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Abstract. It is the purpose of the present paper to outline an introduc-

tion in theory of embeddings in the 2-osculator bundle. First, we recall

the notion of 2-osculator bundle ([9], [2], [4]) and the notion of submani-

folds in the 2-osculator bundle ([9]). A moving frame is constructed. The

induced connections and the relative covariant derivation are discussed

in the fourth and fifth section ([15], [16]). The Ricci identities for the

deflection tensors are presented in the seventh section.
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1. Introduction

Generally, the geometries of higher order defined as the study of the category

of bundles of jets
(

Jk
0M,πk,M

)

is based on a direct approach of the properties

of objects and morphisms in this category, without local coordinates.

But, many mathematical models from Lagrangian Mechanics, Theoretical

Physics and Variational Calculus used multivariate Lagrangians of higher order

accelerations.

From here one can see the reason of construction of the geometry of the total

space of the bundle of higher accelerations (or the osculator bundle of higher

order) in local coordinates.
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As far we know the general theory of submanifolds (in particular the Finsler

submanifolds [5]) is far from being settled ([11], [5], [6], [7]). In [10] and [11]

R.Miron and M. Anastasiei give the theory of subspaces in generalized Lagrange

spaces. Also, in [8] and [9] R. Miron presented the theory of subspaces in higher

order Finsler and Lagrange spaces respectively.

This article is inspired by the original construction of the higher order ge-

ometry given by R. Miron and Gh. Atanasiu ([9], [12], [13], [14]) and the new

aspects give by Gh. Atanasiu in [1] and [2].

If M̌ is an immersed manifold in manifold M , a nonlinear connection on

Osc2M induce a nonlinear connection Ň on Osc2M̌. We take the canonical

N-linear metric connection D on the manifold Osc2M. This allows obtain of

the induced tangent and normal connections and the introduction of the rel-

ative covariant derivation in the algebra of d-tensor fields ([15]). If in [9]

R. Miron use the canonical metrical N-linear connection of the space L(2)n

having three coeficients
(

F i
jk, C1

i
jk, C2

i
jk

)

, in this article we take the canonical

metrical N-linear connection of the manifold Osc2M having nine coeficients
(

L
(i0)

a
bc, C

(i1)

a
bc, C

(i2)

a
bc

)

, (i = 0, 1, 2) ,([15], [16]).

In this paper we present the Ricci identities for the Liouville d-vector fields

z(1)α and z(2)α on the submanifold Osc2M̌ . For the Liouville d-vector fields

z(1)a and z(2)a on the manifold Osc2M the problem was solved by professor

Atanasiu Gh. in [1] and [2].

2. The 2-osculator bundle
(

Osc2M,π2,M
)

Let M be a real differentiable manifold of dimension n. A point of M will be

denoted by x and its local coordinate system by (U,ϕ) , ϕ (x) = (xa) . The in-

dices a, b, ...run over the set {1,2,...,n} and Einstein convention of summarizing

is adopted all over this work.

Let us consider two curves ρ, σ : I → M , having images in a domain of

local chart U ⊂ M. We say that ρ and σ have a ”contact of order 2” in a point

x0 ∈ U if: ρ (0) = σ (0) = x0, (0 ∈ I) , and for any function f ∈ F (U) :

dβ

dtβ
(f ◦ ρ) (t) |t=0=

dβ

dtβ
(f ◦ σ) (t) |t=0, (β = 1, 2) (2.1)

The relation ”contact of order 2” is an equivalence relation on the set of

smooth curves in M, which pass through the point x0. Let [ρ]x0 be a class

of equivalence relation. It will be called a ”2-osculator space” at the point

x0 ∈ M. The set of 2-osculator spaces at the point x0 ∈ M will be denoted by

Osc2x0
M , and we put

Osc2M = ∪
x0∈M

Osc2x0
M

One considers the mapping π2 : Osc2M → M define by π2
(

[ρ]x0

)

= x0.

Obviously, π2 is a surjection.
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The set Osc2M is endowed with a natural differentiable structure, induced

by that of the manifold M, so that π2 is a differentiable maping. It will be

descrieb bellow.

The curve ρ : I → M (φImρ ⊂ U) is analytically represented in the local

chart (U,ϕ) by x0 = xa
0 (= xa (0)) . Taking the function f from (2.1), succesively

equal to the coordinate functions xa, then a representative of the class [ρ]x0 is

given by

x∗a (t) = xa (0) + t
dxa

dt
(0) +

1

2
t2
d2xa

dt2
(0) , t ∈ (−ε, ε) ⊂ I.

