Iranian Journal of Mathematical Sciences and Informatics Vol. 7, No. 2 (2012), pp 17-34

Canonical (m, n)−**Ary Hypermodules over Krasner** (m, n)−**Ary Hyperrings**

S. M. Anvariyeh^{$a,*$} and S. Mirvakili^b

^aDepartment of Mathematics, Yazd University, Yazd, Iran, b Department of Mathematics, Payame Noor Universtiy, P.O. BOX 19395-3697, Tehran, Iran.

> E-mail: anvariyeh@yazduni.ac.ir E-mail: saeed mirvakili@pnu.ac.ir

Hyperrings

S. M. Anvariyeh^{*n*,*} and S. Mirvakili^{*b*}

"Department of Mathematics, Yazd University, Yazd, Iran,

^bDepartment of Mathematics, Payame Noor University, P.O. BOX

19395-3697, Tehran, Iran.
 E-mail: an ABSTRACT. The aim of this research work is to define and characterize a new class of n-ary multialgebra that may be called canonical (m, n) − hypermodules. These are a generalization of canonical n-ary hypergroups, that is a generalization of hypermodules in the sense of canonical and a subclasses of (m, n) −ary hypermodules. In addition, three isomorphism theorems of module theory and canonical hypermodule theory are derived in the context of canonical (m, n) -hypermodules.

Keywords: Canonical m-ary hypergroup, Krasner (m, n)-hyperring, (m, n)−ary hypermodules.

2000 Mathematics subject classification: 16Y99, 20N20.

1. INTRODUCTION

Dörnte introduced *n*-ary groups in 1928 [15], which is a natural generalization of groups. The notion of n−hypergroups was first introduced by Davvaz and Vougiouklis as a generalization of n−ary groups [11], and studied mainly by Davvaz, Dudek and Vougiouklis [13] and many other authors [13, 21, 22]. Generalization of algebraic hyperstructures (see [14, 18, 24]) especially of n -ary

[∗]Corresponding Author

-c 2012 Academic Center for Education, Culture and Research TMU

Received 17 January 2011; Accepted 14 February 2012

hyperstructures is a natural way for further development and deeper understanding of their fundamental properties.

Krasner has studied the notion of a hyperring in [19]. Hyperrings are essentially rings, with approximately modified axioms in which addition is a hyperoperation (i.e., $a + b$ is a set). Then this concept has been studied by a number of authors. The principal notions of hyperstructure and hyperring theory can be cited in [6, 7, 10, 12, 25, 26].

 (m, n) -rings were studied by Crombez [8], Crombez and Timm [9] and Dudek [16]. Recently, the notation for (m, n) -hyperrings using was defined by Mirvakili and Davvaz and they obtained (m, n) -rings from (m, n) -hyperrings using fundamental relations [23]. Also, they defined a certain class of (m, n) -hyperrings called Krasner (m, n) -hyperrings. Krasner (m, n) -hyperrings are a generalization of (m, n) -rings and a generalization of Krasner hyperrings [23].

Recently, the reseearch of (m, n) -ary hypermodules over (m, n) -ary hyperrings has been initiated by Anvariyeh, Mirvakili and Davvaz who introduced these hyperstructures in [4]. In addition, in [5], Anvariyeh and Davvaz defined a strongly compatible relation on a (m, n) –ary hypermodule and determined a sufficient condition such that the strongly compatible relation is transitive.

(*B*₁). Thus were ottatae of contact of the neutral is quark that in pure the particular (*B*₁). Recently, the notation for (m, n) -hyperrings using was defined by Mirvakil and Davvaz and they obtained (m, n) -hyperring In this paper, we consider a new class of n -ary multialgebra and we defined a certain class of (m, n) −ary hypermodules called canonical (m, n) −ary hypermodules. Canonical (m, n) −ary hypermodules can be considered as a natural generalization of hypermodules with canonical hypergroups and also a generalization of (m, n) −ary modules. In addition, several properties of canonical (m, n)−hypermodules are presented.

Finally, we adopt the concept of normal (m, n) –ary canonical subhypermodules and we prove the isomorphism theorems for canonical (m, n) -ary hypermodules.

2. Preliminaries and basic definition

Let H be a non-empty set and h be a mapping $h : H \times H \longrightarrow \varphi^*(H)$, where $\varphi^*(H)$ is the set of all non-empty subsets of H. Then h is called a binary hyperoperation on H. We denote by H^n the cartesian product $H \times \ldots \times H$, which appears *n* times and an element of H^n will be denoted by (x_1, \ldots, x_n) , where $x_i \in H$ for any i with $1 \leq i \leq n$. In general, a mapping $h : H^n \longrightarrow \varphi^*(H)$ is called an n -ary hyperoperation and n is called the arity of hyperoperation.

Let h be an n−ary hyperoperation on H and A_1, \ldots, A_n subsets of H. We define

$$
h(A_1, ..., A_n) = \bigcup \{ h(x_1, ..., x_n) | x_i \in A_i, i = 1, ..., n \}.
$$

We shall use the following abbreviated notations: the sequence $x_i, x_{i+1}, \ldots, x_j$ will be denoted by x_i^j . Also, for every $a \in H$, we write $h(a, \ldots, a)$ \sum_{n} $b = h\binom{n}{a}$ and

for $j < i$, x_i^j is the empty set. In this convention for $j < i$, x_i^j is the empty set and also

$$
h(x_1,\ldots,x_i,y_{i+1},\ldots,y_j,x_{j+1},\ldots,x_n)
$$

will be written as $h(x_1^i, y_{i+1}^j, x_{j+1}^n)$.

A non-empty set H with an n-ary hyperoperation $h : H^n \longrightarrow P^*(H)$ will be called an n–ary hypergroupoid and will be denoted by (H, h) . An n–ary hypergroupoid (H, h) is commutative if for all $\sigma \in \mathbb{S}_n$ and for every $a_1^n \in H$, we have $h(a_1^n) = h(a_{\sigma(1)}^{\sigma(n)})$.

An element $e \in H$ is called *scalar neutral element*, if $x = h(\binom{i-1}{e}, x, \binom{n-i}{e})$ for every $1 \leq i \leq n$ and for every $x \in H$.

An n–ary hypergroupoid (H, h) will be an n–ary semihypergroup if and only if the following associative axiom holds:

$$
h(x_1^{i-1}, h(x_i^{n+i-1}), x_{n+i}^{2n-1})) = h(x_1^{j-1}, h(x_j^{n+j-1}), x_{n+j}^{2n-1})),
$$

for every $i, j \in \{1, 2, ..., n\}$ and $x_1, x_2, ..., x_{2n-1} \in H$.

An n -ary semihypergroup (H, h) , in which the equation $b \in h(a_1^{i-1}, x_i, a_{i+1}^n)$ has the solution $x_i \in H$ for every $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n, b \in H$ and $1 \leq i \leq$ n , is called $n-$ ary hypergroup.

If H is an n-ary groupoid and $t = l(n-1)+1$, then the t-ary hyperoperation given by

$$
h_{(l)}(x_1^{l(n-1)+1}) = h(h(\ldots, h(h(x_1^n), x_{n+1}^{2n-1}), \ldots), x_{(l-1)(n-1)+2}^{l(n-1)+1}),
$$

will be denoted by $h_{(l)}$.

According to [17], an *n*-ary polygroup is an *n*-ary hypergroup (P, f) such that the following axioms hold for all $1 \leq i, j \leq n$ and $x, x_1^n \in P$:

- 1. There exists a unique element $0 \in P$ such that $x = f(\begin{pmatrix} i-1 \\ 0 \end{pmatrix}, x, \begin{pmatrix} n-i \\ 0 \end{pmatrix})$,
- 2. There exists a unitary operation on P such that $x \in f(x_1^n)$ implies that $x_i \in f(-x_{i-1}, \ldots, -x_1, x, -x_n, \ldots, -x_{i+1}).$

we have $h(a_i^a) = h(a_{\sigma(i)}^a)$.

An element $e \in H$ is called scalar neutral element, if $x = h^{(i-1)}(e^x)$, $x_i^{(n-i)}$

for every $1 \le i \le n$ and for every $x \in H$.

