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ABSTRACT. The aim of this research work is to define and characterize a
new class of n-ary multialgebra that may be called canonical (m,n)—

hypermodules. These are a generalization of canonical n-ary hypergroups,
that is a generalization of hypermodules in the sense of canonical and a
subclasses of (m, n)—ary hypermodules. In addition, three isomorphism
theorems of module theory and canonical hypermodule theory are derived

in the context of canonical (m, n)-hypermodules.
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1. INTRODUCTION

Doérnte introduced n-ary groups in 1928 [15], which is a natural generaliza-
tion of groups. The notion of n—hypergroups was first introduced by Davvaz
and Vougiouklis as a generalization of n—ary groups [11], and studied mainly by
Davvaz, Dudek and Vougiouklis [13] and many other authors [13, 21, 22]. Gen-
eralization of algebraic hyperstructures (see [14, 18, 24]) especially of n—ary
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hyperstructures is a natural way for further development and deeper under-
standing of their fundamental properties.

Krasner has studied the notion of a hyperring in [19]. Hyperrings are es-
sentially rings, with approximately modified axioms in which addition is a
hyperoperation (i.e., a + b is a set). Then this concept has been studied by
a number of authors. The principal notions of hyperstructure and hyperring
theory can be cited in [6, 7, 10, 12, 25, 26].

(m, n)-rings were studied by Crombez [8], Crombez and Timm [9] and Dudek
[16]. Recently, the notation for (m, n)-hyperrings using was defined by Mirvakili
and Davvaz and they obtained (m,n)-rings from (m,n)-hyperrings using fun-
damental relations [23]. Also, they defined a certain class of (m,n)-hyperrings
called Krasner (m,n)-hyperrings. Krasner (m,n)-hyperrings are a generaliza-
tion of (m,n)-rings and a generalization of Krasner hyperrings [23].

Recently, the reseearch of (m,n)-ary hypermodules over (m,n)-ary hyper-
rings has been initiated by Anvariyeh, Mirvakili and Davvaz who introduced
these hyperstructures in [4]. In addition, in [5], Anvariyeh and Davvaz defined
a strongly compatible relation on a (m,n)—ary hypermodule and determined
a sufficient condition such that the strongly compatible relation is transitive.

In this paper, we consider a new class of m-ary multialgebra and we defined
a certain class of (m,n)—ary hypermodules called canonical (m,n)—ary hyper-
modules. Canonical (m,n)—ary hypermodules can be considered as a natural
generalization of hypermodules with canonical hypergroups and also a gener-
alization of (m,n)—ary:modules. In addition, several properties of canonical
(m,n)—hypermodules are presented.

Finally, we adopt the concept of normal (m,n)—ary canonical subhyper-
modules and we prove the isomorphism theorems for canonical (m,n)—ary
hypermodules.

2. PRELIMINARIES AND BASIC DEFINITION

Let H be a non-empty set and h be a mapping h : H x H — p*(H),
where p*(H) is the set of all non-empty subsets of H. Then h is called a binary
hyperoperation on H. We denote by H™ the cartesian product H X ... x H,
which appears n times and an element of H™ will be denoted by (z1,...,zy),
where z; € H for any ¢ with 1 < ¢ < n. In general, a mapping h : H" — ©*(H)
is called an n—ary hyperoperation and n is called the arity of hyperoperation.

Let h be an n—ary hyperoperation on H and A, ..., A, subsets of H. We
define

h(Ar,. . An) = i@, zn)las € Aiyi =1, n}.
We shall use the following abbreviated notations: the sequence z;, ziy1, ..., T;
will be denoted by xf Also, for every a € H, we write h(a,...,a) = h((z)) and
——

n
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for j < 1, mf is the empty set. In this convention for j < i, xf is the empty set
and also

h(l‘l,...,.Ti,yH_l,...,yj,l‘j+1,...,$n)
will be written as h(z?, yzjﬂ, ).

A non-empty set H with an n—ary hyperoperation h : H* — P*(H) will
be called an n—ary hypergroupoid and will be denoted by (H,h). An n—ary
hypergroupoid (H,h) is commutative if for all o € S,, and for every a} € H,
we have h(al) = h(azg?)))

. . (i=1) " (n—i)

An element e € H is called scalar neutral element, if v = h(" e ",z," e ')
for every 1 < i <n and for every z € H.