The previous polynomials are determined by the coefficients

xa
0 = xa (0) , y(1)a =

dxa

dt
(0) , y(2)a =

1

2

d2xa

dt2
(0) (2.2)

Hence, the pair
(

(

π2
)−1

(U) ,Φ
)

, with Φ ([ρ]x0) =
(

xa
0 , y

(1)a, y(2)a
)

∈ R3n,

∀[ρ]x0 ∈
(

π2
)−1

(U) is a local chart on Osc2M . Thus a differentiable atlas AM

of the diferentiable structure on the manifold M determines a differentiable atlas

AOsc2M on Osc2M and therefore the triple
(

Osc2M ,π2,M
)

is a differentiable

bundle. We will identified the 2-osculator bundle
(

Osc2M,π2,M
)

with 2-

tangent bundle
(

T 2M,π2,M
)

.

By (2.2), a transformation of local coordinates
(

xa, y(1)a, y(2)a
)

→
(

x̃a, ỹ(1)a, ỹ(2)a
)

on the manifold Osc2M is given by














































x̃a = x̃a
(

x1, ..., xn
)

, det

(

∂x̃a

∂xb

)

6= 0

ỹ(1)a =
∂x̃a

∂xb
y(1)b

2ỹ(2)a =
∂ỹ(1)a

∂xb
y(1)b + 2

∂ỹ(1)a

∂y(1)b
y(2)b

(2.3)

One can see that Osc2M is of dimension 3n.

Let us consider the 2-tangent structure J on Osc2M

J

(

∂

∂xa

)

=
∂

∂y(1)a
, J

(

∂

∂y(1)a

)

=
∂

∂y(2)a
, J

(

∂

∂y(2)a

)

= 0,

where

(

∂

∂xa
|u,

∂

∂y(1)a
|u,

∂

∂y(2)a
|u

)

is the natural basis of the tangent space

TuOsc2M ,u ∈ Osc2M.If N is a nonlinear connection on Osc2M, then

N0 = N ,J (N0) = N1 are two distributions geometrically defined on Osc2M , all

of dimension n. Let us consider the distribution V2 onOsc2M locally generated

by the vector fields

{

∂

∂y(2)a

}

. Consequently, the tangent bundle of Osc2M at

the point u ∈ Osc2M is given by a direct sum of the vector space:
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TuOsc2M = N0 (u)⊕N1 (u)⊕ V2 (u) , ∀u ∈ Osc2M. (2.4)

We consider

{

δ

δxa
,

δ

δy1(a)
,

δ

δy(2)(a)

}

an adapted basis to the decomposition

(2.4) and its dual basis denoted by
(

dxa, δy(1)a, δy(2)a
)

, where



































dxa = dxa

δy(1)a = dy(1)a +M
(1)

a
bdx

b

δy(2)a = dy(2)a +M
(1)

a
bδy

b +M
(2)

a
bδy

(2)b.

(2.5)

Definition 2.1. A linear connection D on Osc2M is called N-linear con-

nection if it preserves by parallelism the horizontal and vertical distribution

N0, N1 and V2 on Osc2M.

Any N-linear connection D can be represented by a unique system of func-

tions DΓ (N) =

(

L
(i0)

a
bd, C

(i1)

a
bd, C

(i2)

a
bd

)

, (i = 0, 1, 2) . These functions are called

the coefficients of the N-linear connection D.

If on the manifold Osc2M a N-linear connection D is given, then there exists

an hi-, v1i- and v2i-covariant derivatives in local adapted basis (i = 0, 1, 2) .