An $n = \arg$ hypergroupoid (H, h) will be an $n = \arg$ semiflypergroup It is clear that every 2-ary polygroup is a polygroup. Every n -ary group with a scalar neutral element is an n -ary polygroup. Also, Leoreanu-Fotea in [20] defined a canonical n-ary hypergroup. A *canonical* n*-ary hypergroup* is a commutative n-ary polygroup.

An element 0 of an n-ary semihypergroup (H, g) is called *zero element* if for every $x_2^n \in H$ we have

$$
g(0, x_2^n) = g(x_2, 0, x_3^n) = \ldots = g(x_2^n, 0) = 0.
$$

If 0 and 0' are two zero elements, then $0 = g(0', {n-1 \choose 0} = 0'$ and so zero element is unique.

A *Krasner hyperring* [19] is an algebraic structure $(R, +, \cdot)$ which satisfies the following axioms:

(1) $(R, +)$ is a *canonical hypergroup*, i.e.,

- i) for every $x, y, z \in R$, $x + (y + z) = (x + y) + z$,
- ii) for every $x, y \in R$, $x + y = y + x$,
- iii) there exists $0 \in R$ such that $0 + x = x$ for all $x \in R$.
- iv) for every $x \in R$ there exists a unique element $x' \in R$ such that $0 \in x + x';$
	- (We shall write $-x$ for x' and we call it the opposite of x .)
	- v) $z \in x + y$ implies $y \in -x + z$ and $x \in z y$;
- (2) Relating to the multiplication, (R, \cdot) is a semigroup having zero as a bilaterally absorbing element.
- (3) The multiplication is distributive with respect to the hyperoperation $+$.

Definition 2.1. [23]. A Krasner (m, n) -hyperring is an algebraic hyperstructure (R, f, g) which satisfies the following axioms:

- (1) (R, f) is a canonical *m*-ary hypergroups,
- (2) (R, g) is a *n*-ary semigroup,
- (3) the n–ary operation g is distributive with respect to the m–ary hyperoperation f, i.e., for every $a_1^{i-1}, a_{i+1}^n, x_1^m \in R$, $1 \le i \le n$,

$$
g(a_1^{i-1}, f(x_1^m), a_{i+1}^n) = f(g(a_1^{i-1}, x_1, a_{i+1}^n), \dots, g(a_1^{i-1}, x_m, a_{i+1}^n)),
$$

(4) 0 be a zero element (absorbing element) of n –ary operation g, i.e., for every $x_2^{n-1} \in R$, we have

$$
g(0, x_2^n) = g(x_2, 0, x_3^n) = \ldots = g(x_2^n, 0) = 0.
$$

C increase of example of the mapped interaction is distributive with respect to the hyperoperation +
 Definition 2.1. [23]. A Krasner (m, n) -hyperring is an algebraic hyperstructure (R, f, g) which satisfies the follow EXAMPLE 1. Let $(R, +, \cdot)$ be a ring and G be a normal subgroup of (R, \cdot) , i.e., for every $x \in R$, $xG = Gx$. Set $\overline{R} = {\overline{x}} | x \in R$, where $\overline{x} = xG$ and define m-ary hyperoperation f and n-ary multiplication g as follows:

$$
\begin{cases}\nJ(\bar{x}_1,\ldots,\bar{x}_m) &= \{\bar{z}|\bar{z} \subseteq \bar{x}_1 + \ldots + \bar{x}_m\}, \\
g(\bar{x}_1,\ldots,\bar{x}_n) &= \bar{x}_1\bar{x}_2\ldots\bar{x}_n.\n\end{cases}
$$

It can be verified obviously that (\bar{R}, f, g) is a Krasner (m, n) -hyperring.

EXAMPLE 2. If (L, \wedge, \vee) is a relatively complemented distributive lattice and if f and q are defined as:

$$
\begin{cases}\nf(a_1, a_2) = \{c \in L | a_1 \wedge c = a_2 \wedge c = a_1 \wedge a_2, a_1, a_2 \in L\}, \\
g(a_1, \dots, a_n) = \vee_{i=1}^n a_i, \ \forall a_1^n \in L.\n\end{cases}
$$

Then it follows that (L, f, g) is a Krasner $(2, n)$ -hyperring.

Definition 2.2. A non-empty set $M = (M, h, k)$ is an (m, n) –ary hypermodule over an (m, n) −ary hyperring (R, f, g) , if (M, h) is an m −ary hypergroup and there exists the map

$$
k: \underbrace{R \times \ldots \times R}_{n-1} \times M \longrightarrow \wp^*(M)
$$

www.SID.ir

such that

(1)
$$
k(r_1^{n-1}, h(x_1^m)) = h(k(r_1^{n-1}, x_1), \dots, k(r_1^{n-1}, x_m)),
$$

\n(2) $k(r_1^{i-1}, f(s_1^m), r_{i+1}^{n-1}, x) = h(k(r_1^{i-1}, s_1, r_{i+1}^{n-1}, x), \dots, k(r_1^{i-1}, s_m, r_{i+1}^{n-1}, x)),$
\n(3) $k(r_1^{i-1}, g(r_i^{i+n-1}), r_{i+m}^{n+m-2}, x) = k(r_1^{n-1}, k(r_m^{n+m-2}, x)),$
\n(4) $k(r_1^{i-1}, 0, r_{i+1}^{n-1}, x) = 0,$

where $r_i, s_i \in R$ and $x, x_i \in M$.

3. CANONICAL (m, n) −ARY HYPERMODULES

A canonical (m, n) −ary hypermodule (namely canonical (m, n) −hypermodule) is an (m, n) −ary hypermodule with a canonical $m-$ ary hypergroup (M, h) over a Krasner (m, n) -hyperring (R, f, q) .

In the following in this paper, an (m, n) −ary hypermodule is a canonical (m, n) −ary hypermodule.

EXAMPLE 3. Let M be a module over ring $(R, +, \cdot)$ and G be a normal subgroup of (R, \cdot) , then by Example 1, (R, f, g) is a Krasner (m, n) -hyperring. Now, we define on M an equivalence relation \sim defined as follows:

$$
x \sim y \iff x = ty, \ t \in G.
$$

Let $\overline{M} = {\overline{x}} | x \in M$ be the set of the equivalence classes of M modulo ∼. We define hyperoperation h and k as follows:

$$
h(\bar{x}_1,\ldots,\bar{x}_m) = \{\bar{w}|\bar{w}\subseteq \bar{x}_1+\ldots+\bar{x}_m\}, \text{ where } x_1^m \in M
$$

\n
$$
k(\bar{r}_1,\ldots,\bar{r}_{n-1},\bar{x}) = \overline{r_1r_2\ldots r_{n-1}x}, \text{ where } r_1^{n-1} \in R \text{ and } x \in M.
$$

It is not difficult to verify that (M, h, k) is a canonical (m, n) -hypermodule over a Krasner (m, n) -hyperring (R, f, g) .

3. CANONICAL (m, n) —ARY HYPERMODULES
 A canonical (m, n) —ary hypermodule (namely canonical (m, n) —hypermodule

is an (m, n) —ary hypermodule with a canonical m —ary hypergroup (M, h) ove
 A Krasner (m, n) -hypermig $(R,$ EXAMPLE 4. Let (H, f, g) be a Krasner (m, n) -hyperring in Example 1, and set $M = H$, $h = f$ and $k = g$, then (M, h, k) is a canonical (m, n) -hypermodule over the Krasner (m, n) -hyperring (H, f, q) . In general, If R is a Krasner (m, n) hyperring, then (R, f, g) is a canonical (m, n) -hypermodule over the Krasner (m, n) -hyperring R.

Lemma 3.1. *Let* (M, h, k) *be a canonical* (m, n) *-hypermodule over an* (m, n) *-ary hyperring* (R, f, g), *then*

- (1) *For every* $x \in M$, *we have* $-(-x) = x$ *and* $-0 = 0$ *.*
- (2) *For every* $x \in M$, $0 \in h(x, -x, \begin{pmatrix} (m-2) \\ 0 \end{pmatrix})$.
- (3) *For every* $x_1^m, -h(x_1,...,x_m) = h(-x_1,..., -x_m)$ *, where* $-A = \{-a \mid a \in A\}$ A}*.*
- (4) *For every* $r_1^{n-1} \in R$, *we have* $k(r_1^{n-1}, 0) = 0$.