An n—ary hypergroupoid (H,h) will be an n—ary semihypergroup .if and
only if the following associative axiom holds:

B (), w2) = (el G 9,

J > n4j
for every i,j € {1,2,...,n} and z1,22,...,Z24-1 € H.
An n—ary semihypergroup (H, h), in which the equation b € h(ai™!, 2;, ap,,)
has the solution z; € H for every ay,...,a;=1,@t15-..,0,,0 € H and 1 < i <

n, is called n— ary hypergroup.
If H is an n—ary groupoid and ¢ = [(n—1)+1, then the t—ary hyperoperation
given by

I(n—1)+1 n — I(n—1)+1
By @) = B SRR ) ), a0 ) o),

will be denoted by h(;).
According to [17], an n-ary polygroup is an n-ary hypergroup (P, f) such
that the following axioms hold for all 1 <i,5 <n and z,2} € P:

(i—1) (n—1)
1. There exists a unique element 0 € P such that x = f( 0 ,z, 0 ),

2. There exists a unitary operation — on P such that x € f(a7) implies
that z; € f(—l‘i_l, 3 T e P, —.732‘4_1).

It is clear that every 2-ary polygroup is a polygroup. Every m-ary group
with a scalar neutral element is an n-ary polygroup. Also, Leoreanu-Fotea in
[20] defined a canonical n-ary hypergroup. A canonical n-ary hypergroup is a
commutative n-ary polygroup.

An element 0 of an n-ary semihypergroup (H, g) is called zero element if for
every x4 € H we have

g(O,xS) = g(.’EQ,O,.’Eg) == g(.’Eg,O) =0.

(n—1)
If 0 and 0" are two zero elements, then 0 = g(0’, 0 ) =0 and so zero element

is unique.
A Krasner hyperring [19] is an algebraic structure (R, +,-) which satisfies
the following axioms:

(1) (R,+) is a canonical hypergroup, i.e.,
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i) for every z,y,2 € R, z+ (y + 2) = (z + y) + 2,
ii) forevery z,y € R, x +y =y + x,
iii) there exists 0 € R such that 0+ z = x for all z € R,
iv) for every & € R there exists a unique element 2’ € R such that
0€x+a;
(We shall write —z for ' and we call it the opposite of x.)
v) z€x+yimpliesy € —z+zand x € z — y;
(2) Relating to the multiplication, (R,-) is a semigroup having zero as a
bilaterally absorbing element.
(3) The multiplication is distributive with respect to the hyperoperation

+.
Definition 2.1. [23]. A Krasner (m,n)-hyperring is an-algebraic hyperstruc-
ture (R, f, g) which satisfies the following axioms:
(1) (R, f) is a canonical m-ary hypergroups,
(2) (R,g) is a n-ary semigroup,
(3) the n—ary operation g is distributive with respect to the m—ary hy-
peroperation f, i.e., for every azl_l,aﬁrl,:c’f”” cR, 1<i<n,
g(aiilv f(l'{n), aszrl) = f(g(aiila Iy, azn+1)v - vg(aiilv Lm,, a?Jrl))v
(4) 0 be a zero element (absorbing element) of n—ary operation g, i.e., for
every 25! € R, we have
9(0,23) = g(x2,0,25) = ... = g(z3,0) = 0.

ExXAMPLE 1. Let (R, +, ") be a ring and G be a normal subgroup of (R,-), i.e.,
for every x € RyaG /= Gz. Set R = {Z|x € R}, where Z = zG and define
m-ary hyperoperation f and n-ary multiplication g as follows:

{ f(.fl,...,i'm) :{2|2gf1+...+i‘m}’
g(i'la"'vfin) = T1T2...Tnp.

It can be verified obviously that (R, f, g) is a Krasner (m,n)-hyperring.

EXAMPLE 2..If (L, A, V) is a relatively complemented distributive lattice and
if f and g are defined as:

flar,a2) ={ce€ LlaiNec=axANc=a1 Nag, a1,az € L},

glay,...,an) =V ja;, VYay € L.
Then it follows that (L, f,g) is a Krasner (2, n)-hyperring.
Definition 2.2. A non-empty set M = (M, h, k) is an (m,n)—ary hypermod-

ule over an (m,n)—ary hyperring (R, f,g), if (M, h) is an m—ary hypergroup
and there exists the map

E:Rx...x RxM — p*(M)
—_——

n—1
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such that
(1) k(7 11, h(at)) = h(k(ry™ L), R0y 1,xm)), - B
( ) k‘(’l“i ,f(81 )’ z+1’ )_h(k‘(ri »S1, T i+1 ,x),...,k(ri »Sms T z+1 ’x))’
(3) k(™ g(ry ") 2 a) = k(T KGR ),
(4) k(ri™ 0,7"2111, z) =0,

where 7;,5; € R and x,x; € M.