Any d-tensor T , of type (r, s) can be represented in the adapted basis and

its dual basis in the form

T = T a1...ar

b1...bs
δa1 ⊗ ...⊗ ∂̇2ar

⊗ dxb1 ⊗ ...⊗ δy(2)bs

and we have

T a1...ar

b1...bs|id
= δaT

a1...ar

b1...bs
+ L

(i0)

a1

cdT
ca2...ar

b1...bs
+ ...+

+ L
(i0)

ar

cdT
a1...ar−1c

b1...bs
− L

(i0)

c
b1d

T a1...ar

cb2...bs
− ...− L

(i0)

c
bsd

T a1...ar

cb2...bs−1c

T a1...ar

b1...bs

(1)

| id= δ1aT
a1...ar

b1...bs
+ C

(i1)

a1

cdT
ca2...ar

b1...bs
+ ...+

+ C
(i1)

ar

cdT
a1...ar−1c

b1...bs
− C

(i1)

c
b1d

T a1...ar

cb2...bs
− ...− C

(i1)

c
bsd

T a1...ar

cb2...bs−1c

T a1...ar

b1...bs

(2)

| id= δ2aT
a1...ar

b1...bs
+ C

(i2)

a1

cdT
ca2...ar

b1...bs
+ ...+

+ C
(i2)

ar

cdT
a1...ar−1c

b1...bs
− C

(i2)

c
b1d

T a1...ar

cb2...bs
− ...− C

(i2)

c
bsd

T a1...ar

cb2...bs−1c

(

δ1a =
δ

δy(1)a
, δ2a =

δ

δy(2)a
; i = 0, 1, 2

)

.
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The operators ”|id” ,”
(1)

| id” and ”
(2)

| id” are called the hi-,v1i- and v2i-covariant

derivatives with respect to DΓ (N) .

Definition 2.2. A metric structure on the manifold Osc2M is a symmetric

covariant tensor field G of the type (0,2) which is non degenerate at each point

u ∈ Osc2M and of constant signature on Osc2M.

Locally, a metric structure looks as follows:

G = g
(0)

abdx
a ⊗ dxb + g

(1)
abδy

(1)a ⊗ δy(1)b + g
(2)

abδy
(2)a ⊗ δy(2)b,

where

rank

∥

∥

∥

∥

∥

g
(i)

ab

∥

∥

∥

∥

∥

= n, (i = 0, 1, 2) .

Definition 2.3. An N-linear connection D on Osc2M endowed with a struc-

ture metric G is said to be a N-linear metric connection if DXG = 0 for

every X ∈ X
(

Osc2M
)

.

3. Submanifolds in the 2-osculator bundle

Let M be a C∞ real, n-dimensional manifold and let M̌ be a real,

m-dimensional manifold, immersed in M via the immersion i : M̌ → M .

Localy, i can be given in the form

xa = xa
(

u1, ..., um
)

, rank

∥

∥

∥

∥

∂xa

∂uα

∥

∥

∥

∥

= m (3.1)

The indices a, b, c,....run over the set {1, ..., n} and α, β, γ, ... run on the set

{1, ...,m} . We assume 1 < m < n. If i is an embedding, then we identify M̌

with i
(

M̌
)

and say that M̌ is a submanifold of the manifold M. Therefore (3.1)

will be called the parametric equations of the submanifold M in the manifold

M .

The embedding i : M̌ → M determines an immersion Osc2i : Osc2M̌ →

Osc2M , defined by the covariant functor Osc2 : Man → Man.([9])

The mapping Osc2i : Osc2M̌ → Osc2M has the parametric equations:











































xa = xa
(

u1, ..., um
)

, rank

∥

∥

∥

∥

∂xa

∂uα

∥

∥

∥

∥

= m

y(1)a =
∂xa

∂uα
v(1)α

2y(2)a =
∂y(1)a

∂uα
v(1)α + 2

∂y(1)a

∂v(1)α
v(2)α,

(3.2)
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where


















∂xa

∂uα
=

∂y(1)a

∂v(1)α
=

∂y(2)a

∂v(2)α

∂y(1)a

∂uα
=

∂y(2)a

∂v(1)α
.

(3.3)

The Jacobian matrix of 3.2 is J
(

Osc2i
)

and its rank is 3m. So, Osc2i is an

immersion. The differential i∗ of the mapping Osc2i : Osc2M̌ → Osc2M maps

the cotangent space T ∗
(

Osc2M
)

at a point of Osc2M , into the cotangent space

T ∗
(

Osc2M̌
)

at a point of Osc2M̌ by the rule:

dxa =
∂xa

∂uα
duα

dy(1)a =
∂y(1)a

∂uα
duα +

∂y(1)a

∂v(1)α
dv(1)α

dy(2)a =
∂y(2)a

∂uα
duα +

∂y(2)a

∂v(1)α
dv(1)α +

∂y(2)a

∂v(2)α
dv(2)α.

(3.4)

We use the previous theory to study the induced geometrical objects from

Osc2M to Osc2M̌.

