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1. Introduction

The theory of hyperstructures was introduced in 1934 by Marty [14] at
the 8thcongress of Scandinavian Mathematicians. Then several researchers have
worked on this new field and developed it. Mittas [16] introduced the notion
of canonical hypergroups. Corsini [4] studied the Canonical Hypergroups [6],
Feebly Canonical Hypergroups [5], Quasi- Canonical Hypergroups [7]. Krasner
[13] introduced the notion of hyperrings and hyperfields. G.G Massouros [15]
introduced the theory of hypercompositional structures into the theory of au-
tomata. Asokkumar [2] studied the idempotent elements of Krasner hyperrings.
Babaei et al. [3] studied R-parts in hyperrings.

The notion of derivations of rings plays a significant role in algebra [11].
The study of derivations in rings got interested after Posner [17], who gave
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striking results on derivations of prime rings. Then the notion of derivations has
been developed by many authors in various directions like Jordan derivation,
generalised derivation in rings and in near-rings. Ebadian et al. [10] studied
Jordan derivations on Banach algebras. From the motivation of derivations,
Vougiouklis [19] introduced a hyperoperation called theta hyperoperation and
studied Hν-structures. Jan Chvalina et al. [12], introduced a hyperoperation
∗ on a differential ring R so that (R, ∗) is a hypergroup.

In this paper we introduce derivations in Krasner hyperrings and give ex-
amples. Also we derive some basic properties of derivations. Further we prove
that for a strongly differential hyperring R and for a strongly differential hy-
perideal I of R, the factor hyperring R/I is a strongly differential hyperring.
We also prove that a map d : R → R is a derivation of a hyperring R if and
only if the induced map ϕd is a homomorphism.

2. Basic definitions and notations

This section explains some basic definitions that have been used in the
sequel. A hyperoperation ∗ on a non-empty set H is a mapping of H ×H into
the family of non-empty subsets of H (i.e., x ∗ y ⊆ H for every x, y ∈ H). In
the sense of Marty [14], a hypergroup (H, ∗) is a non-empty set H equipped
with a hyperoperation ∗ which satisfies the following axioms:
(i) x ∗ (y ∗ z) = (x ∗ y) ∗ z for every x, y, z ∈ H( the associative axiom).
(ii) x ∗H = H ∗ x = H for every x ∈ H(the reproductive axiom).
A comprehensive review of the theory of hypergroups appears in [4]. The basic
results of hyperstructures and hyperrings are found in [8], [9] and [20].

Definition 2.1. A non-empty set R with a hyperaddition + and a multipli-
cation · is called an additive hyperring or Krasner hyperring if it satisfies the
following:
(1) (R,+) is a canonical hypergroup, i.e.,
(i) for every x, y, z ∈ R, x + (y + z) = (x + y) + z,

(ii) for every x, y ∈ R, x + y = y + x,

(iii) there exists 0 ∈ R such that 0 + x = x for all x ∈ R,
(iv) for every x ∈ R there exists an unique element denoted by −x ∈ R such
that 0 ∈ x + (−x),
(v) for every x, y, z ∈ R, z ∈ x + y implies y ∈ −x + z and x ∈ z − y.

(2) (R, ·) is a semigroup having 0 as a bilaterally absorbing element, i.e.,
(i) for every x, y, z ∈ R, (x · y) · z = x · (y · z),
(ii) x · 0 = 0 · x = 0 for all x ∈ R.

(3) The multiplication · is distributive with respect to the hyperoperation +.

i.e., for every x, y, z ∈ R, x · (y + z) = x · y + x · z and (x + y) · z = x · z + y · z.

www.SID.ir


Arc
hive

 of
 S

ID

www.SID.ir

Derivations in Hyperrings and Prime Hyperrings 3

A non-empty subset I of a canonical hypergroup R is called a canonical sub-
hypergroup of R if I itself is a canonical hypergroup under the same hyperopera-
tion as that of R. Equivalently, a non-empty subset I of a canonical hypergroup
R is a canonical subhypergroup of R if for every x, y ∈ I, x− y ⊆ I. Here after
we denote xy instead of x · y. Moreover, for A,B ⊆ R and x ∈ R, by A + B

we mean the set
⋃

a∈A,b∈B(a + b) and AB =
⋃

a∈A,b∈B(ab), A + x = A + {x},
x + B = {x}+ B and also −A = {−a : a ∈ A}.