3. CANONICAL (m,n)—ARY HYPERMODULES

A canonical (m, n)—ary hypermodule (namely canonical (m, n)<hypermodule)
is an (m, n)—ary hypermodule with a canonical m—ary hypergroup (M, h) over
a Krasner (m,n)-hyperring (R, f,g).

In the following in this paper, an (m,n)—ary hypermodule is a canonical
(m,n)—ary hypermodule.

ExXAMPLE 3. Let M be a module over ring (R, +, ) and G be a normal subgroup
of (R,-), then by Example 1, (R, f, g) is a Krasner (m, n)-hyperring. Now, we
define on M an equivalence relation ~ defined as follows:

T~y <= z=1ty, tcqG.
Let M = {Z|x € M} be the set of the equivalence classes of M modulo ~. We
define hyperoperation h and k as follows:
hMZ1,. .. &) = {0|® C Ty + ...+ Ty}, where 27" € M
kE(F1,...,Fno1,%) =TiT3- .- Tn_1T, Where r{“l € Rand z € M.
It is not difficult to verify that (M, h, k) is a canonical (m,n)—hypermodule
over a Krasner (m;n)-hyperring (R, f, g).

ExAaMPLE 4. Let (H, f,g) be a Krasner (m,n)-hyperring in Example 1, and
set M = H, h = f and k = g, then (M, h, k) is a canonical (m, n)-hypermodule
over the Krasner (myn)-hyperring (H, f, g). In general, If R is a Krasner (m, n)-
hyperring, then (R, f,g) is a canonical (m,n)-hypermodule over the Krasner
(m,n)-hyperring R.

Lemma 3.1. Let (M, h, k) be a canonical (m,n)-hypermodule over an (m,n)—ary
hyperring (R, f, g), then

(1) For every x € M, we have —(—z) = 2 and —0 = 0.

(m=2)
(2) For everyx € M,0¢€ h(zx,—x, 0 ).
(3) Foreveryal', —h(z1,...,2m) = h(—21,...,—Tm), where —A={—ala €

A}.
(4) For every 7{“1 € R, we have k(r{~',0) = 0.
) (m—2)
Proof. (1) = h(z, ), hence we have 0 € h(—z,z, 0 ) and this means

e h(—(- )f )>=—<—x>.
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(m—1) (m—1)
(2) 2 =h(x, 0 ) implies that 0 € h(z,—z, 0

(m—-1)

0 h(l‘l, —T1, 0 )
9 5 (2m—5)
C hey(ay, —(1), 0 )

(m—2)
C h(h(ap), h(— (7)), "0 ).
Thus, we obtain
B(— () € h(=h(a), "0 ") = —h(a})

and
(m—1)

h(7") € h(=h(=(27"), 0 ) =—h(=(z1")).

So —h(z") € —(—h(~(a]"))) = h(—(z]")). Hence
—h(z1,...,Tm) = h(—21,...,—Tm).
(4) We have

(n—=1)
o h0) = k(K 0 50))

(n—1)
(T?iz? g(rn—la 0 )? 0)

k
k(r?72,0,0)
0

O

Let N be a non-empty subset of canonical (m,n)-hypermodule (M, h, k). If
(N, h,k) is a canonical (m,n)-hypermodule, then N called a subhypermodule

of M. Tt is easily to see that N is a subhypermodule of M if and only if

(1) N is a subhypergroup of the canonical m-ary hypergroup (M, h), i.e.,

(N, h) is a canonical m-ary hypergroup.
(2) For every r}"' € Rand z € M, k(r7~*, ) C N.

Lemma 3.2. A non-empty subset N of a canonical (m,n)-hypermodule is a

subhypermodule if
(1) 0e N.
(2) For everyx € N, —z € N.
(3) For every a* € N, h(al*) C N.
(4) For every r? ' € R, and x € N, k(r}',2) C N.

Proof. 1t is straightforward.