Let us consider a Finsler space ([11]) Fn =
(

M,F
(

x, y(1)
))

having gab
(

x, y(1)
)

=

1

2

∂2F 2

∂y(1)a∂y(1)b
as the fundamental tensor field. The restriction F̌ of the funda-

mental function F to the submanifold OscM̌ is given by

F̌
(

u, v(1)
)

= F
(

x (u) , y(1)
(

u, v(1)
))

and the pair F̌m =
(

M̌, F̌
)

is a Finsler space and it is called the induced

Finsler subspaces of the Finsler space Fn.

There exists a nonlinear connection on the manifold Osc2M determined only

by gab
(

x, y(1)
)

. The dual coefficients of this nonlinear connection are [9]

M
(1)

a
b =

∂Ga

∂y(1)b

M
(2)

a
b =

1

2

(

ΓM
(1)

a
b −M

(1)

a
dM
(1)

d
b

)

,

where

Ga =
1

2
γa
bc

(

x, y(1)
)

y(1)by(1)c,

Γ = y(1)a ∂
∂xa + 2y(2)a ∂

∂y(1)a

and γa
bc

(

x, y(1)
)

are the Christoffel symbols of the fundamental tensor gab.
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Next, we consider

Ba
α(u) =

∂xa

∂uα

and G =gabdx
a ⊗ dxb + gabδy

(1)a ⊗ δy(1)a + gabδy
(2)a ⊗ δy(2)a, the Sasaki

prolongation of the metric g along Osc2M.

Thus,
{

Ba
1 , B

a
2 , ..., B

a
m

}

are m-linear independent d-vector fields on Osc2M̌.

Also,
{

B1
α, B

2
α, ..., B

n
α

}

are d-covector fields, with respect to the next transfor-

mations of coordinates










































ūα = ūα
(

u1, ..., um
)

, rank

∥

∥

∥

∥

∂ūα

∂uβ

∥

∥

∥

∥

= m

v̄(1)α =
∂ūα

∂uβ
v(1)β

2v̄(2)α =
∂v̄(1)α

∂uβ
v(1)β + 2

∂v̄(1)α

∂v(1)β
v(2)β .

(3.5)

Of course, d-vector fields
{

Ba
1 , ..., B

a
m

}

are tangent to the submanifold M̌ .

We say that a d-vector field ξa
(

x, y(1), y(2)
)

is normal to Osc2M̌ if, on

π̌−1
(

Ǔ
)

⊂ Osc2M̌, we have

gab
(

x (u) , y(1)
(

u, v(1), v(2)
)

, y(2)
(

u, v(1), v(2)
))

Ba
α (u) ·

·ξb
(

x (u) , y(1)
(

u, v(1), v(2)
)

, y(2)
(

u, v(1), v(2)
))

= 0.

Consequently, on π̌−1
(

Ǔ
)

⊂ Osc2M̌ there exist n − m unit vector fields Ba
ᾱ,

(ᾱ = 1, ..., n−m) normal along Osc2M̌, and to each other:

gabB
a
αB

b
β̄
= 0, gabB

a
ᾱB

b
β̄
= δᾱβ̄,

(

ᾱ, β̄ = 1, ..., n−m
)

. (3.6)

The system of d-vectors Ba
ᾱ (ᾱ = 1, ..., n−m) is determined up to orthogonal

transformations of the form

Ba
ᾱ′ = A

β̄
ᾱ′B

a
β̄
,
∥

∥Aᾱ
ᾱ′

∥

∥ ∈ O (n−m) , (3.7)

where ᾱ, β̄, ... run over the set (1, 2, .., n−m) .

We say that the system of d-vectors {Ba
α, B

a
ᾱ} determines a frame in Osc2M

along to Osc2M̌.

Its dual frame will be denoted by
{

Bα
a

(

u, v(1), ..., v(2)
)

, Bᾱ
a

(

u, v(1), ..., v(2)
)}

.

This is also defined on an open set π̌−1
(

Ǔ
)

⊂ Osc2M̌, Ǔ being a domain of a

local chart on the submanifold M̌.

