the unit disk. This paper can be viewed as

a continuation of [7] where similar assertions were recently proved.
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Throughout the paper, we write C (sometimes with indexes) to denote a pos-

itive constant which might be different at each occurrence (even in a chain of

inequalities) but is independent of the functions or variables being discussed.

Given two expressions A and B, we shall write A � B if there is a positive

constant C such that B
C ≤ A ≤ CB. We will write A <≺ B if there is a

constant C such that A < CB.

In the next section we provide some new sharp embedding theorems for so

called p-Carleson measures and related measures in the unit disk which are

closely connected with Qp spaces in the unit disk (see [9], [10]).

Let D be, as usual, the unit disk in the complex plane, and let T be the unit

circle {ξ : |ξ| = 1}. By dm2 we mean the standard normalized Lebesgue area

measure on D. We denote the Lebesgue arc length measure on the unit circle by

dξ or dm(ξ). A positive Borel measure on D will be denoted by μ. Let further

H(D) denote the space of holomorphic functions in the unit disk. Moreover

�I = {z = reiϕ : 1− |I| < r < 1, ξ = eiϕ ∈ I}
is a usual classical Carleson box (see [7]) in D where I is an arc on T. Let

also Lp,q(T), 0 < p < ∞, 0 < q < ∞ be the classical Lorentz space on T (for

definition see [1]) and

Hq,∞(T) = H(D) ∩ Lq,∞(T).

By Γσ(ξ) we mean the Lusin cone (see [3])

Γσ(ξ) = {z ∈ D : |1− ξz| < σ(1− |z|)}, σ > 1, ξ ∈ T.

Let

�z = {z′
= r

′
eiθ

′
: |θ − θ

′ | < 1− r,
1− r

2
< 1− r

′
< 2(1− r)}, z = reiθ.

For a fixed a ∈ D, we let ϕa be a Möbius transformation on D interchanging

zero and a (that is, ϕa(z) = a−z
1−az ). The Bergman distance in the unit disk

which is Möbius invariant is defined by

d(z, w) =
1

2
log

(
1 + |ϕw(z)|
1− |ϕw(z)|

)
, z, w ∈ D.

Given a fixed t > 0 and a ∈ D, the Bergman disk of radius t and center a is

defined to be (see [11]):

D(a, t) = {w ∈ D : d(w, a) < t}.
It is well known that the Bergman disk D(a, t) is a Euclidean disk with center

ã = 1−r2

1−|a|2r2 a and the radius R = 1−|a|2
1−|a|2r2 r where r = e2t−1

e2t+1 ; (see [11]). Note

that

mα(D(a, t)) � (1 − |a|)2+α
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and dmα(z) = (1 − |z|)αdm2(z) for α > −1 (for details, see [11]). We also

mention that for a ∈ D and z ∈ D(a, t) we have

|1− az| � (1 − |z|) � (1− |a|).
It is well known that for every δ > 0, there exists a distinct sequence {zj} in

D called a δ-lattice, such that d(zj , zk) > δ/5 if j �= k, and

∪jD(zj , δ) = D;
∑
j

χD(zj,5δ)(z) ≤ L, z ∈ D,

where L is a constant, χE(z) is the characteristic function of a set E (see [11]).

2. Main Results

We now provide some new embedding theorems for p-Carleson measures in

the unit disk. In all our results, μ is a positive Borel measure on D, and f is

an analytic function in D.

Theorem 1. Let q > 1, α > −1, and f be an analytic function in D. Then

the following conditions are equivalent.

(a)∥∥∥∥∥
∫
Γσ(ξ)

|f(z)|
1− |z|dμ(z)

∥∥∥∥∥
Lq,∞(T )

≤ C

∥∥∥∥∥
∫
Γσ(ξ)

|f(z)|(1− |z|)α−1dm2(z)

∥∥∥∥∥
Lq,∞(T )

.

(b) μ(D(z, t)) ≤ C(1 − |z|)α+2, t > 0, z ∈ D.

(c) μ(�I) ≤ C|I|α+2.

Proof. We first show that (a) is equivalent to (b). For this purpose we use the

following two important known facts from [2] and [5] (page 234):

(2.1) A(μ) = sup
I⊂T

1

|I|s
∫
�I

dμ(z)

1− |z| ≤ C sup
I⊂T

1

|I|s
∫
I

∫
Γσ(ξ)

dμ(z)

(1 − |z|)2 = B(μ)

where s ∈ (0,∞) and

(2.2) A(μ) � B(μ) for s ∈ (0, 1),

(2.3)
(
‖f‖rLq,∞(T )

)
= sup

I⊂T

1

|I|1−r/q

∫
I

|f(ξ)|rdm(ξ), 0 < r < q.