Lemma 3.3. Let M be a canonical (m,n)—hypermodule. Then

(1) If N1,..., Ny, are subhypermodules of M, then h(N7") is a subhyper-

module of M.
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(2) If {Ni}icr are subhypermodules of M, then ﬂ N; is a subhypermodule
iel
of M.
(3) If N is a subhypermodule of M and a3* € N, then h(N,a5") = N.

Proof. (1) Let N = h(Nj"). Then for every a* € N we have a; = h(z!7"),
where z;; € Nj and 1 < 4,5 < m. Hence

h(a?) = h(h(xi?), ..., h(z™7)), h is commutative and associative,
= h(h(z7Y), ..., h(z7¥™)), N; is a subhypermodule,

C h(N1,...,Np).
Let a € N, then there exists z; € N; , 1 <4 < m such that @ = h(z}"). Hence
(m)

we obtain —a = —h(z}") = h(—(z7")) € h(N{*) =/N. Also, 0.= h(0) €
h(N7*) = N. Therefore (N, h) is a canonical m-ary hypergroup.

Now, let 7"?71 € R, then

k(ry ™t h(e)) = h(k(rT ™Y a1), . kg em)) - S R(NT?)

Therefore (N, h, k) is a subhypermodule of M.

(2) It is clear.

(3) Since N is a subhypermodule, then for every a5* € N, we have h(N, aJ") C
N. Also, we obtain

(m—1) (m—3
N=h(N, 0 )€

Therefore N = h(N, ad"). O

Definition 3.4. A subhypermodule NV of M is called normal if and only if for
every x € M,
(m—3)
h(—z,N,z, 0 )< N.
If N is a normal subhypermodule of a canonical (m,n)-hypermodule M,
then
(m—1) (m—=2) (m—2) (m—3)

N=h(N, 0 )Ch(Nh(—z,2z, 0 ), 0 )=h(—z,N,z, 0 )CN.
(m=3)
Thus for every x € M, h(—z, N,z, 0 )= N.
(m—2) (m—3) (m—3)
If s€ h(N,z, 0 ),then h(N,s, 0 )Ch(N,h(N,z, 0 )
(m=3)

=h(N,z, 0 ).
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(m=2) . (m=2) (m=2)
Also, s € h(N,z, 0 ) implies that » € h(—N,s, 0 ) = h(N,s, 0 )
(m—2) (m—2)
and so we obtain h(N, z, mO ) C h(N, s, mO ). Therefore we have
(m—2) (m—2) (m—2)
s€h(N,z, 0 )= h(N,z, 0 )=h(N,s, 0 ).

Lemma 3.5. Let N be a normal subhypermodule of a canonical (m,n)-
(m=2)
hypermodule M. Then for every s; € h(N,z;, 0 ), i = 2,...,m, we have

h(N,z5") = h(N, s§").
Proof. We have

(m—2)
0

(m—2)
h(N,s5) Ch(N,h(N,z2, 0 )y..., h(N, X, )

(m) ((m=2)(m=1)+1)
= h(N,zh?).
(m—2) (m—2) (m—2)
Also, we have h(N,x;, 0 )=h(N,s;, 0 )andsox; € h(N,s;, 0 ). The
similar way implies h(N, z35") C h(N, s3*). O

EXAMPLE 5. (Construction). Let (M,+,-) be a canonical R—hypermodule
over a Krasner hyperring R. Let f-be an m-ary hyperoperation and g be an
n-ary operation on R as follows:

i=1

n
g(zt) = Hmi, vzl € R.
i=1
Then it follows that (R, f, g) is a Krasner (m,n)-hyperring. Let h be an m-ary
hyperoperation and k£ be an n-ary scalar hyperoperation on M as follows:

h(z?") = Zwi, Vo' € M,

i=1

n—1
k(ri,...,rn_1,2) = (H r;) - T
i=1

Since + and - are well-defined and associative so h and k are well-defined and
associative. If 0 is a zero element of (M, +,-), then 0 is a zero element of
(M, h,k). Now, let 1 < j <m and x,27" € M. Then

x € h(z])
=Y" x, + iscommutative
=21+ ... +Tj—1+Tjp1+ ...+ T + T
=X+4z, X=21+...+2j_1+Tjp1+...+Tp.
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Thus z € z + x; such that z € X and hence z; € —z +z, But —2 € - X =
—(z1+...+xj1 +zj11+ ...+ xp). Therefore

zj € (—zj—)+ ...+ (—z)+z+ (—2m) + ...+ (—zjp1) =

h—zj_1,...,—21,2, —Tm, ..., —Tjq1).
This implies that (M, h) is a canonical m—ary hypergroup.
Since M is an R-hypermodule, it is not difficult to see that the properties of
M as an R-hypermodule, guarantee that the canonical m—hypergroup (M, h, k)
is a canonical (m,n)-hypermodule.

