Iranian Journal of Mathematical Sciences and Informatics Vol. 8, No. 1 (2013), pp 105-109

On Diameter of Line Graphs

Harishchandra S. Ramane^a, Ivan Gutman^{b,*} and Asha B. Ganagi^a

^aDepartment of Mathematics, Gogte Institute of Technology, Udyambag, Belgaum–590008, Karnataka, India
^bFaculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia

> E-mail: hsramane@yahoo.com E-mail: gutman@kg.ac.rs E-mail: abganagi@yahoo.co.in

ABSTRACT. The diameter of a connected graph G, denoted by diam(G), is the maximum distance between any pair of vertices of G. Let L(G)be the line graph of G. We establish necessary and sufficient conditions under which for a given integer $k \geq 2$, $diam(L(G)) \leq k$.

Keywords: Line graph, Diameter (of graph), Distance (in graph).

2000 Mathematics subject classification: 05C12, 05C75.

1. INTRODUCTION

Let G be a simple connected graph on n vertices. Let the vertices of G be labeled as v_1, v_2, \ldots, v_n . The *distance* between the vertices v_i and v_j in G is equal to the length of a shortest path joining v_i and v_j , and is denoted by $d_G(v_i, v_j)$. The *diameter* of G, denoted by diam(G) is the maximum distance between any pair of vertices of G.

The above distance provides the simplest and most natural metric in graph theory, and is one of the popular areas of research in discrete mathematics. Details on distance in graph theory can be found in the books [3,5,8] and the papers [1,6,7,15,16] published in this journal.

^{*}Corresponding Author

Received 30 October 2012; Accepted 14 January 2013 ©2013 Academic Center for Education, Culture and Research TMU

As usual, by K_n , P_n , and $K_{1,n-1}$ we denote, respectively, the complete graph, the path, and the star on n vertices.

The line graph L(G) of G is the graph whose vertices correspond to the edges of G and two vertices of L(G) are adjacent if and only if the corresponding edges of G are adjacent. The second line graph of G is $L^2(G) = L(L(G))$.

Metric properties of line graphs have been much studied in the mathematical literature [2,4,9,12,14,17–20], and found remarkable applications in chemistry [10,11,13,14].

We first recall some known established properties of line graphs, needed for the considerations that follow.

Lemma 1.1. [17] If G_1 is an induced subgraph of G then $L(G_1)$ is an induced subgraph of L(G).

Theorem 1.2. [19] If $diam(G) \leq 2$ and if none of the three graphs F_1 , F_2 , and F_3 depicted in Fig. 1 are induced subgraphs of G, then $diam(L(G)) \leq 2$.

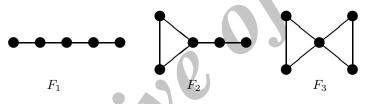


Fig. 1. The graphs mentioned in Theorem 1.2

In this paper we establish structural conditions for the graph G, under which for a given integer k, $k \ge 2$, the diameter of L(G) does not exceed k. We also establish conditions under which for a given integer k, $k \ge 3$, the diameter of L(G) is not less than k.

2. Main results

Let F_1^k be the path on (k+3) vertices, $k \ge 2$. The vertices of F_1^k are $v_1, v_2, \ldots, v_{k+3}$, labeled so that v_i is adjacent to $v_{i+1}, i = 1, 2, \ldots, k+2$.

Let F_2^k be the graph obtained from F_1^k by adding to it an edge between the vertices v_1 and v_3 . Let F_3^k be the graph obtained from F_1^k by adding to it edges between v_1 and v_3 and between v_{k+1} and v_{k+3} (see Fig. 2).

Theorem 2.1. Let $k \ge 2$. For a connected graph G, $diam(L(G)) \le k$, if and only if none of the three graphs F_1^k , F_2^k and F_3^k , depicted in Fig. 2, are an induced subgraph of G.

106

www.SID.ir

Proof. The result can be easily verified for graphs of order $n \leq 4$. We thus assume that n > 4.

Let $k \geq 2$ and let $diam(L(G)) \leq k$. Suppose that F_1^k is an induced subgraph of G. By Lemma 1.1, $L(F_1^k)$ is an induced subgraph of L(G). It is straightforward to check that $diam(L(F_1^k)) = diam(P_{k+2}) = k+1 > k$. Hence diam(L(G)) > k, a contradiction. Therefore F_1^k is not an induced subgraph of G.