<www.SID.ir> Proof. (1) $x = h(x, {m-1 \choose 0})$, hence we have $0 \in h(-x, x, {m-2 \choose 0})$ and this means $x \in h(-(-x), \binom{(m-1)}{0} = -(-x).$

(2) $x = h(x, {m-1 \choose 0})$ implies that $0 \in h(x, -x, {m-1 \choose 0})$. (3) We have

$$
0 \in h(x_1, -x_1, \stackrel{(m-1)}{0})
$$

\n
$$
\subseteq h_{(2)}(x_1^2, -(x_1^2), \stackrel{(2m-5)}{0})
$$

\n...
\n
$$
\subseteq h(h(x_1^m), h(-(x_1^m)), \stackrel{(m-2)}{0}).
$$

Thus, we obtain

$$
h(-(x_1^m)) \subseteq h(-h(x_1^m), \overset{(m-1)}{0}) = -h(x_1^m)
$$

and

$$
h(x_1^m) \subseteq h(-h(-(x_1^m), \overset{(m-1)}{0}) = -h(-(x_1^m)).
$$

So $-h(x_1^m) \subseteq -(-h(-(x_1^m))) = h(-(x_1^m))$. Hence
 $-h(x_1, \ldots, x_m) = h(-x_1, \ldots, -x_m)$.

(4) We have

Thus, we obtain
\n
$$
h(-(x_1^m)) \subseteq h(-h(x_1^m), \binom{m-1}{0}) = -h(x_1^m)
$$
\nand
\n
$$
h(x_1^m) \subseteq h(-h(-(x_1^m), \binom{m-1}{0}) = -h(-x_1^m).
$$
\nSo $-h(x_1^m) \subseteq -(-h(-(x_1^m))) = h(-(x_1^m))$. Hence
\n $-h(x_1, \ldots, x_m) = h(-x_1, \ldots, -x_m).$
\n(4) We have
\n
$$
k(r_1^{n-1}, 0) = k(r_1^{n-1}, k(\binom{n-1}{0}, 0))
$$
\n
$$
= k(r_1^{n-2}, g(r_{n-1}, \binom{n-1}{0}), 0)
$$
\n
$$
= k(r_1^{n-2}, 0, 0)
$$
\n
$$
= 0.
$$
\nLet N be a non-empty subset of canonical (m, n) -hypermodule (M, h, k) . I
\n(N, h, k) is a canonical (m, n) -hypermodule, then N called a subhypermodul
\nof M. It is easily to see that N is a subhypermodule of M if and only if
\n(1) N is a subhypergroup of the canonical m-ary hypergroup (M, h) , i.e.
\n(N, h) is a canonical m-ary hypergroup.
\n(2) For every $r_1^{n-1} \in R$ and $x \in M$, $k(r_1^{n-1}, x) \subseteq N$.
\nLemma 3.2. A non-empty subset N of a canonical (m, n) -hypermodule is
\nsubhypermodule if
\n(1) $0 \in N$

Let N be a non-empty subset of canonical (m, n) -hypermodule (M, h, k) . If (N, h, k) is a canonical (m, n) -hypermodule, then N called a *subhypermodule* of M . It is easily to see that N is a subhypermodule of M if and only if

- (1) N is a subhypergroup of the canonical m-ary hypergroup (M,h) , i.e., (N, h) is a canonical *m*-ary hypergroup.
- (2) For every $r_1^{n-1} \in R$ and $x \in M$, $k(r_1^{n-1}, x) \subseteq N$.

Lemma 3.2. *A non-empty subset* N *of a canonical (m,n)-hypermodule is a subhypermodule if*

- (1) $0 \in N$.
- (2) *For every* $x \in N$, $-x \in N$.
- (3) For every $a_1^m \in N$, $h(a_1^m) \subseteq N$.
- (4) *For every* $r_1^{n-1} \in R$, and $x \in N$, $k(r_1^{n-1}, x) \subseteq N$.

Proof. It is straightforward.

Lemma 3.3. *Let* M *be a canonical* (m, n)−*hypermodule. Then*

<www.SID.ir> (1) If N_1, \ldots, N_m are subhypermodules of M, then $h(N_1^m)$ is a subhyper*module of* M*.*

 \Box

 \Box

- (2) *If* $\{N_i\}_{i\in I}$ *are subhypermodules of* M *, then* $\bigcap N_i$ *is a subhypermodule* i∈I *of* M.
- (3) If N is a subhypermodule of M and $a_2^m \in N$, then $h(N, a_2^m) = N$.

Proof. (1) Let $N = h(N_1^m)$. Then for every $a_1^m \in N$ we have $a_i = h(x_{i1}^{im})$, where $x_{ij} \in N_j$ and $1 \leq i, j \leq m$. Hence

 $h(a_1^m) = h(h(x_{11}^{1m}), \ldots, h(x_{m1}^{mm}))$, h is commutative and associative, $= h(h(x_{11}^{m1}),...,h(x_{1m}^{mm}))$, N_i is a subhypermodule, $\subset h(N_1,\ldots,N_m).$

Let $a \in N$, then there exists $x_i \in N_i$, $1 \leq i \leq m$ such that $a = h(x_1^m)$. Hence we obtain $-a = -h(x_1^m) = h(-(x_1^m)) \in h(N_1^m) = N$. Also, $0 = h\binom{m}{0} \in$ $h(N_1^m) = N$. Therefore (N, h) is a canonical m-ary hypergroup.

Now, let $r_1^{n-1} \in R$, then

$$
k(r_1^{n-1}, h(x_1^m)) = h(k(r_1^{n-1}, x_1), \dots, k(r_1^{n-1}, x_m)) \subseteq h(N_1^m)
$$

Therefore (N, h, k) is a subhypermodule of M.

(2) It is clear.

(3) Since N is a subhypermodule, then for every $a_2^m \in N$, we have $h(N, a_2^m) \subseteq$ N. Also, we obtain

$$
= h(h(x_{11}^{m1}),...,h(x_{1m}^{nm})), N_i
$$
 is a subhypermodule,
\n
$$
F(X_1,...,N_m).
$$

\nLet $a \in N$, then there exists $x_i \in N_i$, $1 \le i \le m$ such that $a = h(x_1^m)$. Hence
\nwe obtain $-a = -h(x_1^m) = h(-(x_1^m)) \in h(N_1^m) = N$. Also, $0 = h(0) \in$
\n $h(N_1^m) = N$. Therefore (N, h) is a canonical *m*-ary hypergroup.
\nNow, let $r_1^{n-1} \in R$, then
\n $k(r_1^{n-1}, h(x_1^m)) = h(k(r_1^{n-1}, x_1),...,k(r_1^{n-1}, x_m)) \subseteq h(N_1^m)$
\nTherefore (N, h, k) is a subhypermodule of *M*.
\n(2) It is clear.
\n(3) Since *N* is a subhypermodule, then for every $a_2^m \in N$, we have $h(N, a_2^m) \subseteq$
\n*N*. Also, we obtain
\n
$$
N = h(N, \binom{m-1}{0} \in h(N, h(a_2^m, 0), -h(a_2^m, 0), \binom{m-3}{0}
$$

\n
$$
= h(N, h(a_2^m, 0), h(-a_2^m), 0), \binom{m-3}{0}
$$

\n
$$
= h(N, a_2^m).
$$

\nTherefore $N = h(N, a_2^m)$.
\nTherefore $N = h(N, a_2^m)$.
\n
$$
h(-x, N, x, \binom{m-3}{0}) \subseteq N
$$
.
\nIf *N* is a normal subhypermodule of a canonical (m, n) -hypermodule *M*

Therefore $N = h(N, a_2^m)$. $\binom{m}{2}$.

Definition 3.4. A subhypermodule N of M is called *normal* if and only if for every $x \in M$,

$$
h(-x, N, x, \stackrel{(m-3)}{0}) \subseteq N.
$$

If N is a normal subhypermodule of a canonical (m, n) -hypermodule M, then

$$
N = h(N, \overset{(m-1)}{0}) \subseteq h(N, h(-x, x, \overset{(m-2)}{0}), \overset{(m-2)}{0}) = h(-x, N, x, \overset{(m-3)}{0}) \subseteq N.
$$
\n
$$
\tag{m-3}
$$

Thus for every $x \in M$, $h(-x, N, x, \binom{(m-3)}{0} = N$. $(m-2)$ $(m-3)$

If
$$
s \in h(N, x, \stackrel{(m-3)}{0})
$$
, then $h(N, s, \stackrel{(m-3)}{0}) \subseteq h(N, h(N, x, \stackrel{(m-3)}{0})$
= $h(N, x, \stackrel{(m-3)}{0})$.