The following elementary facts in a hyperring easily follow from the axioms:
(i) −(−a) = a for every a ∈ R ; (ii) 0 is the unique element such that for every
a ∈ R, there is an element −a ∈ R with the property 0 ∈ a+(−a) and −0 = 0;
(iii) −(a + b) = −a − b for all a, b ∈ R; (iv) −(ab) = (−a)b = a(−b) for all
a, b ∈ R.

In a hyperring R, if there exists an element 1 ∈ R such that 1a = a1 = a for
every a ∈ R, then the element 1 is called the identity element of the hyperring
R. In fact, the element 1 is unique. Further, if ab = ba for every a, b ∈ R then
the hyperring R is called a commutative hyperring. Throughout this paper, by
a hyperring we mean the Krasner hyperring.

Example 2.2. The set R ={0,1} with the following hyperoperations is a hy-
perring.

+ 0 1
0 {0} {1}
1 {1} {0,1}

· 0 1
0 {0} {0}
1 {0} {1}

Example 2.3. M.Krasner [13] constructed a class of hyperrings as follows.
Let (R, + , . ) be a ring and G be a normal subgroup of the multiplicative
semigroup (R, . ), that is, {xG = Gx for every x ∈ R}. Consider the set
R = {x = xG : x ∈ R} of classes modulo G. If we define hyperaddition ⊕ and
multiplication � on R as x ⊕ y = xG ⊕ yG = {(xp + yq)G : p, q ∈ G} and
x� y = xG� yG = xyG for all x, y ∈ R, then (R,⊕,�) is a hyperring.

Definition 2.4. Let R be a hyperring. A non-empty subset S of R is called a
subhyperring of R if x− y ⊆ S and xy ∈ S for all x, y ∈ S.

Definition 2.5. Let R be a hyperring and I be a non-empty subset of R.

I is called a left (resp. right) hyperideal of R if (i) (I,+) is a canonical
subhypergroup of R, i.e., for every x, y ∈ I, x − y ⊆ I and (ii) for every
a ∈ I, r ∈ R, ra ⊆ I (resp. ar ⊆ I). A hyperideal of R is one which is a
left as well as a right hyperideal of R.

Definition 2.6. Let R and S be hyperrings, where both additions and multipli-
cations are hyperoperations. A mapping φ : R → S is called a homomorphism
from R to S if for all x, y ∈ R, (i) φ(x+y) ⊆ φ(x)+φ(y), (ii) φ(xy) ⊆ φ(x)φ(y)
and (iii) φ(0) = 0 hold. If R is a Krasner hyperring, then the condition (ii)
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becomes φ(xy) ∈ φ(x)φ(y). If both R and S are Krasner hyperrings, then the
condition (ii) is φ(xy) = φ(x)φ(y).

Definition 2.7. A hyperring R is said to be a prime hyperring if aRb = 0 for
a, b ∈ R implies either a = 0 or b = 0.

Definition 2.8. A hyperring R is said to be a reduced hyperring if it has no
nilpotent elements. That is, if xn = 0 for x ∈ R and a natural number n, then
x = 0.

Definition 2.9. A hyperring R is said to be 2-torsion free if 0 ∈ x + x for
x ∈ R implies x = 0.

3. Derivation of hyperrings and examples

In this section we define derivation and strong derivation of hyperrings and
give examples.

Definition 3.1. Let R be a hyperring. A map d : R → R is said to be a
derivation of R if d satisfies:

(i) d(x + y) ⊆ d(x) + d(y) and
(ii) d(xy) ∈ d(x)y + xd(y) for all x, y ∈ R.

The hyperring R equipped with a derivation d is called a d-differential hyper-
ring. If the map d is such that d(x + y) = d(x) + d(y) for all x, y ∈ R and
satisfies the condition (ii), then d is called a strong derivation of R. In this case,
the hyperring is called strongly d-differential hyperring. Since the hyperaddi-
tion of the hyperring R is commutative, the condition (ii) of the derivation is
equivalent to d(xy) ∈ xd(y) + d(x)y for all x, y ∈ R.