Definition 3.6. The canonical (m,n)-hypermodule (Mjyh,k) derived from
canonical hypermodule (M, +, o) in Example 5, denote by
(Ma ha k) = der(m,n) (Ma +, )

Theorem 3.7. Every canonical (m, n)-hypermodule M extended by a canonical
(2,n)-hypermodule.

Proof. We define the hyperoperation + as follows:

(m—2)
r+y=nh(r,y, 0 ), Vr,y € R.

It is clear that + is commutative and associative. Also, 0 is a scalar neutral
(m=2)
and a zero element of (M, +;k). Now, let € y + z then = € h(z,y, 0 ).
(m=2)
This implies that y € h(—xy;y, 0 ) = —x +y and so (M, +) is a canonical

hypergroup. It is‘easy to see that n—ary operation k is distributive with respect
to the hyperoperation +. Therefore (M, +, k) is a canonical (2, n)-hypermodule.
|

4. RELATIONS ON A CANONICAL (m,n)-HYPERMODULES

In this section, we introduce two relations on a canonical (m,n)-
hypermodule M. In addition, three isomorphism theorems of module the-
ory and canonical hypermodule theory are derived in the context of canonical
(m,n)-hypermodules by these relations. In order to see the relations on the
hypermodules, one can see [1, 2, 3]. Also, the concepts of normal (m,n)-ary
canonical subhypermodules are defined.

Suppose that N is a normal subhypermodule of M.

(1) The relation N* on M is defined as follows:

(m=2)
x N* yif and only if h(z,—y, 0 )NN#Q, Vx,ye M.
(2) Also, the relation N, on M may be defined as follows:
x N, yif and only if there exist 5" € M, such that z,y € h(N,z3"), Va,y € M.
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Lemma 4.1. The relation N* is an equivalence relation on a canonical (m,n)-
hypermodule M .

(m=2)
Proof. Since 0 € h(z,—x, 0 )NN, then the relation N* is reflexive. If zN*y,

(m=2)
then there exists an element a € N such that a € h(z,—y, 0 ). Therefore,
(m=2) (m=2)
we have —a € —h(z, —y, mO ) = h(—z,y, mO ) and commutativity of (M, h)
(m—2)
implies that —a € h(y, —=, mO )N N. So yN*z and the relation N* is sym-

metric. Now, suppose that zN*y and yN*z. Then there exist a;b € N such

(m—2) (m—2) (m—2)
that a« € h(z,—y, 0 )and b€ h(y,—z, 0 ). Thus z € h(a,y, 0 ) and

(m=-2)
—z € h(—y,b, 0 ).But, N is a normal subhypermodule of IV and we obtain:

(m—2) (m—2) (m—2) ~(m=2)

h(z,—2z, 0 ) Ch(h(a,y, 0 ),h(=y,b, 07), 0)
(m—2) (m—3)
= h(yv h(a7 ba 0 )7 -y, 0 )
(m—3)
g h(yv Na —-Y, 0 )
C N.
Therefore N*z and the relation N* is transitive. O

Let N*[x] be the equivalence class of the element x € M, then

Lemma 4.2. If N is a_normal subhypermodule of a canonical (m,n)-hypermodule
M, then

Proof. wehave

N*[z] ={ye M | yN*z}

(m—2)
={y € M | 3a € N such that a € h(y,—z, 0 )}
(m=2)
={y € M | Ja € N such that y € h(a,z, 0 ")}
(m—2)
=h(N,z, 0 ).

O

Lemma 4.3. Let N be a normal subhypermodule of a canonical (m,n)-hypermodule
M. Then for all o> € M, we have h(N,a%*) = N*[z] for all x € h(N,a}").

(m=2)
Proof. By Lemma 4.2, we prove that h(N,a3') = h(N,z, 0 ), for all z €
h(N,a3").


www.SID.ir

Canonical (m, n)—ary hypermodules over Krasner (m,n)—ary hyperrings 27

Let = € h(N, al"), so

(m—2) m—2)

(
h(N,z, 0 ) Ch(N,h(N,ad"), 0 )

(m—2)
=h(h(N,N, 0 ),a3")

h
h(N,a3").