The conditions of duality are given by:

Ba
βB

α
a = δαβ , Ba

βB
ᾱ
a = 0, Bα

aB
a
β̄
= 0, Bᾱ

aB
a
β̄
= δᾱ

β̄
(3.8)

Ba
αB

α
b +Ba

ᾱB
ᾱ
b = δab . (3.9)

Using (3.6), we deduce:

gαβB
α
a = gabB

a
β, δᾱβ̄B

β̄
b = gabB

a
ᾱ. (3.10)
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So, we can look at the set

R =
{(

u, v(1), v(2)
)

;Ba
α (u) , Ba

ᾱ

(

u, v(1), v(2)
)}

(

u, v(1), v(2)
)

∈ π̌−1
(

Ǔ
)

as a moving frame. Now, we shall represent in R the

d-tensor fields from the space Osc2M , restricted to the open set π̌−1
(

Ǔ
)

.

4. Induced nonlinear connections

Now, let us consider the canonical nonlinear connection N on the Osc2M .

Then its dual coefficients M
(1)

a
b ,M

(2)

a
b depends only by the metric g. We will prove

that the restriction of the nonlinear connection N to Osc2M̌ uniquely deter-

mines an induced nonlinear connection Ň on Osc2M̌. Of course, Ň is well

determined by means of its dual coefficients

(

M̌
(1)

α
β , M̌

(2)

α
β

)

or by means of its

adapted cobasis
(

duα, δv(1)α, δv(2)α
)

.

Definition 4.1. A non-linear connection Ň on Osc2M̌ is called induced by

the nonlinear connection N if we have

δv(1)α = Bα
a δy

(1)a, δv(2)α = Bα
a δy

(2)a. (4.1)

Proposition 4.2. [16] The dual coefficients of the non-linear connection Ň are

M̌
(1)

α
β = Bα

a

(

Ba
0β +M

(1)

a
bB

b
β

)

M̌
(2)

α
β = Bα

a

(

1

2

∂Ba
δγ

∂uβ
v(1)δv(1)γ +Ba

δβv
(2)δ +M

(1)

a
bB

b
0β +M

(2)

a
bB

b
β

)

,

(4.2)

where M
(1)

a
b , M

(2)

a

b are the dual coefficients of the non-linear connection N.

Theorem 4.3. [16] The cobasis
(

dxa, δy(1)a, δy(2)a
)

restricted to Osc2M̌ is

uniquely represented in the moving frame R in the following form:



































dxa = Ba
βdu

β

δy(1)a = Ba
αδv

(1)α +Ba
ᾱK
(1)

ᾱ
βdu

β

δy(2)a = Ba
αδv

(2)α +Ba
β̄
K
(1)

β̄
αδv

(1)α +Ba
β̄
K
(2)

β̄
αdu

α,

(4.3)
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On Ricci identities for submanifolds in the 2-osculator bundle 9

where

K
(1)

ᾱ
β = Bᾱ

a

(

Ba
0β +M

(1)

a
bB

b
β

)

K
(2)

ᾱ
β = Bᾱ

a

(

1

2

∂Ba
δγ

∂uβ
v(1)δv(1)γ +Bb

δβv
(2)δ +M

(1)

a
bB

b
0β +M

(2)

a
bB

b
β −

−Bᾱ
f B

γ
d

(

Bf
γ +M

(1)

f
bB

b
γ

)(

Bd
0β +M

(1)

d
gB

g
β

)

(4.4)

are mixed d-tensor fields.

Proof. The first relation is obvious. From (3.2) and (4.2) we obtain (4.3). �

Generally, a set of functions T i...α...ᾱ
j...β...β̄

(

u, v(1), v(2)
)

which are d-tensors in the

index i, j,..., and d-tensors in the index α, β, ...and tensors with respect to the

transformations (3.7) in the index ᾱ, β̄, ... is calld a mixed d-tensor field on

Osc2M̌.

5. The relative covariant derivatives

We shall construct the operators ∇
(i)

of relative (or mixed) covariant deriva-

tion in the algebra of mixed d-tensor fields. It is clear that ∇
(i)

will be known if

its action on functions and on the vector fields of the form

Xa
(

x (u) , y(1)
(

u, v(1)
)

, y(2)
(

u, v(1), v(2)
))

Xα
(

u, v(1), v(2)
)

, X ᾱ
(

u, v(1), v(2)
)

(5.1)

are known.