When there is no confusion regarding the derivation d, we simply write
differential hyperring instead of d-differential hyperring. For a ∈ R, we call the
element d(a) by the derivative of a and we write d2(a), d3(a), · · ·, dn(a) for the
successive derivatives of a.

Proposition 3.2. Let R be a hyperring and d : R → R be a derivation of R.

Then (i) d(0) = 0, (ii) d(−a) = −d(a) for all a ∈ R, (iii) if 1 is the identity
element of R, then d(1) ∈ d(1) + d(1).

Proof. It is clear that d(0) = 0. Now, for each a ∈ R, 0 = d(0) ∈ d(a − a) =
d(a + (−a)) ⊆ d(a) + d(−a). That is, d(a) ∈ 0− d(−a). Hence d(a) = −d(−a).
Therefore, −d(a) = −(−d(−a)) = d(−a). Also, d(1) = d(1.1) ∈ d(1).1 +
1.d(1) = d(1) + d(1). That is, d(1) ∈ d(1) + d(1). �

Remark 3.3. Let R be a hyperring c ∈ R and d : R → R is a map defined
by d(x) = c for all x ∈ R. Then d is a derivation if and only if c = 0. This
derivation is a strong derivation, called the trivial derivation.
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Example 3.4. Let R be a hyperring such that x ∈ x+x for every x ∈ R. Then
the identity map, i(x) = x for every x ∈ R, is a strong derivation of R.

Example 3.5. In the hyperring given in the example 2.2, we have two deriva-
tions namely (i) d(x) = 0 for all x ∈ R and (ii) d(x) = x for all x ∈ R.

Example 3.6. Consider the hyperring R ={0, a, b} with the hyperaddition
and the multiplication defined as follows.

+ 0 a b
0 {0} {a} {b}
a {a} {a,b} R
b {b} R {a,b}

. 0 a b
0 0 0 0
a 0 b a
b 0 a b

Define a map d : R → R by d(0) = 0, d(a) = b, d(b) = a. Clearly, d is a
well defined map. Now, d(a + b) = d(R) = R = b + a = d(a) + d(b) and
d(ab) = d(a) = b ∈ b+ b = bb+ aa = d(a)b+ ad(b). Thus d(ab) ∈ d(a)b+ ad(b).
Also, d(a + a) = d({a, b}) = {a, b} = d(a) + d(a) and d(aa) = d(b) = a ∈
{a, b} = a+a = ba+ab = d(a)a+ad(a). Further, d(b+b) = d({a, b}) = {a, b} =
d(b) + d(b) and d(bb) = d(b) = a ∈ {a, b} = a + a = ab + ba = d(b)b + bd(b).
Hence d is a derivation of R. Here d is a strong derivation of R.

Example 3.7. Let R be a hyperring and M(R) =
{(

a b

0 0

)
: a, b ∈ R

}
be a

collection of 2× 2 matrices over R. A hyperaddition ⊕ is defined on M(R) by(
a b

0 0

)
⊕

(
c d

0 0

)
=

{(
x y

0 0

)
: x ∈ a + c, y ∈ b + d

}
for all

(
a b

0 0

)
,

(
c d

0 0

)
∈ M(R). Clearly, this hyperaddition is well defined and (M(R),⊕) is a canon-

ical hypergroup. The matrix
(

0 0
0 0

)
is the additive identity of M(R). Also,

for each matrix
(

a b

0 0

)
of M(R), there exists a unique matrix

(
−a −b

0 0

)
∈

M(R), such that
(

0 0
0 0

)
∈

(
a b

0 0

)
⊕

(
−a −b

0 0

)
. Now, a multiplication ⊗ is

defined on M(R) by(
a b

0 0

)
⊗

(
c d

0 0

)
=

(
ac ad

0 0

)
for all

(
a b

0 0

)
,

(
c d

0 0

)
∈ M(R).

Clearly, the multiplication ⊗is well defined and associative. Therefore, (M(R),⊗)
is a semigroup.