<www.SID.ir>

 $(m-3)$

Also, $s \in h(N, x, \binom{(m-2)}{0})$ implies that $r \in h(-N, s, \binom{(m-2)}{0}) = h(N, s, \binom{(m-2)}{0})$ and so we obtain $h(N, x, \binom{(m-2)}{0}) \subseteq h(N, s, \binom{(m-2)}{0})$. Therefore we have

$$
s \in h(N, x, {m-2 \choose 0}) \Longrightarrow h(N, x, {m-2 \choose 0}) = h(N, s, {m-2 \choose 0}).
$$

Lemma 3.5. Let N be a normal subhypermodule of a canonical (m, n) *hypermodule* M. Then for every $s_i \in h(N, x_i, \begin{pmatrix} (m-2) \\ 0 \end{pmatrix})$, $i = 2, \ldots, m$, we have $h(N, x_2^m) = h(N, s_2^m).$

Proof. We have

$$
h(N, x_2^m) = h(N, s_2^m).
$$

\nProof. We have
\n
$$
h(N, s_2^m) \subseteq h(N, h(N, x_2, \stackrel{(m-2)}{0}), \dots, h(N, x_m, \stackrel{(m-2)}{0}))
$$
\n
$$
\subseteq h(h(N), x_2^m, h_{(m-2)}(\stackrel{(m-2)(m-1)+1)}{0}))
$$
\n
$$
= h(N, x_2^m).
$$

\nAlso, we have $h(N, x_i, \stackrel{(n-2)}{0}) = h(N, s_i, \stackrel{(m-2)}{0})$ and so $x_i \in h(N, s_i, \stackrel{(m-2)}{0}).$ The similar way implies $h(N, x_2^m) \subseteq h(N, s_2^m)$.
\nEXAMPLE 5. (Construction). Let $(M, +, \cdot)$ be a canonical R-hypermodul over a Krasner hyperring R. Let f be an *m*-**axy** hyperoperation and g be an *n*-**ary** operation on R as follows:
\n
$$
f(x_4^m) = \sum_{i=1}^m x_i, \forall x_1^m \in R,
$$
\nThen it follows that (R, f, g) is a Krasner (m, n) -hyperring. Let h be an *m*-**ar** hyperoperation and k be an *n*-**ary** scalar hyperoperation on M as follows:
\n
$$
h(x_1^m) = \sum_{i=1}^m x_i, \forall x_1^m \in M,
$$
\n
$$
k(r_1, \dots, r_{n-1}, x) = (\prod_{i=1}^{n-1} r_i) \cdot x.
$$

Also, we have $h(N, x_i, \binom{m-2}{0}) = h(N, s_i, \binom{m-2}{0})$ and so $x_i \in h(N, s_i, \binom{m-2}{0})$. The similar way implies $h(N, x_2^m) \subseteq h(N, s_2^m)$ $\binom{m}{2}$.

EXAMPLE 5. (Construction). Let $(M, +, \cdot)$ be a canonical R-hypermodule over a Krasner hyperring R. Let f be an m -ary hyperoperation and g be an n -ary operation on R as follows:

$$
f(x_1^m) = \sum_{i=1}^m x_i, \quad \forall x_1^m \in R,
$$

$$
g(x_1^n) = \prod_{i=1}^n x_i, \quad \forall x_1^n \in R.
$$

Then it follows that (R, f, g) is a Krasner (m, n) -hyperring. Let h be an m-ary hyperoperation and k be an *n*-ary scalar hyperoperation on M as follows:

$$
h(x_1^m) = \sum_{i=1}^m x_i, \quad \forall x_1^m \in M,
$$

$$
k(r_1, \dots, r_{n-1}, x) = (\prod_{i=1}^{n-1} r_i) \cdot x.
$$

Since $+$ and \cdot are well-defined and associative so h and k are well-defined and associative. If 0 is a zero element of $(M, +, \cdot)$, then 0 is a zero element of (M, h, k) . Now, let $1 \leq j \leq m$ and $x, x_1^m \in M$. Then

$$
x \in h(x_1^m)
$$

= $\sum_{i=1}^m x_i$, + is commutative
= $x_1 + ... + x_{j-1} + x_{j+1} + ... + x_m + x_j$
= $X + x_j$, $X = x_1 + ... + x_{j-1} + x_{j+1} + ... + x_m$ *www.SID.ir*

Thus $x \in z + x_j$ such that $z \in X$ and hence $x_j \in -z + x$, But $-z \in -X =$ $-(x_1 + \ldots + x_{j-1} + x_{j+1} + \ldots + x_m)$. Therefore

$$
x_j \in (-x_{j-1}) + \ldots + (-x_1) + x + (-x_m) + \ldots + (-x_{j+1}) =
$$

$$
h(-x_{j-1},\ldots,-x_1,x,-x_m,\ldots,-x_{j+1}).
$$

This implies that (M, h) is a canonical m−ary hypergroup.

Since M is an R -hypermodule, it is not difficult to see that the properties of M as an R-hypermodule, guarantee that the canonical m−hypergroup (M, h, k) is a canonical (m, n) -hypermodule.

Definition 3.6. The canonical (m, n) -hypermodule (M, h, k) derived from canonical hypermodule $(M, +, \circ)$ in Example 5, denote by $(M, h, k) = der_{(m, n)}(M, +, \cdot).$

Theorem 3.7. *Every canonical* (m, n)*-hypermodule* M *extended by a canonical* (2, n)*-hypermodule.*

Proof. We define the hyperoperation $+$ as follows:

$$
x + y = h(x, y, \frac{(m-2)}{0}), \forall x, y \in R.
$$

Since *M* is an *R*-hypermodule, it is not difficult to see that the properties of as an *R*-hypermodule, guarantee that the canonical *m*-hypergoup (M, h, k) is a canonical (m, n) -hypermodule (M, n, k) is a canonical inter It is clear that $+$ is commutative and associative. Also, 0 is a scalar neutral and a zero element of $(M, +, k)$. Now, let $x \in y + z$ then $x \in h(x, y, \begin{pmatrix} (m-2) \\ 0 \end{pmatrix})$. This implies that $y \in h(-x, y, \binom{(m-2)}{0} = -x + y$ and so $(M, +)$ is a canonical hypergroup. It is easy to see that $n-$ ary operation k is distributive with respect to the hyperoperation $+$. Therefore $(M, +, k)$ is a canonical $(2, n)$ -hypermodule. \Box

4. RELATIONS ON A CANONICAL (m, n) -HYPERMODULES

In this section, we introduce two relations on a canonical (m, n) hypermodule M . In addition, three isomorphism theorems of module theory and canonical hypermodule theory are derived in the context of canonical (m, n) -hypermodules by these relations. In order to see the relations on the hypermodules, one can see [1, 2, 3]. Also, the concepts of normal (m, n) -ary canonical subhypermodules are defined.

Suppose that N is a normal subhypermodule of M .

(1) The relation N^* on M is defined as follows:

 $x N^* y$ if and only if $h(x, -y, 0 \n\infty) \cap N \neq \emptyset, \forall x, y \in M$.

(2) Also, the relation N_* on M may be defined as follows:

<www.SID.ir> $x \, N_* \, y$ if and only if there exist $x_2^m \in M$, such that $x, y \in h(N, x_2^m)$, $\forall x, y \in M$.