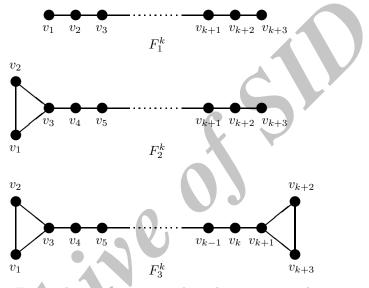


Fig. 2 The graphs mentioned in Theorems 2.1 and 2.3

Similarly we can show that F_2^k and F_3^k are also not induced subgraphs of G.

Conversely, suppose that $k \geq 2$ and that diam(L(G)) > k. Then G must possess two independent edges, say $e_i = (uv)$ and $e_j = (xy)$, such that neither u nor v are adjacent to either x or y. If so, then because the diameter of L(G) is greater than k, there must exist k - 1 vertices, say $u_1, u_2, \ldots, u_{k-1}$ such that uis adjacent to u_1, u_i is adjacent to $u_{i+1}, i = 1, 2, \ldots, k-2$, and u_{k-1} is adjacent to x. If u_i , $i = 1, 2, \ldots, k-1$ are not adjacent to either v or y, then G has F_1^k as an induced subgraph (spanned by the vertices $v, u, u_1, u_2, \ldots, u_{k-1}, x, y$). If u_1 is adjacent to v (or u_{k-1} is adjacent to y), then G has F_2^k as an induced subgraph. If u_1 is adjacent to v and u_{k-1} is adjacent to y, then G has F_3^k as an induced subgraph, a contradiction. Hence $diam(L(G)) \leq k$.

Theorem 1.2 is a special case of Theorem 2.1, for k = 2. From Theorem 2.1, we observe that the condition $diam(G) \leq 2$, in Theorem 1.2 was not necessary.

www.SID.ir

Theorem 2.2. Let G be a connected graph with $n \ge 3$ vertices. Then diam(L(G)) = 1 if and only if $G \cong K_3$ or $G \cong K_{1,n-1}$.

Proof. If $G \cong K_3$, then $L(K_3) = K_3$ and $diam(L(K_3)) = diam(K_3) = 1$. If $G \cong K_{1,n-1}$, then all the edges of $K_{1,n-1}$ are incident to a common vertex. Therefore all vertices are adjacent to each other in $L(K_{1,n-1})$ and thus $L(K_{1,n-1} \cong K_{n-1})$. Hence $diam(L(K_{1,n-1})) = 1$.

Conversely, let diam(L(G)) = 1. Suppose that $G \not\cong K_3$, $K_{1,n-1}$. Then in G there exists at least two independent edges, say $e_i = (uv)$ and $e_j = (xy)$. Therefore $d_{L(G)}(e_i, e_j) > 1$. Thus diam(L(G)) > 1, a contradiction. Hence it must be $G \cong K_3$ or $G \cong K_{1,n-1}$.

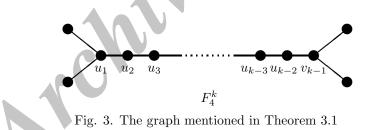
Evidently, the diameter of L(G) is zero if and only if $G \cong K_1$ or $G \cong K_2$.

A statement equivalent to Theorem 2.1 is:

Theorem 2.3. Let G be a connected graph with $n \ge 3$ vertices. Let $k \ge 2$. Then diam(L(G)) > k, if and only if either F_1^k or F_2^k or F_3^k , depicted in Fig. 2, is an induced subgraph G.

3. A result for second line graph

Let P_{k-1} be the path with vertices $u_1, u_2, \ldots, u_{k-1}$, where u_i is adjacent to $u_{i+1}, i = 1, 2, \ldots, k-2$, $k \ge 3$. Let F_4^k be the graph obtained from P_{k-1} by joining two vertices to u_1 and another two vertices to u_{k-1} (see Fig. 3). F_4^k has k+3 vertices and k+2 edges.