Also, z € h(N,z, 0 ) C h(N,h(N,ad"), 0 ) implies that h(N,a3?) €

(m—2) (m—2) (m—2)
h(=N,z, 0 )=h(N,z, 0 ). Therefore, we obtain h(IN;a8*) = h(N,z, 0

). O

Corollary 4.4. Let N be a normal subhypermodule of‘a canonical (m,n)-
hypermodule M and h(N,al*) N (N, b5") # 0,/ then h(N,al*) = h(N,b5").

Proof. Let x € h(N,a3") N h(N,b5"), then Lemma 4.3, implies h(N,a}") =
N*[z] = h(N,b3") O

Corollary 4.5. Let N be a.normal subhypermodule. Then N* = N, and the
relation N, is an equivalence relation.

Proof. Let N,[x] be the equivalence class of the element x € M. Then

Nzl ={ye M | zN.y}
={ye M| Jad € M,x,y € h(N,ay")}.

(m=2)
Since x € h(N,a3"), thus by Lemma 4.3, N*[z] = h(N,z, mO ) = h(N,al")

and we obtain N,[z] = {y € M | y € N*[z]} = N*[z]. Therefore N* = N,. O

Lemma 4.6. Let N be a normal subhypermodule of a canonical (m,n)-hypermodule
(M, h, k), then for all a7* € M, we have N*[h(a]")] = N*[a] for all a € h(a}").

Proof. Suppose that a € h(al"), then N*[a] C N*[h(a]")].
(m—2) (m—2)
On the other hand, let a € N*[h(a]*)] = h(N,h(a]*), 0 )= h(h(N,a"1),. 0
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_qy (m=2)
am,). Thus ay, € h(—h(N,a]"""), 0 ,a)and so
m—1 (m=2)
h(a") € h(a ™ (h(=N, =(a"™1)), 0 ,a))
(m—=3) m—1 m—1 .
= h)(h(ai,N,—ay, 0 ),a3" ", —(a3'""),0,a), N is normal,
C hey(N,a5" ", —(a51),0,a)
(m73) m—1 m—1 () :
= hz)(h(az’ ,—az, 0 ),a3' ",—(a3'""), 0,a), N is normal,
- h 2)(Naa ( _1),0,(1)
(m—3) (2m—2)
:h(2(h(am7N7 —Qm, 0 )7 0 7a)
(m—-2)
Ch(N, 0 ,a)
(m—2)
=h(N,a, 0 )
= N*[a].

Therefore h(af*) C N*[a] and so N*[h(al*)] € N*[a] and this completes the
proof. O

Theorem 4.7. Let N be a normal subhypermodule of a canonical (m,n)-
hypermodule (M, h, k). Then
(1) For all 27" € M, we have N*[h(N*[z1],..., N*[xm])] =
h(N*[z1],. .., N [Tm]).
(2) For all r=L € R and x € M, we have N*[N*[k(r}~ ", z)]] =
N*[k(ri74e)):

Proof. (1) The proof easily follows from Lemma 4.6.
(2) We have N*[k(r?~ !, z)] € N*[N*[k(r}~',2)]]. Now, let
a € NAN*k@ 1 2)]). Then there exists b € N*[k(r]™ 1, x)] such that a €
N*[b]. So aN*b and ODN*k(r]™ ", z) Wthh implies that aN*k(r? !, 2). Hence
a € N*[k(r7~t )] and N*[N*[k(r} !, 2)]] € N*[k(r7t, 2)] O

By definition of a canonical (m, n)-hypermodule and Theorem 4.7, we have:

Theorem 4.8. (Construction). Let N be a normal subhypermodule of a canon-
ical (m,n)-hypermodule (M, h, k). Then the set of all equivalence classes [M :
N] = {N*[z] | ® € M} is a canonical (m,n)-hypermodule with the m-ary
hyperoperation h/N and the scalar n-ary operation k/N, defined as follows:

h/N(N*[z1],..., N [xm]) = {N*[2] | z € h(N*[z1],..., N [xm])}, Vo' € M,

k/N(r?il,N*[x]) = N*[k:(r?*l,N*[m})], v 7“?71 ER, xe M.
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EXAMPLE 6. Suppose R :={0,1,2,3} and define a 2-ary hyperoperation + on
R as follows:

+]o 1 2 3
ojlo 1 2 3
111 {0,1} 3 {2,3}
212 3 0 1
313 {2,3} 1 {0,1}.