Lemma 4.1. *The relation* N^* *is an equivalence relation on a canonical* (m, n) *hypermodule* M*.*

Proof. Since $0 \in h(x, -x, \binom{(m-2)}{0}) \cap N$, then the relation N^* is reflexive. If xN^*y , then there exists an element $a \in N$ such that $a \in h(x, -y, \binom{(m-2)}{0})$. Therefore, we have $-a \in -h(x, -y, \binom{(m-2)}{0}) = h(-x, y, \binom{(m-2)}{0})$ and commutativity of (M, h) implies that $-a \in h(y, -x, \binom{(m-2)}{0}) \cap N$. So yN^*x and the relation N^* is symmetric. Now, suppose that xN^*y and yN^*z . Then there exist $a,b \in N$ such that $a \in h(x, -y, \binom{(m-2)}{0})$ and $b \in h(y, -z, \binom{(m-2)}{0})$. Thus $x \in h(a, y, \binom{(m-2)}{0})$ and $-z \in h(-y, b, \binom{(m-2)}{0})$. But, N is a normal subhypermodule of N and we obtain:

implies that
$$
-a \in h(y, -x, 0) \cap N
$$
. So yN^*x and the relation N^* is symmetric. Now, suppose that xN^*y and yN^*z . Then there exist $a, b \in N$ such that $a \in h(x, -y, \binom{m-2}{0})$ and $b \in h(y, -z, \binom{m-2}{0})$. Thus $x \in h(a, y, \binom{m-2}{0})$ and $-z \in h(-y, b, \binom{m-2}{0})$. But, N is a normal subhypermodule of N and we obtain

\n
$$
h(x, -z, \binom{m-2}{0}) \subseteq h(h(a, y, \binom{m-2}{0}), h(-y, b, \binom{m-2}{0}, \binom{m-2}{0})
$$
\n $= h(y, h(a, b, \binom{m-2}{0}), -y, \binom{m-3}{0})$ \n $\subseteq N$.\nTherefore xN^*z and the relation N^* is transitive.

\nLet $N^*[x]$ be the equivalence class of the element $x \in M$, then

\nLemma 4.2. If N is a normal subhypermodule of a canonical (m, n) -hypermod M , then

\n
$$
N^*[x] = h(N, x, \binom{m-2}{0})
$$
.\nProof. we have

\n
$$
N^*[x] = \{y \in M \mid yN^*x\}
$$
\n
$$
= \{y \in M \mid \exists a \in N \text{ such that } a \in h(y, -x, \binom{m-2}{0})\}
$$
\n
$$
= \{y \in M \mid \exists a \in N \text{ such that } y \in h(a, x, \binom{m-2}{0})\}
$$

Therefore xN^*z and the relation N^* is transitive.

Let $N^*[x]$ be the equivalence class of the element $x \in M$, then

Lemma 4.2. *If* N *is a normal subhypermodule of a canonical* (m, n) *-hypermodule* M*, then*

$$
N^*[x] = h(N, x, \stackrel{(m-2)}{0}).
$$

Proof. we have

$$
N^*[x] = \{ y \in M \mid yN^*x \}
$$

= $\{ y \in M \mid \exists a \in N \text{ such that } a \in h(y, -x, \begin{pmatrix} m-2 \\ 0 \end{pmatrix}) \}$
= $\{ y \in M \mid \exists a \in N \text{ such that } y \in h(a, x, \begin{pmatrix} m-2 \\ 0 \end{pmatrix}) \}$
= $h(N, x, \begin{pmatrix} m-2 \\ 0 \end{pmatrix}).$

Lemma 4.3. Let N be a normal subhypermodule of a canonical (m, n) -hypermodule *M*. Then for all $a_2^m \in M$, we have $h(N, a_2^m) = N^*[x]$ for all $x \in h(N, a_2^m)$.

<www.SID.ir> Proof. By Lemma 4.2, we prove that $h(N, a_2^m) = h(N, x, \begin{pmatrix} (m-2) \\ 0 \end{pmatrix})$, for all $x \in$ $h(N, a_2^m)$.

 \Box

Let $x \in h(N, a_2^m)$, so

$$
h(N, x, \stackrel{(m-2)}{0}) \subseteq h(N, h(N, a_2^m), \stackrel{(m-2)}{0})
$$

$$
= h(h(N, N, \stackrel{(m-2)}{0}), a_2^m)
$$

$$
= h(N, a_2^m).
$$

Also, $x \in h(N, x, \binom{(m-2)}{0}) \subseteq h(N, h(N, a_2^m), \binom{(m-2)}{0})$ implies that $h(N, a_2^m)$
 $h(-N, x, \binom{(m-2)}{0}) = h(N, x, \binom{(m-2)}{0})$. Therefore, we obtain $h(N, a_2^m) = h(N, x, \binom{(m-2)}{0})$.

Corollary 4.4. Let *N* be a normal subhypermodule of Also, $x \in h(N, x, \binom{(m-2)}{0} \subseteq h(N, h(N, a_2^m), \binom{(m-2)}{0})$ implies that $h(N, a_2^m) \in$ $h(-N, x, \binom{(m-2)}{0}) = h(N, x, \binom{(m-2)}{0})$. Therefore, we obtain $h(N, a_2^m) = h(N, x, \binom{(m-2)}{0})$). For the contract of the contract of \Box

Corollary 4.4. Let N be a normal subhypermodule of a canonical (m, n) hypermodule M and $h(N, a_2^m) \cap h(N, b_2^m) \neq \emptyset$, then $h(N, a_2^m) = h(N, b_2^m)$.

Proof. Let $x \in h(N, a_2^m) \cap h(N, b_2^m)$, then Lemma 4.3, implies $h(N, a_2^m)$ = $N^*[x] = h(N, b_2^m)$ $\binom{m}{2}$

Corollary 4.5. Let N be a normal subhypermodule. Then $N^* = N_*$ and the relation N_* is an equivalence relation.

Proof. Let $N_*[x]$ be the equivalence class of the element $x \in M$. Then

$$
N_*[x] = \{ y \in M \mid xN_*y \}
$$

= $\{ y \in M \mid \exists a_2^m \in M, x, y \in h(N, a_2^m) \}.$

Since $x \in h(N, a_2^m)$, thus by Lemma 4.3, $N^*[x] = h(N, x, \binom{(m-2)}{0}) = h(N, a_2^m)$ and we obtain $N_*[x] = \{y \in M \mid y \in N^*[x]\} = N^*[x]$. Therefore $N^* = N_*$. \Box

Lemma 4.6. Let N be a normal subhypermodule of a canonical (m, n) -hypermodule (M, h, k) *, then for all* $a_1^m \in M$ *, we have* $N^*[h(a_1^m)] = N^*[a]$ *for all* $a \in h(a_1^m)$ *.*

On the other hand, let $a \in N^*[h(a_1^m)] = h(N, h(a_1^m), \binom{m-2}{0}) = h(h(N, a_{N-1}^{m-1}), \binom{m-2}{0}$ *Proof.* Suppose that $a \in h(a_1^m)$, then $N^*[a] \subseteq N^*[h(a_1^m)]$.

Archive of SID , a_m). Thus $a_m \in h(-h(N, a_1^{m-1}), \stackrel{(m-2)}{0}, a)$ and so $h(a_1^m) \subseteq h(a_1^{m-1}, h(h(-N, -(a_1^{m-1})), \overset{(m-2)}{0}, a))$ $= h_{(2)}(h(a_1, N, -a_1, \n^{(m-3)}), a_2^{m-1}, -(a_2^{m-1}), 0, a), N$ is normal, $\subseteq h_{(2)}(N, a_2^{m-1}, -(a_2^{m-1}), 0, a)$ $= h_{(2)}(h(a_2, N, -a_2, \stackrel{(m-3)}{0}), a_3^{m-1}, -(a_3^{m-1}), \stackrel{(3)}{0}, a), N \text{ is normal},$ $\subseteq h_{(2)}(N, a_3^{m-1}, -a_3^{m-1}), 0, a)$... $= h_{(2}(h(a_m, N, -a_m, \overset{(m-3)}{0}), \overset{(2m-2)}{0}, a)$ $\subseteq h(N, \frac{(m-2)}{0}, a)$ $= h(N, a, \binom{(m-2)}{0}$ $= N^* [a].$

Therefore $h(a_1^m) \subseteq N^*[a]$ and so $N^*[h(a_1^m)] \subseteq N^*[a]$ and this completes the proof. \Box

Theorem 4.7. Let N be a normal subhypermodule of a canonical (m, n) *hypermodule* (M, h, k)*. Then*

(1) *For all* $x_1^m \in M$, we have $N^*[h(N^*[x_1],...,N^*[x_m])]=$ $h(N^*[x_1],\ldots,N^*[x_m]).$ (2) *For all* r_1^{n-1} ∈ R *and* $x \in M$ *, we have* $N^*[N^*[k(r_1^{n-1}, x)]] =$ $N^*[k(r_1^{n-1},x)].$

Proof. (1) The proof easily follows from Lemma 4.6.