Let
(

a b

0 0

)
,

(
x y

0 0

)
,

(
p q

0 0

)
∈ M(R). Then(

a b

0 0

)
⊗

{(
x y

0 0

)
⊕

(
p q

0 0

)}
=

(
a b

0 0

)
⊗

{(
r s

0 0

)
: r ∈ x + p, s ∈ y + q

}
=

{(
ar as

0 0

)
: r ∈ x + p, s ∈ y + q

}
.
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Also,
{(

a b

0 0

)
⊗

(
x y

0 0

)}
⊕

{(
a b

0 0

)
⊗

(
p q

0 0

)}
=

(
ax ay

0 0

)
⊕

(
ap aq

0 0

)
=

{(
l m

0 0

)
: l ∈ ax + ap,m ∈ ay + aq

}
. By the left distributive axiom of R,(

a b

0 0

)
⊗

{(
x y

0 0

)
⊕

(
p q

0 0

)}
=

{(
a b

0 0

)
⊗

(
x y

0 0

)}
⊕

{(
a b

0 0

)
⊗

(
p q

0 0

)}
.

Similarly, we can show that the right distributive law is also satisfied on M(R).
Thus M(R) is a Krasner hyperring.

Now, define a function d on M(R) by d

((
a b

0 0

))
=

(
0 b

0 0

)
. Clearly, this

map is well defined. We shall now show that d is a derivation.

For
(

a b

0 0

)
,

(
c d

0 0

)
∈ M(R),the set d

{(
a b

0 0

)
⊕

(
c d

0 0

)}
and the set

d

((
a b

0 0

))
⊕ d

((
c d

0 0

))
are equal and equal to the set

{(
0 x

0 0

)
: x ∈ b + d

}
.

Also, d

{(
a b

0 0

)
⊗

(
c d

0 0

)}
=

(
0 ad

0 0

)
=

{
d

((
a b

0 0

))
⊗

(
c d

0 0

)}
⊕

{(
a b

0 0

)
⊗ d

((
c d

0 0

))}
.

Thus d is a derivation on M(R). Here d is a strong derivation of R.

Proposition 3.8. In any hyperring with a derivation, the elements with de-
rivative 0, form a subhyperring.

Proof. Let R be a hyperring and d be a derivation of R. Let S = {x ∈ R :
d(x) = 0}. Since d(0) = 0, we see that S is non-empty. Let a, b ∈ S. Then
d(a) = 0, d(b) = 0. Now, d(a + b) ⊆ d(a) + d(b) = 0 + 0 = 0. Further, for any
a ∈ S, d(−a) = −d(a) = 0. Also, d(ab) ∈ d(a)b + ad(b) = 0 + 0 = 0. Thus for
any a, b ∈ A, a + b ⊆ S,−a ∈ S, ab ∈ S. So, S is a subhyperring of R. �

4. Properties of derivations of prime hyperrings and differential
hyperideals

In this section we prove two simple properties of derivations in prime hy-
perrings. The results are analogues results of Posner [17]. Also, we define
differential hyperideal and prove the existence of a differential hyperideal in
a differential hyperring. Further, we prove that if R is a strongly differen-
tial hyperring and I is a strongly differential hyperideal of R, then the factor
hyperring R/I is a strongly differential hyperring.

Proposition 4.1. Let d be a derivation of a prime hyperring R and a ∈ R

such that ad(u) = 0 (or d(u)a = 0) for all u ∈ R. Then either a = 0 or d = 0.
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Proof. Let x, y ∈ R. Suppose ad(u) = 0 for every u ∈ R, then

0 = ad(xy) ∈ a(d(x)y + xd(y))

= ad(x)y + axd(y)

= 0 + axd(y)

= axd(y).

Thus axd(y) = 0. Since R is a prime hyperring, a = 0 or d(y) = 0. If a 6= 0,

then d(y) = 0 for every y ∈ R. That is, d = 0. Suppose d(u)a = 0 for every
u ∈ R, then

0 = d(yx)a ∈ (d(y)x + yd(x))a

= d(y)xa + yd(x)a

= d(y)xa.

Thus d(y)xa = 0. Now, the primeness of R implies that a = 0 or d(y) = 0. If
a 6= 0, then d(y) = 0 for every y ∈ R. That is, d = 0. �

Proposition 4.2. Let d be a derivation of a 2-torsion free prime hyperring R.

If d2 = 0, then d = 0.