It follows that (R, +) is a canonical 2-ary hypergroup. If g is an n-ary operation
on R such that
2 if ab €{2,3}
ny _ 1 ’ ’
9(@1) = { 0 else.

Then, we have (R, +, g) is a Krasner (2,n)—hyperring.

Now, set M = R, ® = + and k = g, then it can be verified (M, ®, k) is a
canonical (2,n)—hypermodule over Krasner (2, n)-hyperring (R, +, g).

Let N := {0,1}, then N is a normal subhypermodule of M. Also, it is not
difficult to see that N*[0] = {0,1} and N*[2] ={2,3} and so

®/N | N*[0] ~N*[2]

N*[0] 'NF[o] NT[2]

N:[2] | N*[2] N*[0]

and

N*[2], aif 7t 2 € {2,3),
N*[k/N(ry TN [])] =
N*[0], else.
Then it is easily to see that ([M : N|,&/N) =2 (Za, +).
Let (Mi,hy, k1) and (Ma, ha, ks) be two canonical (m,n)-hypermodules, a

mapping ¢ : My — Ms is called an R—homomorphism (or homomorphism), if
for all 77~ € R and z7*,2 € M we have:

p(hi(@r,.sem)) = ha(p(@1), - o(@m))

(ki (ri ™ 2)) = ka (177 (2))
A homomorphism ¢ is an isomorphism if ¢ is injective and onto and we
write My = M, if M; is isomorphic to Ms.
Lemma 4.9. Let ¢ : M7 — Ms be a homomorphism, then

(1) @(0ar,) = Oary -
(2) Forallx e M, p(—x) = —p(x).
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(3) Let kero = {x € My | o(x) = O, }, then ¢ is injective if and only if
ker p = {Oar, }-
Proof. 1t is straightforward. O

Lemma 4.10. Let N{"* be subhypermodules of a canonical (m,n)-hypermodule
M and there exists 1 < j < m such that N; be a normal subhypermodule. Then

m

(1) ﬂ N; is a normal subhypermodule of Ny, where 1 < k < m.
i=1

(2) N;j is a normal subhypermodule of h(N{™).

Proof. 1t is straightforward. O
The First Isomorphism Theorem comes next.

Theorem 4.11. (First Isomorphism Theorem). Let ¢ be_a homomorphism
from the canonical (m,n)-hypermodule (M, hy, k1) into the canonical (m,n)-
hypermodule (Ma, ha, ko) such that K = ker ¢is a normal subhypermodule of
My, then [M;y : K*| = Imep.

Proof. We define p : [My : K*] — Imyp by p(K*[z]). = p(x). First, we prove
that p is well-define. Suppose that K*[z] = K*[y]. Then

(m—2) (m—2)
K*[lL']ZK*[y} <:>h1(K,£L', 01\/11 ):h1(K,y, 0]\41 )
(m—2) (m—2)
< @(h (K, 2, 06y)) = ¢(hi (K, y, On, )
(m—2) (m—2)
< ha(@(K), p(2), ¢(0a1,)) = h2(e(K), ©(y), ©(0n1,))
(m—2) (m—2)

< h2(0M2a90(x)a O, ): h2(0M2?90(y)a Ons, )

< ¢(z) = »(y)-
Therefore'p is well-define.
Let K*[x1]y. .., K*[xm] € [M; : K*]. Then

p({K*[2] | 2 € hy (K™ [21], ..., K [zm])})

ol /K (K, . .., K* (o)
= DK™ 2] | 2 € hy(ha (K, @1, Onp. )y s by (K s a1
= p({K*[2] | = € P (K, ha (a7, O D)
= {0(2) | = € K* [y e}
= (K [ (@)

L (m—2)
= @(h1(K, h1(27"), Ony )

(m—2)
= ha(@(K), ¢(h1(z7")), ¢(0nry))

(m—2)
= h2(0nry, h2(e(z1)s - - e(xm)), Onry )

= ha(p(z1),- .., e(zm))

= ha(p(®1), -+, p(zm))-
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Also, let 7'~' € R and K*[x] € [M; : K*]. Then

plha/K (i~ K [2])) = p(K* (ka (7", K7 [a])))
= {o(kr(r7 ™", )| € K*[a])}
= ka(r! ™ w)|o € (K*[2]))
= ka(r7 ™, p(K*[2])).