As it was shown in [6]

(2.4)
1

(1− zξ)1/q
∈ Hq,∞(T), ξ ∈ T,

and we also have (see [11])

(2.5)∫
Γσ(ξ)

|f(z)dμ(z)
1− |z| ≤ sup

z∈D

(
μ(D(z, t))

(1− |z|)α+2

)(∫
Γσ(ξ)

|f(z)|(1− |z|)α−1dm2(z)

)
.
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Combining the relations (2.1) to (2.5) provided above, we obtain the desired

result. Indeed, one part follows directly from (2.5). For the other part we note

that our estimate in Theorem 1 by (2.2) and (2.3) is equivalent to

sup
I⊂T

1

|I|1−1/q

∫
�I

|f(z)|dμ(z) ≤

C sup
I⊂T

1

|I|1−1/q

∫
I

∫
Γσ(ξ)

|f(z)|(1− |z|)α−1dm2(z).

Let

f(z) =
(1− |w|)β

(1− zw)β+α+1+1/q
, z ∈ D,

where β is a big enough positive number. Then the left side is bigger that

μ(�I)/|I|α+2 if w is a center of �I, here �I is fixed and the right side is

bounded from above by some constant; here we can use the fact that

|1− wz| � (1− |w|) � |I|, z ∈ �I, w ∈ D,

where w is a center of Carleson box, and

(1− |w|)−β ≤ C|1− wz|−β, β > 0.

Other implications are well known; see [9, 10, 11]. �

We list two assertions concerning the actions of Lusin area integral again, but

we do not provide complete proofs for them, since the main idea we have in

this proofs coincides with the ideas mentioned in the proof of Theorem 1. We

have the following two statements.

Theorem 2. Let β > 0, q > 1, t > β + 1, and f be an analytic function in D.

Then ∥∥∥∥∥
∫
Γα(ξ)

(1− |z|)t|f(z)|dμ(z)
1− |z|

∥∥∥∥∥
Lq,∞(T)

≤ C sup
|z|<1

|f(z)|(1− |z|β)

if and only if∥∥∥∥∥
∫
Γα(ξ)

(1− |z|)t−1

(∫
D(z,τ)

dμ(w)

)
(1− |z|)−β

(1 − |z|)2
∥∥∥∥∥
Lq,∞(T)

≤ C.

Theorem 3. Let 1/p = 1/q + 1/r, q, r, p > 1, β > 0, t > −1. Then for each

f ∈ H(D) and each positive Borel measure μ on D we have

sup
I⊂T

1

|I|1−1/p

∫
�I

(1− |z|)t|f(z)|dμ(z) ≤

C sup
I⊂T

1

|I|1−1/q

∫
I

sup
z∈Γσ(ξ)

|f(z)|(1− |z|)βdm(ξ)

if and only if

sup
I⊂T

(∫
�I

(1− |z|)tdμ(z)
)

1

|I|β+1−1/r
< ∞.
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We now provide the complete sketch of proofs for this last statements.

Proof of Theorem 2. The idea of the proof is similar to the ideas discussed

in the proof of Theorem 1. One part of the theorem follows immediately from

[11]:

∫
Γα(ξ)

(1− |z|)t−1|f(z)|dμ(z)

≤ C

∫
Γα(ξ)

|f(z)|(1− |z|)t−1

(∫
D(z,τ)

dμ(w)

)
dmα(z)

(1− |z|)α+2
,

for α > β − 1, t > β + 1.

To show the reverse implication, we need to use the estimates (2.1)-(2.4), the

test function f(z) = 1
(1−wz)β

for a large enough number β, and a fixed complex

number w in the unit disk D. To be more precise, we use (2) to show that the

required estimate is equivalent to

1

|I|1−1/q

∫
�I

|f(z)|(1− |z|)tdμ(z) ≤ C sup
|z|<1

|f(z)|(1− |z|)β ,

and also the facts that (see [11]):

C1

(1− |a|)α+2

∫
D(a,r+s)

dμ(z)

≤ 1

(1− |a|)α+2

∫
D(a,r)

(1− w)−α−2

∫
D(w,t)

dμ(z)dmα(w)

≤ C

(1 − |a|)α+2

∫
D(a,r+t)

dμ(z), t > s, r > 0.