Proof. Let d2 = 0. Suppose d 6= 0, then there exists an element a ∈ R such
that d(a) 6= 0. Then for every y ∈ R,

d2(ay) = 0 = d(d(ay))

∈ d(d(a)y + ad(y))

⊆ d(d(a)y) + d(ad(y))

⊆ d2(a)y + d(a)d(y) + d(a)d(y) + ad2(y)

= d(a)d(y) + d(a)d(y).

Since R is 2-torsion free hyperring, d(a)d(y) = 0. Since R is prime hyperring,
by the Proposition 4.1, d(y) = 0 for every y ∈ R. That is, we get d = 0, which
is a contradiction to the assumption. Hence d = 0. �

Proposition 4.3. Let d1, d2 be derivations of a 2-torsion free prime hyperring
R. If d1d2 = 0, then d1 = 0 or d2 = 0.

Proof. For x, y ∈ R we have

d1d2(xy) = 0 = d1(d2(xy))

∈ d1(d2(x)y + xd2(y))

⊆ d1(d2(x)y) + d1(xd2(y))

⊆ d1d2(x)y + d2(x)d1(y) + d1(x)d2(y) + xd1d2(y)

= d2(x)d1(y) + d1(x)d2(y).
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Replace x by d2(x), we get 0 ∈ d2(d2(x))d1(y) + d1(d2(x))d2(y) = d2
2(x)d1(y).

Now, by the Proposition 4.1, one can obtain d1 = 0 or d2
2 = 0. If d2

2 = 0,

then by the Proposition 4.2, we have d2 = 0. This completes the proof of the
Proposition. �

Definition 4.4. Let d be a non-trivial derivation (resp. strong derivation) of
a hyperring R. A hyperideal I of R is said to be a d-differential (resp. strongly
d-differential) hyperideal of R if d(I) ⊆ I.

Let S be a non-empty subset of a hyperring R. The set Annl(S) = {x ∈
R : xS = 0} is called the left annihilator of S in R. Similarly, we have the
right annihilator Annr(S) of S in R. In a reduced hyperring R, if ab = 0 for
all a, b ∈ R, then ba = 0 and therefore, there is no distinction from a left
annihilator of S and a right annihilator of S in R. In this case, we just call it
by the annihilator of S in R and is denoted by Ann(S). The following results
of reduced hyperrings follows from [1].

Proposition 4.5. Let R be a reduced hyperring. (i) If S is a non-empty subset
of R,then Ann(S) is a hyperideal of R. (ii ) If S1 and S2 are subsets of R such
that S1 ⊆ S2, then Ann(S2) ⊆ Ann(S1).

Proof. The proof of (i) is obvious. Let x ∈ Ann(S2). Then S2x= 0. That
is, s2x = 0 for all s2 ∈ S2. This means that x annihilates all elements of S2.

In particular, x annihilates all elements of S1. Therefore, x ∈ Ann(S1). This
completes the proof of (ii). �

Corollary 4.6. Let R be a reduced hyperring and I be a differential hyperideal
of R, then Ann(I) ⊆ Ann(d(I)).

Proof. Since I is a differential ideal of R, we have d(I) ⊆ I, by the Proposition
4.5, we get Ann(I) ⊆ Ann(d(I)). �

Theorem 4.7. Let d be a derivation of a reduced hyperring R. Then for any
subset S of R, d(Ann(S)) ⊆ Ann(S).

Proof. If x ∈ Ann(S), then Sx = 0. Now, for s ∈ S, 0 = d(sx) ∈ d(s)x+ sd(x).
Multiplying by s from the right, we get 0 ∈ d(s)xs + sd(x)s. Since sx = 0, we
have xs = 0. Therefore, sd(x)s = 0. Multiply by d(x) from the right, we get
sd(x)sd(x) = 0. That is, (sd(x))2 = 0. Since R is reduced, we obtain sd(x) = 0.

This means that d(x) ∈ Ann(S). Thus we have d(Ann(S)) ⊆ Ann(S)). �

Theorem 4.7 shows the existence of a differential hyperideal in a differential
hyperring. As an illustration we have the following example.