Let D be the canonical N-linear metric connection on the manifoldOsc2M [2]

L
(00)

a
bc =

1

2
gad (δbgdc + δcgdb − δdgbc) ,

L
(i0)

a
bc = B

(jj)

a
bc +

1

2
gad
(

δcgbd − B
(jj)

f
cbgfd − B

(jj)

f
cdgbf

)

, (j = 1, 2)

C
(k1)

a
bc =

1

2
gadδ1bgbd, (k = 0, 2)

C
(l2)

a
bc =

1

2
gad∂̇2cgbd, (l = 0, 1)

C
(ii)

a
bc =

1

2
gad (δibgdc + δicgdb − δidgbc) , (i = 1, 2) .

(5.2)
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Definition 5.1. The coupling of the canonical N-linear metric connection D

with the induced nonlinear connection Ň along Osc2M̌ is locally given by the

set of its nine coefficients ĎΓ
(

Ň
)

=

(

Ľ
(i0)

a
bδ, Č

(i1)

a
bδ, Č

(i2)

a
bδ

)

, (i = 0, 1, 2) where

Ľ
(i0)

a
bδ = L

(i0)

a
bdB

d
δ + C

(i1)

a
bdB

d
δ̄
K
(1)

δ̄
δ + C

(i2)

a
bδB

d
δ̄
K
(2)

δ̄
δ

Č
(i1)

a
bδ = C

(i1)

a
bdB

d
δ + C

(i2)

a
bdB

d
δ̄
K
(1)

δ̄
δ

Č
(i2)

a
bδ = C

(i2)

a
bdB

d
δ .

(i = 0, 1, 2) (5.3)

We have the operators Ď
(i)

and D
(i)

(i = 0, 1, 2) with the property

Ď
(i)
Xa = D

(i)
Xa (modulo (4.3)) (5.4)

where

D
(i)
Xa = dXa +Xbω

(i)

a
b , (5.5)

and

Ď
(i)
Xa = dXa +Xb ω̌

(i)

a
b . (5.6)

Here ω
(i)

a
b and ω̌

(i)

a
b are the 1-forms of the canonical N-linear metric connection

D and of the coupling Ď respectively.

Of course, we can write Ď
(i)
Xa in the form

Ď
(i)
Xa = Xa

piδ duδ +Xa
(1)

| iδ δv(1)δ +Xa
(2)

| iδ δv(2)δ.

Definition 5.2. We call the induced tangent connection on Osc2M̌ by

the canonical N-linear metric connection D the set of its nine coefficients

D>Γ
(

Ň
)

=

(

L
(i0)

α
βδ, C

(i1)

α
βδ, C

(i2)

α
βδ

)

(i = 0, 1, 2) where

L
(i0)

α
βδ = Bα

d

(

Bd
βδ +B

f
β Ľ
(i0)

d
fδ

)

C
(i1)

α
βδ = Bα

dB
f
β Č
(i1)

d
fδ

C
(i2)

α
βδ = Bα

dB
f
β Č
(i2)

d
fδ.

(i = 0, 1, 2) (5.7)
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We have the operators D
(i)

> with the properties

D
(i)

>Xα = Bα
b Ď
(i)
Xb, for Xa = Ba

γX
γ

(5.8)

D
(i)

>Xα = dXα +Xβ ω
(i)

α
β , (5.9)

where ω
(i)

α
β are the connection 1-forms of D

(i)

> (i = 0, 1, 2) .

As in the case of Ď we may write

D
(i)

>Xα = Xα
|iδdu

δ +Xα
(1)

| iδ δv(1)δ +Xα
(2)

| iδ δv(2)δ.

Definition 5.3. We call the induced normal connection on Osc2M̌ by

the canonical N-linear metric connection D the set of its nine coefficients

D⊥Γ
(

Ň
)

=

(

L
(i0)

ᾱ
β̄δ
, C
(i1)

ᾱ
β̄δ
, C
(i2)

ᾱ
β̄δ

)

where

L
(i0)

ᾱ
β̄δ

= Bᾱ
d

(

δBd
β̄

δuδ
+B

f

β̄
Ľ
(i0)

d
fδ

)

C
(i1)

ᾱ
β̄δ

= Bᾱ
d

(

δBd
β

δv(1)δ
+B

f

β̄
Č
(i1)

d
fδ

)

C
(i2)

ᾱ
β̄δ

= Bᾱ
d

(

∂Bd
β

∂v(2)δ
+B

f

β̄
Č
(i2)

d
fδ

)

.