(2) We have $N^*[k(r_1^{n-1},x)] \subseteq N^*[N^*[k(r_1^{n-1},x)]]$. Now, let $a \in N^*[N^*k(r_1^{n-1},x)]]$. Then, there exists $b \in N^*[k(r_1^{n-1},x)]$ such that $a \in$ $N^*[b]$. So aN^*b and $bN^*k(r_1^{n-1},x)$ which implies that $aN^*k(r_1^{n-1},x)$. Hence $a \in N^*[k(r_1^{n-1}, x)]$ and $N^*[k(r_1^{n-1}, x)]] \subseteq N^*[k(r_1^{n-1}, x)]$

By definition of a canonical (m, n) -hypermodule and Theorem 4.7, we have:

Theorem 4.8. *(Construction). Let* N *be a normal subhypermodule of a canonical* (m, n) *-hypermodule* (M, h, k) *. Then the set of all equivalence classes* $[M:$ $N = \{N^*[x] \mid x \in M\}$ *is a canonical* (m, n) *-hypermodule with the m-ary hyperoperation* h/N *and the scalar* n*-ary operation* k/N*, defined as follows:*

$$
h/N(N^*[x_1], \dots, N^*[x_m]) = \{ N^*[z] \mid z \in h(N^*[x_1], \dots, N^*[x_m]) \}, \ \forall x_1^m \in M,
$$

$$
k/N(r_1^{n-1}, N^*[x]) = N^*[k(r_1^{n-1}, N^*[x])], \ \forall \ r_1^{n-1} \in R, \ x \in M.
$$

$$
WWW. SID.ir
$$

EXAMPLE 6. Suppose $R := \{0, 1, 2, 3\}$ and define a 2-ary hyperoperation + on R as follows:

$$
\begin{array}{c|cccc}\n+ & 0 & 1 & 2 & 3 \\
\hline\n0 & 0 & 1 & 2 & 3 \\
1 & 1 & \{0,1\} & 3 & \{2,3\} \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & \{2,3\} & 1 & \{0,1\}.\n\end{array}
$$

It follows that $(R, +)$ is a canonical 2-ary hypergroup. If g is an n-ary operation on R such that

$$
g(x_1^n) = \begin{cases} 2 & \text{if } x_1^n \in \{2, 3\}, \\ 0 & \text{else.} \end{cases}
$$

Then, we have $(R, +, g)$ is a Krasner $(2, n)$ –hyperring.

Now, set $M = R$, $\oplus = +$ and $k = g$, then it can be verified (M, \oplus, k) is a canonical $(2, n)$ −hypermodule over Krasner $(2, n)$ -hyperring $(R, \overline{+}, g)$.

Let $N := \{0, 1\}$, then N is a normal subhypermodule of M. Also, it is not difficult to see that $N^*[0] = \{0, 1\}$ and $N^*[2] = \{2, 3\}$ and so

$$
\begin{array}{c|cc}\n\oplus/N & N^*[0] & N^*[2] \\
\hline\nN^*[0] & N^*[0] & N^*[2] \\
\hline\nN^*[2] & N^*[2] & N^*[0]\n\end{array}
$$

and

$$
N^*[k/N(r_1^{n-1}, N^*[x])] = \begin{cases} N^*[2], & if r_1^{n-1}, x \in \{2, 3\}, \\ N^*[0], & else. \end{cases}
$$

Then it is easily to see that $([M : N], \oplus/N) \cong (\mathbb{Z}_2, +)$.

It ionows that $(n,+)$ is a canonical Z-ary ny
pergroup. If y is an n-ary operation
on R such that
 $g(x_1^n) = \begin{cases} 2 & \text{if } x_1^n \in \{2,3\}, \\ 0 & \text{else.} \end{cases}$
Then, we have $(R,+,g)$ is a Krasner $(2,n)$ -hyperring.
Now, set $M = R$, $\$ Let (M_1, h_1, k_1) and (M_2, h_2, k_2) be two canonical (m, n) -hypermodules, a mapping $\varphi : M_1 \to M_2$ is called an R-*homomorphism (or homomorphism)*, if for all $r_1^{n-1} \in R$ and $x_1^m, x \in M$ we have:

$$
\varphi(h_1(x_1,...,x_m)) = h_2(\varphi(x_1),..., \varphi(x_m))
$$

$$
\varphi(k_1(r_1^{n-1},x)) = k_2(r_1^{n-1}, \varphi(x))
$$

A homomorphism φ is an isomorphism if φ is injective and onto and we write $M_1 \cong M_2$ if M_1 is isomorphic to M_2 .

Lemma 4.9. *Let* $\varphi : M_1 \to M_2$ *be a homomorphism, then*

<www.SID.ir> (1) $\varphi(0_{M_1})=0_{M_2}$. (2) *For all* $x \in M$, $\varphi(-x) = -\varphi(x)$ *.*

(3) Let ker $\varphi = \{x \in M_1 \mid \varphi(x) = 0_{M_2}\},\$ then φ *is injective if and only if* $\ker \varphi = \{0_{M_1}\}.$

Proof. It is straightforward. \square

Lemma 4.10. Let N_1^m be subhypermodules of a canonical (m,n) -hypermodule M and there exists $1 \leq j \leq m$ such that N_j be a normal subhypermodule. Then

(1) $\bigcap_{i=1}^{m} N_i$ *is a normal subhypermodule of* N_k *, where* $1 \leq k \leq m$ *.* (2) N_j *is a normal subhypermodule of* $h(N_1^m)$ *.*

Proof. It is straightforward. \Box

The First Isomorphism Theorem comes next.

Theorem 4.11. *(First Isomorphism Theorem). Let* φ *be a homomorphism from the canonical* (m, n) *-hypermodule* (M_1, h_1, k_1) *into the canonical* (m, n) *hypermodule* (M_2, h_2, k_2) *such that* $K = \text{ker } \varphi$ *is a normal subhypermodule of* M_1 *, then* $[M_1: K^*] \cong Im\varphi$ *.*

Proof. We define $\rho : [M_1 : K^*] \to Im\varphi$ by $\rho(K^*[x]) = \varphi(x)$. First, we prove that ρ is well-define. Suppose that $K^*[x] = K^*[y]$. Then

(2)
$$
N_j
$$
 is a normal subhypermodule of $h(N_1^m)$.
\nProof. It is straightforward.
\nThe First Isomorphism Theorem comes next.
\n**Theorem 4.11.** *(First Isomorphism Theorem).* Let φ be a homomorphism
\nfrom the canonical (m, n)-hypermodule (M₁, h₁, k₁) into the canonical (m, n)
\nhypermodule (M₂, h₂, k₂) such that $K = \text{ker } φ$ is a normal subhypermodule o
\nM₁, then [M₁ : $K^* \geq Imφ$.
\nProof. We define ρ : [M₁ : $K^* \geq Imφ$.
\nProof. We define ρ : [M₁ : $K^* \geq Imφ$ by ρ(K^{*}[x]) = φ(x). First, we prove
\nthat ρ is well-defined. Suppose that $K^*[x] = K^*[y]$. Then
\n $K^*[x] = K^*[y] \Leftrightarrow h_1(K, x, 0_{M_1}^m) = h_1(K, y, 0_{M_1}^m)$
\n $\Leftrightarrow φ(h_1(K, x, 0_{M_1}^m)) = φ(h_1(K, y, 0_{M_1}^m))$
\n $\Leftrightarrow h_2(φ(K), φ(x), φ(x), 0_{M_2}^m) = h_2(φ(K), φ(y), φ(0_{M_1}^m))$
\n $\Leftrightarrow h_2(0_{M_2}, φ(x), 0_{M_2}^m) = h_2(0_{M_2}, φ(y), 0_{M_2}^m)$
\n $\Leftrightarrow φ(x) = φ(y).$
\nTherefore ρ is well-defined.
\nLet $K^*[x_1], ..., K^*[x_m] \in [M_1 : K^*]$. Then
\n
$$
ρ(h_1/K(K^*[x_1], ..., K^*[x_m]) = ρ((K^*[z] \mid z \in h_1(K^*[x_1], ..., K^*[x_m]))
$$

\n $= ρ((K^*[z] \mid z \in h_1(K, k_1, \pi^m, 0_{M_1}^m), ..., h_1(K, x_m, 0_{M_1}^m))))$
\n $= ρ((K^*[z] \mid$

Therefore ρ is well-define.