Example 4.8. Consider the reduced hyperring R = {0, a, b, c, } with the hyper-
addition ⊕ and the multiplication � defined as follows.
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⊕ 0 a b c
0 { 0 } { a } { b } { c }
a { a } {0, b} {a, c} { b }
b { b } {a, c} {0, b} { a }
c { c } { b } { a } { 0 }

� 0 a b c
0 { 0 } { 0 } { 0 } { 0 }
a { 0 } { a } { b } { c }
b { 0 } { b } { b } { 0 }
c { 0 } { c } { 0 } { c }

It is clear that the map d : R → R defined by d(0) = 0, d(a) = b, d(b) = b, d(c) =
0, is a derivation of R. Now, Ann(0, c) = {0, b} is a hyperideal of R. Since
d(Ann(0, c)) = d({0, b}) = {0, b} = (Ann(0, c)), we see that Ann(0, c) = {0, b}
is a differential hyperideal of R.

Let H be a canonical hypergroup and N be a canonical subhypergroup of H. For
any two elements a, b ∈ H, we define a ∼ b if a ∈ b+N. Then ∼ is an equivalence
relation on H. We denote the equivalence class determined by the element
x ∈ H by the equivalence relation ∼ by x. It is clear that x = x+N. We denote
the collection of all equivalence classes {x : x ∈ H} induced by the equivalence
relation ∼ by H/N. If we define x⊕y = {z : z ∈ x+y} for all x, y ∈ H/N, then
H/N is a canonical hypergroup. Let R be a hyperring and I be a hyperideal
of R. Since I is a canonical subhypergroup of R, R/I = {x : x ∈ R} is a
canonical hypergroup under the hyperaddition defined above. Now, we define
x⊗ y = xy = xy + I for all x, y ∈ R/I, then R/I is a Krasner hyperring [18].

Proposition 4.9. Let R be a strongly differential hyperring.Then for any
strongly differential hyperideal I of R, the factor hyperring R/I is a strongly
differential hyperring.

Proof. Let d be a strong derivation of R. Let us define a map D : R/I → R/I

by D(a+I) = d(a)+I for every a+I ∈ R/I. If a, b ∈ R such that a+I = b+I,

then a ∈ b+I. Since d(I) ⊆ I, we get d(a) ∈ d(b)+I. That is, d(a)+I = d(b)+I.

Hence D(a + I) = D(b + I). Therefore, D is a well defined map.
Let r + I, s+ I ∈ R/I. Now, D((r + I)+ (s+ I)) = D({x+ I : x ∈ r + s}) =

{d(x) + I : x ∈ r + s}. Further, D(r + I) + D(s + I) = (d(r) + I) + (d(s) + I) =
{x+I : x ∈ d(r)+d(s)} = {x+I : x ∈ d(r+s)} = {d(y)+I : for y ∈ r+s}. Since
d is a strong derivation of R, we get D((r + I)+(s+ I)) = D(r + I)+D(s+ I).

Also, we have D((r+I)(s+I)) = D(rs+I) = d(rs)+I. But, D(r+I)(s+I)+
(r+I)D(s+I) = (d(r)+I)(s+I)+(r+I)(d(s)+I) = {x+I : x ∈ d(r)s+rd(s)}.
Since d(rs) ∈ d(r)s + rd(s), we get d(rs) + I ∈ {x + I : x ∈ d(r)s + rd(s)}.
That is, D((r + I)(s + I)) ∈ D(r + I)(s + I) + (r + I)D(s + I). Thus D is a
strong derivation of R/I. �

Proposition 4.10. Let R be a differential hyperring and I a differential hy-
perideal of R. Then there exists a one-to-one correspondence between the set of
all differential hyperideals of R containing I and the the set of all differential
hyperideals of R/I.
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Proof. Let A be the set of all differential hyperideals of R containing I and F
be the set of all differential hyperideals of R/I. Define a map f : A → F by
f(J) = J/I, where J is a differential hyperideals of R containing I. Since J is
a differential hyperideal of R, it is clear that J/I is a differential hyperideal of
R/I. Therefore, the map f is well defined.

Let J,K be two differential hyperideals of R containing I such that f(J) =
f(K). Then J/I = K/I. Now, for x ∈ J, we have x+I ∈ J/I = K/I. Therefore,
x + I = y + I for some y ∈ K. That is, x ∈ y + I ⊆ K. Hence J ⊆ K. Similarly,
we can prove that K ⊆ J and hence K = J. Therefore, the function f is
one-to-one. Clearly, the map f is on to. Hence f is a bijective map. �

Let R be a Krasner hyperring. Then, M2(R), the set of all 2 × 2 matrices
over R, is a hyperring under the usual hyperaddition of matrices and the usual
hypermultiplication of matrices.