Theorem 3.1. Let $k \ge 3$. If F_4^k is an induced subgraph of G, then $diam(L^2(G)) \ge k-1$.

Proof. Let $k \geq 3$. Let F_4^k be the induced subgraph of G. Then $L(F_4^k)$ is isomorphic to F_3^{k-1} , and by Lemma 1.1, $L(F_4^k)$ is an induced subgraph of L(G). Therefore F_3^{k-1} is an induced subgraph of L(G). Hence by Theorem 2.3, $diam(L(L(G))) = diam(L^2(G)) > k - 1$.

Acknowledgments. All authors thank the referees for helpful comments.

108

www.SID.ir

References

- A. R. Ashrafi and S. Yousefi, Note on the equiseparable trees, Iran. J. Math. Sci. Inf., 2, (2007), 15–20.
- 2. F. Buckley, Mean distance in line graphs, Congr. Numer., 32, (1981), 153-162.
- 3. F. Buckley, F. Harary, Distance in Graphs, Addison–Wesley, Redwood, 1990.
- N. Cohen, D. Dimitrov, R. Krakovski, R. Škrekovski and V. Vukašinović, On Wiener index of graphs and their line graphs, *MATCH Comm. Math. Comput. Chem.*, 64, (2010), 683–698.
- P. Dankelmann and S. Mukwembi, The distance concept and distance in graphs, in: I. Gutman and B. Furtula (Eds.), *Distance in Molecular Graphs – Theory*, Univ. Kragujevac, Kragujevac, 2012, pp. 3–48.
- T. Došlić, A. Graovac, F. Cataldo and O. Ori, Notes on some distance-based invariants for 2-dimensional square and comb lattices, *Iran. J. Math. Sci. Inf.*, 5, (2010), 61–68.
- G. H. Fath-Tabar and A. R. Ashrafi, The hyper-Wiener polynomial of graphs, Iran. J. Math. Sci. Inf., 6, (2011), 67–74.
- W. Goddard and O. R. Oellermann, Distance in graphs, in: M. Dehmer (Ed.), Structural Analysis of Complex Networks, Birkhäuser, Dordrecht, 2011, pp. 49–72.
- 9. I. Gutman, Distance of line graphs, Graph Theory Notes New York, 31, (1996), 49-52.
- I. Gutman, Edge versions of topological indices, in: I. Gutman and B. Furtula (Eds.), Novel Molecular Structure Descriptors – Theory and Applications II, Univ. Kragujevac, Kragujevac, 2010, pp. 3–20.
- I. Gutman and E. Estrada, Topological indices based on the line graph of the molecular graph, J. Chem. Inf. Comput. Sci., 36, (1996), 541–543.
- I. Gutman and L. Pavlović, More on distance of line graphs, Graph Theory Notes New York, 33, (1997), 14–18.
- I. Gutman and Ž. Tomović, On the application of line graphs in quantitative structure– property studies, J. Serb. Chem. Soc., 65, (2000), 577–580.
- A. Iranmanesh, I. Gutman, O. Khormali and A. Mahmiani, The edge versions of the Wiener index, MATCH Comm. Math. Comput. Chem., 61, (2009), 663–672.
- A. Mahmiani, O. Khormali and A. Iranmanesh, The explicit relations among the edge versions of detour index, *Iranian Journal of Mathematical Sciences and Informatics*, 3, (2008), 1–12.
- H. R. Maimani, Median and center of zero-divisor graph of commutative semigroups, Iranian Journal of Mathematical Sciences and Informatics, 3, (2008), 69–76.
- H. S. Ramane, A. B. Ganagi and I. Gutman, On a conjecture of the diameter of line graphs of graphs of diameter two, *Kragujevac J. Math.*, 36, (2012), 59–62.
- H. S. Ramane and I. Gutman, Counterexamples for properties of line graphs of graphs of diameter two, *Kragujevac J. Math.*, 34, (2010), 147–150.
- H. S. Ramane, D. S. Revankar, I. Gutman and H. B. Walikar, Distance spectra and distance energies of iterated line graphs of regular graphs, *Publ. Inst. Math. (Beograd)*, 85, (2009), 39–46.
- B. Wu, Wiener index of line graphs, MATCH Commun. Math. Comput. Chem., 64, (2010), 699–706.