<www.SID.ir> Let $K^*[x_1], \ldots, K^*[x_m] \in [M_1 : K^*].$ Then $\rho(h_1/K(K^*[x_1],\ldots,K^*[x_m])) = \rho(\lbrace K^*[z] \mid z \in h_1(K^*[x_1],\ldots,K^*[x_m])\rbrace)$ $= \rho({K^*[z] \mid z \in h_1(h_1(K, x_1, \overset{(m-2)}{0M_1}), \ldots, h_1(K, x_m, \overset{(m-2)}{0M_1})))})$ $= \rho({K^*[z] \mid z \in h_1(K, h_1(x_1^m), \binom{m-2}{0_{M_1}})})$ $=\{\varphi(z) \mid z \in K^*[h_1(x_1^m)]\}$ $= \varphi(K^*[h_1(x_1^m)])$ $= \varphi(h_1(K, h_1(x_1^m), \stackrel{(m-2)}{0_{M_1}}))$ $= h_2(\varphi(K), \varphi(h_1(x_1^m)), \varphi(0_{M_1}))$ $= h_2(0_{M_2}, h_2(\varphi(x_1), \ldots, \varphi(x_m)), \binom{(m-2)}{0_{M_2}})$ $= h_2(\varphi(x_1),\ldots,\varphi(x_m))$ $= h_2(\rho(x_1), \ldots, \rho(x_m)).$

Also, let $r_1^{n-1} \in R$ and $K^*[x] \in [M_1 : K^*]$. Then

$$
\rho(k_1/K(r_1^{n-1}, K^*[x])) = \rho(K^*(k_1(r_1^{n-1}, K^*[x])))
$$

$$
= {\varphi(k_1(r_1^{n-1}, x)|x \in K^*[x])}
$$

$$
= k_2(r_1^{n-1}, x)|x \in \varphi(K^*[x]))
$$

$$
= k_2(r_1^{n-1}, \rho(K^*[x])).
$$

Therefore ρ is an R-homomorphism.

Also, we have $\rho(0_{[M_1:K^*]}) = \rho(K^*[0_{M_1}]) = \varphi(0_{M_1}) = 0_{M_2}$. Let $y \in Im\varphi$, so there exists $x \in M_1$ such that $y = \varphi(x) = \rho(K^*[x])$. Thus ρ is onto.

Now, we show that ρ is an injective homomorphism. We have

$$
= k_2(r_1^{n-1}, \rho(K^*[x])).
$$

Therefore ρ is an R -homomorphism.
Also, we have $\rho(0_{[M_1:K^*]}) = \rho(K^*[0_{M_1}]) = \varphi(0_{M_1}) = 0_{M_2}$.
Let $y \in Im\varphi$, so there exists $x \in M_1$ such that $y = \varphi(x) = \rho(K^*[x])$. Thus
 ρ is onto.
Now, we show that ρ is an injective homomorphism. We have

$$
\ker \rho = \{K^*[x] \in [M_1:K^*] \mid \rho(K^*[x]) = 0_{M_2}\}
$$

$$
= \{K^*[x] \in [M_1:K^*] \mid \varphi(x) = 0_{M_2}\}
$$

$$
= K^*(\ker \varphi), \text{ Since } K = \ker \varphi,
$$

$$
= h_1(K, K, \stackrel{(m-2)}{0}_{M_1})
$$

$$
= K = 0_{[M_1:K^*]}.
$$

Therefore ρ is an isomorphism and so $[M_1:K^*] \cong Im\varphi$.
Theorem 4.12. (Second Isomorphism Theorem). If N_1^n are subhypermodule
of a canonical (m, n) -hypermodule (M, h, k) and there exists $1 \leq j \leq m$ such that N_j be a normal subhypermodule of M. Let for every $r_1^{n-1} \in R$ and $y \in M$
we have $N_j^*[k(r_1^{n-1}, y)] = k(r_1^{n-1}, N_j^*(y)]$. Then
 $[h(N_1^j, 0, N_{j+1}^m) : (h(N_1^j, 0, N_{j+1}^m) \cap N_j)^*] \cong [h(N_1^m): N_j^*],$

Therefore ρ is an isomorphism and so $[M_1 : K^*] \cong Im \varphi$.

Theorem 4.12. *(Second Isomorphism Theorem). If* N_1^n are subhypermodules *of a canonical* (m, n) *-hypermodule* (M, h, k) *and there exists* $1 ≤ j ≤ m$ *such* $that N_j$ *be a normal subhypermodule of* M *. Let for every* $r_1^{n-1} \in R$ *and* $y \in M$, *we have* $N_j^*[k(r_1^{n-1}, y)] = k(r_1^{n-1}, N_j^*(y)]$. *Then*

$$
[h(N_1^j, 0, N_{j+1}^m) : (h(N_1^j, 0, N_{j+1}^m) \cap N_j)^*] \cong [h(N_1^m) : N_j^*],
$$

where N_{j+1}^m are subhypermodules of M.

 $y \in h(N_1^m)$. Thus, there exists $a_k \in N_k$, $1 \le k \le m$ such that $y \in h(a_1^m)$, By $\mathcal{W} \mathcal{W} \mathcal{W}$, SID, it *Proof.* By Lemma 4.10, N_j is a normal subhypermodule of $h(N_1^m)$ and so $[h(N_1^m):N_j^*]$ is defined. Define $\rho: h(N_1^j, 0, N_{j+1}^m) \to [h(N_1^m):N_j^*]$ by $\rho(x)$ = $N_j^*[x]$. Since N^* is an equivalence relation then ρ is well-defined. It is not difficult to see that ρ is an R-homomorphism. Consider $N_j^*[y] \in [h(N_1^m) : N_j^*]$,

Lemma 4.6, we have

$$
N_j^*[y] = N_j^*[h(a_1^m)]
$$

\n
$$
= h(N_j, h(a_1^m), {m-2 \choose 0})
$$

\n
$$
= h(a_1^{j-1}, h(N_j, a_j, {m-2 \choose 0}, a_{j+1}^m)
$$

\n
$$
= h(N_j, h(a_1^{j-1}, 0, a_{j+1}^m), {m-2 \choose 0}
$$

\n
$$
= N_j^*[h(a_1^{j-1}, 0, a_{j+1}^m)]
$$

\n
$$
= h_j^*[x], \quad x \in h(a_1^{j-1}, 0, a_{j+1}^m) \subseteq h(N_j^{j-1}, 0, N_{j+1}^m),
$$

\n
$$
= \rho(x), \quad x \in h(N_j^{j-1}, 0, N_{j+1}^m).
$$

\nTherefore ρ is onto. Now, we prove that ker $\rho = h(N_j^j, 0, N_{j+1}^m) \cap N_j$.
\n
$$
x \in \ker \rho \iff \rho(x) = N_j
$$

\n
$$
\iff N_j^*[x] = N_j
$$

\n
$$
\iff N_j^*[x] = N_j
$$

\n
$$
\iff N_j^*[x] = N_j
$$

\n
$$
\iff x \in N_j \cap h(N_j^j, 0, N_{j+1}^m).
$$

\nNow, we have $[M : (\ker \rho)^*] \cong Im\rho$ and so
\n
$$
[h(N_j^j, 0, N_{j+1}^m) : (h(N_j^j, 0, K_{j+1}^m) \cap N_j)^*] \cong [h(N_1^m) : N_j^*].
$$

\n**Theorem 4.13.** *(Third Isomorphism Theorem).* If A and B are normal sub
\nhypermodules of a canonical (m, n) -hypermodule M such that $A \subseteq B$, the
\n $[B : A^*]$ is a normal subhypermodule of canonical (m, n) -hypermodule [M : A^* and $[M : A^*] : [B : A^*] \cong [M : B^*].$
\nProof. First, we show that $[B : A^*]$ is a normal subhypermodule of canonical
\n (m, n) -hypermodule