Proposition 4.11. Let R be a hyperring and d be a map from R to R. Let ϕd

be a map from R to M2(R) defined by ϕd(r) =
(

r d(r)
0 r

)
. The map d is a

derivation of R if and only if the map ϕd is a homomorphism.

Proof. Suppose that d is a derivation of R and x, y ∈ R. If a ∈ ϕd(x + y),

then a = ϕd(r) =
(

r d(r)
0 r

)
for some r ∈ x + y. Since r ∈ x + y, we get

d(r) ∈ d(x + y) ⊆ d(x) + d(y). Thus the element a =
(

r d(r)
0 r

)
, where

d(r) ∈ d(x) + d(y). But, ϕd(x) + ϕd(y)

=
(

x d(x)
0 x

)
+

(
y d(y)
0 y

)
=

{(
u v

0 w

)
: u, w ∈ x + y, v ∈ d(x) + d(y)

}
.

Therefore, a ∈ ϕd(x) + ϕd(y) and hence ϕd(x + y) ⊆ ϕd(x) + ϕd(y).

Now, ϕd(xy) =
(

xy d(xy)
0 xy

)
. But, ϕd(x)ϕd(y) =

(
x d(x)
0 x

) (
y d(y)
0 y

)
=

{(
xy c

0 xy

)
: c ∈ xd(y) + d(x)y,

}
.

Since d(xy) ∈ d(x)y + xd(y), we get ϕd(xy) ∈ ϕd(x)ϕd(y). Thus the map
ϕd is a hyperring homomorphism. Conversely, assume that ϕd is a hyperring
homomorphism. Let u ∈ d(x + y). Then there exists some r ∈ x + y such that

u = d(r). Now,
(

r d(r)
0 r

)
= ϕd(r) ∈ ϕd(x + y) ⊆ ϕd(x) + ϕd(y)

=
{(

a b

0 c

)
: a, c ∈ x + y, b ∈ d(x) + d(y)

}
. This means that,u = d(r) ∈

d(x) + d(y). Thus d(x + y) ⊆ d(x) + d(y). Now,
(

xy d(xy)
0 xy

)
= ϕd(xy) ∈
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ϕd(x)ϕd(y) =
{(

xy c

0 xy

)
: c ∈ xd(y) + d(x)y

}
. Thus d(xy) ∈ xd(y)+d(x)y.

Thus d is a derivation. �

5. Hyperderivations of hyperrings

In a ring R, for a fixed r ∈ R, the map fr : R → R for all x ∈ R defined
by fr(x) = xr − rx is a derivation which is called an inner derivation of the
ring R. If R is a hyperring, then for x, r ∈ R, xr − rx is a set. That is, we
associate a set for each element x of the hyperring R. This motivates to define
hyperderivation on a hyperring R. In this section we define hyperderivation and
give examples. Further, we prove that the collection of all hyperderivations of
a hyperring R is an additive semigroup.

Definition 5.1. A map f from a hyperring R to P∗(R) is said to be a hyper-
derivation or hderivation if it satisfies:

(i) f(x + y) ⊆ f(x) + f(y) and
(ii) f(xy) ∈ f(x)y + xf(y) for all x, y ∈ R.

If the map f is such that f(x + y) = f(x) + f(y) for all x ∈ R and satisfies
the condition (ii) then f is called a strong hderivation of R. The collection of
all hderivations of R is denoted by D.

Example 5.2. Let R be a hyperring. Now, select r ∈ R and fix it. Define a
map fr : R → P∗(R) by fr(x) = xr − rx for every x ∈ R. That is, for every
x ∈ R, we associate a non-empty set xr − rx by fr. Clearly, this map is well
defined.

If a ∈ fr(x + y), then a ∈ fr(s) for some s ∈ x + y. So, a ∈ sr − rs ⊆
(x + y)r − r(x + y) = xr + yr − rx− ry = xr − rx + yr − ry = fr(x) + fr(y).
Therefore, fr(x + y) ⊆ fr(x) + fr(y).