This implies that the condition in the theorem is equivalent to the fact that

our measure is a τ -Carleson measure for some τ > 0. The rest of proof is

routine. �
We now give a sketch for the proof of Theorem 3. First we verify the necessity

of the condition

sup
I⊂T

1

|I|1−1/p

∫
�I

(1− |z|)t|f(z)|dμ(z) ≤

C sup
I⊂T

1

|I|1−1/q

∫
I

sup
z∈Γσ(ξ)

|f(z)|(1− |z|)βdm(ξ).

Since (1−z)−1/q ∈ Hq,∞ (see [5]) we can put f(z) = 1
(1−z)β+1/q . The right side

is bounded. As for the left hand side of the estimate above, we can estimate it

from below. Indeed, we have to verify that the following estimate is true. We
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have

sup
I⊂T

1

|I|1−1/p

∫
�I

(1− |z|)tdμ(z)
|1− wz|β+1/q

≥

C sup
I⊂T

(∫
�I

(1− |z|)tdμ(z)
) |I|−β

|I|1−1/r

where w is a center of �I, and 1/p = 1/q+1/r, q, r, p > 1, β > 0, t > −1. This

is true, since if w is a center of �I, then

|1− wz| � (1− |w|) � |I|, z ∈ �I, w ∈ D.

Hence we obtain

(1− |w|)−β ≤ C|1− wz|−β, β > 0.

To show the reverse, we have to modify the proof of Theorems 1,2 and use the

estimates (2.1)-(2.5). We have

(2.6)

∫
Γσ(ξ)

(1− |z|)t|f(z)|dμ(z)
1− |z| ≤ C

(
sup

z∈Γσ(ξ)

|f(z)|(1− |z|)β
)
×

×
∫
Γσ(ξ)

(1− |z|)t
(1− |z|)α+2

(∫
D(z,r)

dμ(w)

)
dmα−β(z)

1− |z| , β > 0, t > 0.

Then we use (see [5])

‖f1f2‖Lp,∞(T) ≤ C‖f1‖Lq,∞(T)‖f2‖Lr,∞(T),
1

p
=

1

q
+

1

r
, q, r, p > 1.

Using (2.2) in (2.6) we will have the estimate

sup
I⊂T

1

|I|1−1/p

∫
�I

(1− |z|)t|f(z)|dμ(z) ≤

C sup
I⊂T

1

|I|1−1/q

∫
I

sup
z∈Γσ(ξ)

|f(z)|(1− |z|)βdm(ξ)×

sup
I⊂T

1

|I|1−1/r

∫
I

∫
Γσ(ξ)

(1− |z|)t
(1− |z|)α+2

(∫
D(z,r)

dμ(w)

)
dmα−β(z)

1− |z| = G(f)M(μ).

It can be easily shown that

M(μ) ≤ C sup
I⊂T

1

|I|1−1/r

∫
�I

(1 − |z|)t−α−2

(∫
D(z,r)

dμ(w)

)
dmα−β(z)

≤ C sup
z̃∈D

1

(1− |z̃|)1−1/r

∫
D(z̃,r1)

(1− |z|)t−α−2

(∫
D(z,r)

dμ(w)

)
dmα−β(z).
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Put 1− 1/r = α+ 2, then it follows that α = −1− 1/r. Therefore

M(μ) ≤ C sup
z̃∈D

1

(1 − |z̃|)α+2

∫
D(z̃,r1)

1

(1− |z|)α+2

×
(∫

D(z,r)

(1− |z̃|)t−βdμ(z̃)

)
dmα(z)

≤ C sup

(∫
D(z,r1+r)

(1 − |z̃|)tdμ(z̃1)
)

1

(1− |z̃1|)α+2+β
= M1(μ).

Theorem 4. Let 0 < p < q, α > 0, and f be an analytic function in D. Then

sup
I⊂T

1

|I|1−p/q

∫
I

∫
Γσ(ξ)

|f(z)|pdμ(z)
(1− |z|) ≤ C

(∫
D

|f(z)|q(1− |z|)αq−1dm2(z)

)1/q

if and only if

sup
I⊂T

1

|I|
∫
�I

(
μ(Δz)

(1− |z|)αp+1

) q
q−p dm2(z)

1− |z| ≤ C.

Ideas for the proof of this theorem are the same as those used in the proof of

Theorem 2, so that we omit the details.

We remark that the conditions on measures appeared in the formulations of

Theorems 2 and 3 can be reformulated in terms of some conditions on D(z, t),

as we have done in Theorem 1.

Remark. Some results of this paper can be generalized to higher dimensions

by using the so called diagonal map technique (see [8]). We note in addition

that the estimates obtained here are not sharp.
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