Therefore ρ is onto. Now, we prove that ker $\rho = h(N_1^j, 0, N_{j+1}^m) \cap N_j$.

$$
x \in \ker \rho \iff \rho(x) = N_j
$$

\n
$$
\iff N_j^*[x] = N_j
$$

\n
$$
\iff h(N_j, x, \frac{(m-2)}{0}) = N_j
$$

\n
$$
\iff x \in N_j \cap h(N_1^j, 0, N_{j+1}^m).
$$

Now, we have $[M : (\ker \rho)^*] \cong Im \rho$ and so

$$
[h(N_1^j, 0, N_{j+1}^m) : (h(N_1^j, 0, K_{j+1}^m) \cap N_j)^*] \cong [h(N_1^m) : N_j^*].
$$

Theorem 4.13. *(Third Isomorphism Theorem). If* A *and* B *are normal subhypermodules of a canonical* (m, n) *-hypermodule* M *such that* $A \subseteq B$ *, then* [B : A∗] *is a normal subhypermodule of canonical* (m, n)*-hypermodule* [M : A∗] *and* $[[M : A^*] : [B : A^*]] \cong [M : B^*]$ *.*

Proof. First, we show that $[B : A^*]$ is a normal subhypermodule of canonical (m, n) -hypermodule $[M : A^*]$. Since $0 \in B$ then $0_{[M:A^*]} = A^*[0] \in [B : A^*]$ A[∗]]. If $A^*[x_1], \ldots, A^*[x_m] \in [B : A^*]$, then $A^*[x_1], \ldots, A^*[x_m] \subseteq B$ and since B is a subhypermodule of M, we obtain $h(A^*[x_1],...,A^*[x_m]) \subseteq B$. Thus $h/N(A^*[x_1],...,A^*[x_m]) \in [B:A^*].$ If $A^*[x] \in [B:A^*]$ then $A^*[x] \subseteq B$ and so $-A^*[x] \subseteq -B = B$. We leave it to reader to verify that for every $r_1^{n-1} \in R$ and $A^*[x] \in [B : A^*], k/N(r_1^{n-1}, A^*[x]) \in [B : A^*].$ Now, Lemma 3.2 implies that $[B : A^*]$ is a subhypermodule of M.

B. Since *B* is a normal subhypermodule, then $h(-y, x, y, \overset{(m-3)}{0}) \subseteq B$. This $w \overset{(m-3)}{\sim} w \overset{(m-3)}$ Also, let $A^*[y] \in [M : A^*]$ and $A^*[x] \in [B : A^*]$, so $A^*[y] \subseteq M$ and $A^*[x] \subseteq$

implies that

$$
h(-A^*[y], A^*[x], A^*[y], A^*[0]) = A^*[h(-y, x, y, \stackrel{(m-3)}{0})] \in [B : A^*].
$$

Therefore $[B : A^*]$ is a normal subhypermodule of canonical (m, n) -hypermodule $[M : A^*]$.

Now, $\rho : [M : A^*] \to [M : B^*]$ defined by $\rho(A^* [x]) = B^* [x]$ is an R homomorphism and onto with kernel ker $\rho = [B : A^*]$.

Acknowledgments. The authors sincerely thank the referees for their careful reading of this paper and valuable suggestions and comments.

REFERENCES

- [1] S. M. Anvariyeh, S. Mirvakili and B. Davvaz, ^θ∗[−] Relation on hypermodules and fundamental modules over commutative fundamental rings, *Comm. Algebra*, **36**, (2008), 622-631.
- [2] S. M. Anvariyeh, S. Mirvakili and B. Davvaz, Transitivity of ^θ∗−relation on hypermodules, *Iranian J. Science Tech., Transaction A*, **32**(A3), (2008), 188-205.
- [3] S. M. Anvariyeh and B. Davvaz, Strongly transitive geometric spaces associated to hypermodules, *Journal of Algebra*, **322**, (2009), 1340-1359.
- [4] S. M. Anvariyeh, S. Mirvakili and B. Davvaz, Fundamental relation on (m, n) -ary hypermodules over (m, n)-ary hyperrings, *Ars Combinatoria*, **94**, (2010), 273-288.
- **Acknowledgments.** The authors sincerly thank the referees for their careful
reading of this paper and valuable suggestions and comments.
 Acknowledgments. The authors sincerly thank the referees for their careful
readi [5] S. M. Anvariyeh and B. Davvaz, Strongly transitive geometric spaces associated with (m, n)-ary hypermodules, *Scientific Annals of "Al.L. Cuza" University of Iasi*. (To apear).
	- [6] P. Corsini, *Prolegomena of hypergroup theory*, Second edition, Aviani editor 1993.
	- [7] P. Corsini and V. Leoreanu, *Applications of hyperstructures theory*, Advanced in Mathematics, Kluwer Academic Publisher 2003.
	- [8] G. Crombez, On (n, m)-rings, *Abh. Math. Semin. Univ. Hamburg*, **37**, (1972), 180-199.
	- [9] G. Crombez and J. Timm, On (n, m)-quotient rings, *Abh. Math. Semin. Univ. Hamburg*, **37**, (1972), 200-203.
	- [10] B. Davvaz, Isomorphism theorems on hyperrings, *Indian J. Pure Appl. Math.*, **35**(3), (2004), 321-331.
	- [11] B. Davvaz and T. Vougiouklis, n-ary hypergroups , *Iranian J. Science Tech., Transaction A*, **30**(A2), (2006), 165-174.
	- [12] B. Davvaz and T. Vougiouklis, Commutative rings obtained from hyperrings $(H_v\text{-rings})$ with α∗-relations, *Comm. Algebra*, **35**(11), (2007), 3307-3320.
	- [13] B. Davvaz, W. A. Dudek and T. Vougiouklis, A Generalization of n-ary Algebraic Systems, *Comm. Algebra*, **37**, (2009), 1248-1263.
	- [14] B. Davvaz, Groups in polygroups, *Iranian Journal of Mathematical Sciences and Informatics*, **1**(1), (2006), 25-31.
	- [15] W. D¨ornte, Untersuchungen ¨uber einen verallgemeinerten Gruppenbegriff, *Math. Z.*, **29**, (1928), 1-19.
	- [16] W.A. Dudek On the divisibility theory in (m, n)-rings, *Demonstratio Math.*, **14**, (1981), 19-32.
	- [17] M. Ghadiri and B. N. Waphare, n-ary polygroups, *Iranian J. Science Tech., Transaction A*, **33(A2)**, (2009), 145-158.

- [18] M. Golmohammadian and M. M. Zahedi, BCK-Algebras and hyper BCK-algebras induced by a deterministic finite automaton, *Iranian Journal of Mathematical Sciences and Informatics*, **4**(1), (2009), 79-98.
- [19] M. Krasner, A class of hyperrings and hyperfields, *Int. J. Math. and Math. Sci.*, **2**, (1983), 307-312.
- [20] V. Leoreanu-Fotea, Canonical n-ary hypergroups, *Italian J. Pure Appl. Math.*, **24**, (2008), 247-254.
- [21] V. Leoreanu-Fotea and B. Davvaz, n-hypergroups and binary relations, *European Journal of Combinatorics*, **29**, (2008), 1027-1218.
- [22] V. Leoreanu-Fotea and B. Davvaz, Roughness in n-ary hypergroups, *Information Sciences*, **178**, (2008), 4114-4124.
- [23] S. Mirvakili and B. Davvaz, Relations on Krasner (m, n)-hyperrings, *European Journal of Combinatorics*, **31**, (2010), 790-802.
- [24] T. Roudbari and M. M. Zahedi , Some result on simple hyper K-algebras, *Iranian Journal of Mathematical Sciences and Informatics*, **3**(2), (2008), 29-48.
- [25] T. Vougiouklis, *Hyperstructures and their representations*, Hadronic Press, Inc, 115, Palm Harber, USA, 1994.
- [22] V. Leoreanu-Fotea and B. Davaz, Roughness in n-ary hypergroups, *Information Scares, 178*, (2006), 4114-4124.
 Archive of Combinatorics, **31**, (2010), 790-802.

(23) S. Mirvakili and B. Davaz, Relations on Krasner [26] T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, *Proc. Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scientific*, (1991), 203-211.