(i = 0, 1, 2) (5.10)

As before, we have the operators D
(i)

⊥ with the properties

D
(i)

⊥X ᾱ = Bᾱ
b Ď
(i)
Xb, for Xa = Ba

γ̄X
γ̄

(5.11)

D
(i)

⊥X ᾱ = dX ᾱ +X β̄ ω
(i)

ᾱ
β̄

(5.12)

where ω
(i)

ᾱ
β̄
are the connection 1-forms of D

(i)

⊥ (i = 0, 1, 2) .

We may set

D
(i)

⊥X ᾱ = X ᾱ
|iδdu

δ +X ᾱ
(1)

| iδ δv(1)δ +X ᾱ
(2)

| iδ δv(2)δ.

Now, we can define the relative (or mixed) covariant derivatives ∇
(i)

enounced

at the begining of this section.
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Theorem 5.4. A relative (mixed) covariant derivation in the algebra of mixed

d-tensor fields is an operator ∇
(i)

for which the following properties hold:

∇
(i)
f = df, ∀f ∈ F

(

Osc2M̌
)

∇
(i)
Xa = Ď

(i)
Xa, ∇

(i)
Xα = D

(i)

ᵀXα, ∇
(i)
X ᾱ = D

(i)

⊥X ᾱ (i = 0, 1, 2) .

The connection 1-forms ω̌
(i)

a
b , ω

(i)

α
β , ω

(i)

ᾱ
β̄
will be called the connection 1-forms

of ∇
(i)
.

The Liouville vector fields for submanifolds, introduced by professor

Miron in [9], are

1
γ = v(1)α

∂

∂v(2)α

2
γ = v(1)α

∂

∂v(1)α
+ 2v(2)α

∂

∂v(2)α
.

If we represent this vector fields in the adapted basis, we get

1
γ = z(1)α∂̇2α,

2
γ = z(1)αδ1α + 2z(2)α∂̇2α

where

z(1)α = v(1)α, z(2)α = v(2)α +
1

2
M
(1)

α
βv

(1)β.

D -vector fields z(1)α and z(2)α are called the Liouville d-vector fields of

submanifold Osc2M̌.

The
(

z(1)
)

- and
(

z(2)
)

-deflection tensor fields are:

z(1)α|iβ =
(1)

D
i

α
β , z(1)α

(1)

| iβ=
(11)

d
i

α
β , z(1)α

(2)

| iβ=
(12)

d
i

α
β ,

z(2)α|iβ =
(2)

D
i

α
β , z(2)α

(1)

| iβ=
(21)

d
i

α
β , z(2)α

(2)

| iβ=
(22)

d
i

α
β .

(5.13)

Proposition 5.5. The
(

z(1)
)

-deflection fields have the expression:

(1)

D
i

α
β = −N

1

α
β + z(1)γ L

(i0)

α
γβ ,

(11)

d
i

α
β = δαβ + z(1)γ C

(i1)

α
γβ ,

(12)

d
i

α
β = z(1)γ C

(i2)

α
γβ.

(5.14)
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Proof. Indeed, if we take

z(1)α|iβ = δβz
(1)α + z(1)γ L

(i0)

α
γβ,

z(1)α
(j)

| iβ= δjβz
(1)α + z(1)γ C

(ij)

α
γβ ,
(

i = 0, 1, 2; j = 1, 2; δ2β = ∂̇2β

)

we find the Formulae (5.14). �

Proposition 5.6. The
(

z(2)
)

-deflection fields are given by

(2)

D
i

α
β =

1

2

(

N
2

α
β +M

2

α
β

)

+
1

2
z(1)γδβN

1

α
γ + z(2)γ L

(i0)

α
γβ,

(21)

d
i

α
β = −

1

2

(

2N
2

α
β −N

1

α
β

)

+
1

2
z(1)γB

11

α
γβ + z(2)γ C

(i1)

α
γβ,

(22)

d
i

α
β = δαβ +

1

2
z(1)γB

12

α
γβ + z(2)γ C

(i2)

α
γβ.

(5.15)

Proof. Indeed, if we take

z(2)α|iβ = δβz
(2)α + z(2)γ L

(i0)

α
γβ,

z(2)α
(j)

| iβ= δjβz
(2)α + z(2)γ C

(ij)

α
γβ ,
(

i = 0, 1, 2; j = 1, 2; δ2β = ∂̇2β

)

we find the Formulae (5.15). �

6. Adapted components of torsion and curvature tensors

The study of the adapted components of the torsion and curvature tensors

of an arbitrary N -linear connection DΓ(N) on Osc2M was done in [2] and [1].