Therefore p is an R—homomorphism.

Also, we have p(O(ar,.x+)) = (K™ [0ar,]) = ©(0nr,) = O

Let y € Imy, so there exists © € M; such that y = ¢(x) = p(K*[z]). Thus
p is onto.

Now, we show that p is an injective homomorphism. We have

kerp = {K*[z] € [M1: K*] | p(K*[z]) = O, }
= {K"[a] € [My: K7] | ¢(7) = Ons, }
= K*(ker ), Since K =ker ¢,

(m—-2)

=h (K, K, O )

DK Mgy, Re1-

Therefore p is an isomorphism and so [M7 : K*] 2 Imep. O

Theorem 4.12. (Second Isomorphism Theorem). If NJ* are subhypermodules
of a canonical (m,mw)—hypermodule (M, h,k) and there exists 1 < j < m such
that-IN; be a normal subhypermodule of M. Let for every r{“l €Randy e M,
we have N [E(r ) = k:(r?_l,N;‘(y)}. Then

[h(N{,0,NT%,) « (R(N{,0, NI ) N N;)*] 22 [h(N]") = N7,

where N[t are subhypermodules of M.

Proof. By Lemma 4.10, N; is a normal subhypermodule of h(N{") and so
[h(N7") : N7] is defined. Define p : h(N{,0,NI",) — [A(N{") : Ni] by p(z) =
N7[z]. Since N* is an equivalence relation then p is well-defined. It is not
difficult to see that p is an R—homomorphism. Consider N7 [y] € [R(N{") : N/],
y € h(N{"). Thus, there exists a € Ni, 1 < k < m such that y € h(a]")., By
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Lemma 4.6, we have
Nilyl = Nj[h(a1")]

L me2)
:h(Njah(al )? 0 )

(m=2)

:h(a{_l’h(Nj’aj’ 0 )va;rfi-l)
= h(a] ', Ny, alliy)

(m—2)

= h(Nj, h(a™',0,a,), 0
= N;[h(ajll_lﬁo’aﬁ-l)}

= i[z], @eh(a]™',0,a7,) C A(N{THO, N,

=p(x), z¢€ h(Nf_l,O,Nﬁ_l).
Therefore p is onto. Now, we prove that ker p/= h(Nf,O, Ni) N N;.
z€kerp & p(z)=N;
= Nf[x] =N;

(m—=2)

<:>h(Nj,l‘, 0 ):Nj

& x € Ny h(N{,0,N™)).

Now, we have [M : (ker p)*] = Imp and so

[R(NT 0, NF D (W, 0, K1) OV N))™] 22 [R(NT) : N,

O

Theorem 4.13. (Third Isomorphism Theorem). If A and B are normal sub-
hypermodules of a canonical (m,n)-hypermodule M such that A C B, then

[B: A*] is a mormal subhypermodule of canonical (m,n)-hypermodule [M : A*]
and [[M+ A*).: [B: A*]] = [M : B*].

Proof. First, we show that [B : A*] is a normal subhypermodule of canonical
(m,n)-hypermodule [M : A*]. Since 0 € B then Ojpp.a-) = A*[0] € [B :
A*| If A*xq], ..., Az € [B : A*], then A*[x4],..., A*[x;m] € B and since
B is a subhypermodule of M, we obtain h(A*[x1],...,A*[xn]) € B. Thus
h/N(A*[x1],..., A*[zn]) € [B : A*]. If A*[z] € [B : A*] then A*[z] C B and
so —A*[x] € —B = B. We leave it to reader to verify that for every r7~! € R
and A*[z] € [B: A*], k/N(r7~', A*[z]) € [B : A*]. Now, Lemma 3.2 implies
that [B : A*] is a subhypermodule of M.

Also, let A*[y] € [M : A*] and A*[z] € [B : A*], so A*[y] C M and A*[x] C

(m=3)

B. Since B is a normal subhypermodule, then h(—y,z,y, 0 ) C B._This
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implies that

(m—3) (m—3)

h(=A"[yl, A%[z], A%[y], A*[0]) = A*[h(=y, 2y, 0 )] €[B:A"].

Therefore [B : A*] is a normal subhypermodule of canonical (m, n)-hypermodule
[M : A*].

Now, p: [M : A*] — [M : B*] defined by p(A*[z]) = B*[z] is an R—
homomorphism and onto with kernel ker p = [B : A*]. O
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