Also, if a ∈ fr(xy) = xyr−rxy = xyr−rxy+(0) ⊆ xyr−rxy+xry−xry =
xry − rxy + xyr − xry = (xr − rx)y + x(yr − ry) = fr(x)y + xfr(y).Thus
fr(xy) ⊆ fr(x)y + xfr(y). That is, fr is a hderivation. This fr is called an
inner hderivation of R.

Example 5.3. Let d : R → R, be a derivation of a hyperring R. Now, define
a map D from R to P∗(R) by D(x) = d(x) + d(x) for all x ∈ R. That is, for
every x ∈ R, we associate a non-empty set d(x) + d(x) by D.

Let r ∈ D(x + y). Then there exists s ∈ x + y such that r ∈ D(s) = d(s) +
d(s) ⊆ d(x+y)+d(x+y) ⊆ d(x)+d(y)+d(x)+d(y) = d(x)+d(x)+d(y)+d(y) =
D(x) + D(y). Thus D(x + y) ⊆ D(x) + D(y).

Also, D(xy) = d(xy) + d(xy) ⊆ d(x)y + xd(y) + d(x)y + xd(y) = d(x)y +
d(x)y+xd(y)+xd(y) = D(x)y+xD(y) for all x, y ∈ R. This D is a hderivation
induced by d.

Remark 5.4. In the Example 3.6, D(a + a) = D({a, b}) = D(a) ∪ D(b) =
(d(a) + d(a)) ∪ (d(b) + d(b)) = (b + b) ∪ (a + a) = {a, b} ∪ {a, b} = {a, b}.
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Moreover, D(a) + D(a) = (d(a) + d(a)) + (d(a) + d(a)) = {a, b} + {a, b} = R.

So this hderivation D is not a strong hderivation even though d is a strong
derivation.

Example 5.5. Let d be a derivation of a hyperring R. If we define D′ from R

to P∗(R) by D′(x) = d(x)−d(x) for all x ∈ R, then D′(x+y) ⊆ D′(x)+D′(y)
and D′(xy) ∈ xD′(y)+D′(x)y for all x, y ∈ R. This D′ is a hderivation induced
by d. The collection of all hderivations induced by a derivation d is denoted by
Dd. It is clear that Dd ⊆ D.

Proposition 5.6. The collection of all hderivations of a hyperring R is an
additive semigroup.

Proof. Suppose that D1, D2 ∈ D. Now, for any x ∈ R we define (D1 + D2)x =
D1(x)+D2(x). Let x, y ∈ R and r ∈ (D1 +D2)(x+ y). Then r ∈ (D1 +D2)(s)
for some s ∈ x + y. But, (D1 + D2)(s) = D1(s) + D2(s) ⊆ D1(x + y) + D2(x +
y) ⊆ D1(x) + D1(y) + D2(x) + D2(y) = D1(x) + D2(x) + D1(y) + D2(y) =
(D1 + D2)(x) + (D1 + D2)(y). So r ∈ (D1 + D2)(x) + (D1 + D2)(y). That
is,(D1 + D2)(x + y) ⊆ (D1 + D2)(x) + (D1 + D2)(y).

Also, (D1 + D2)(xy) = D1(xy) + D2(xy) ⊆ D1(x)y + xD1(y) + D2(x)y +
xD2(y) = D1(x)y+D2(x)y+xD1(y)+xD2(y) = (D1(x)y+D2(x))y+x(D1(y)+
D2(y)) = ((D1 + D2)(x))y + x((D1 + D2))(y). Thus (D1 + D2)(xy) ⊆ ((D1 +
D2)(x))y + x((D1 + D2)(y)) Hence D1 + D2 ∈ D.

Moreover, if D1, D2, D3 ∈ D, then (D1 + (D2 + D3))x = D1(x) + (D2 +
D3)x = D1(x) + D2(x) + D3(x) for all x ∈ R. Similarly, ((D1 + D2) + D3)x =
D1(x)+D2(x)+D3(x) for every x ∈ R. Thus D1+(D2+D3) = (D1+D2)+D3.

Further, the map 0 : R −→ P∗(R) defined by 0(x) = {0} for all x ∈ R is the
additive identity of D. �
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