In what follows, we study the adapted components of the torsion and curvature

tensors for the relative (or mixed) covariant derivatives ∇
(i)
, (i = 0, 1, 2).

Theorem 6.1. In local coordinates, the torsion d-tensors of the relative (or

mixed) covariant derivatives ∇
(i)

have the next expresions:

T
(00)

α
βγ = L

(00)

α
βγ − L

(00)

α
γβ , T

(01)

α
βγ = R

(01)

α
βγ = δγN

1

α
β − δβN

1

α
γ ,

T
(02)

α
βγ = R

(02)

α
βγ = δγN

2

α
β − δβN

2

α
γ+

+N
1

α
ε

(

δγN
1

ε
β − δβN

1

ε
γ

)

,
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P
(10)

α
βγ = C

(10)

α
βγ , P

(11)

α
βγ = δ1γN

1

α
β − L

(10)

α
γβ,

P
(20)

α
βγ = C

(20)

α
βγ , P

(12)

α
βγ = δ1γN

2

α
β − δβN

1

α
γ +N

1

α
ε

(

δ1γN
1

ε
β

)

,

P
(21)

α
βγ = ∂̇2γN

1

α
β , P

(22)

α
βγ = ∂̇2γN

2

α
β +N

1

α
ε

(

∂̇2γN
1

ε
β

)

− L
(20)

α
γβ,,

(6.1)

S
(11)

α
βγ = C

(11)

α
βγ − C

(11)

α
γβ , S

(12)

α
βγ = R

(12)

α
βγ = δ1γN

1

α
β − δ1βN

1

α
γ ,

Q
(21)

α
βγ = C

(12)

α
βγ , Q

(22)

α
βγ = ∂̇2γN

1

α
β − C

(21)

α
γβ,

S
(21)

α
βγ = 0, S

(22)

α
βγ = C

(22)

α
βγ − C

(22)

α
γβ.

Proof. Using the general local expressions from [2] and [1], which give the d-

components of the torsion tensor of an N -linear connection, DΓ(N), we deduce

that the adapted components of the mixed covariant derivatives ∇
(i)
, (i = 0, 1, 2)

are given by the formulas from theorem. �

The following d-tensor fields will be needed in our calculations.

i

T
(0)

α
βγ = L

(i0)

α
βγ − L

(i0)

α
γβ

i

P
(jj)

α
βγ = B

(jj)

α
βγ − L

(i0)

α
γβ

i

Q
(22)

α
βγ = B

(21)

α
βγ − C

(i1)

α
γβ ,

i

S
(j)

α
βγ = C

(ij)

α
βγ − C

(ij)

α
γβ,

(i = 0, 1, 2; j = 1, 2) .

(6.2)

We remark that we have

0

T
(0)

α
βγ = T

(00)

α
βγ ,

j

P
(jj)

α
βγ = P

(jj)

α
βγ ,

2

Q
(22)

α
βγ =

2

Q
(22)

α
βγ ,

j

S
(j)

α
βγ = S

(j)

α
βγ , (j = 1, 2) .
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Theorem 6.2. In local coordinates, the curvature d-tensors of the relative (or

mixed) covariant derivatives ∇
(i)

have the next expresions:

R
(0i)

b
a
γδ = δδ L

(i0)

a
bγ − δβ L

(i0)

a
bδ + L

(i0)

e
bγ L

(i0)

a
eδ − L

(i0)

e
bδ L

(i0)

a
eγ+

+ C
(i1)

a
bσ R

(01)

σ
γδ + C

(i2)

a
bσ R

(02)

σ
γδ,

P
(1i)

b
a
γδ = δ1δ L

(i0)

a
bγ − C

(i1)

a
bδ |iγ + C

(i1)

a
bσ

i

P
(11)

σ
γδ + C

(i2)

a
bσ

i

P
(12)

σ
γδ,

P
(2i)

b
a
γδ = ∂̇2δ L

(i0)

a
bγ − C

(i2)

a
bδ |iγ + C

(i1)

a
bσ

i

P
(21)

σ
γδ + C

(i2)

a
bσ

i

P
(22)

σ
γδ,

Q
(2i)

b
a
γδ = ∂̇2δ C

(i1)

a
bγ − δ1γ C

(i2)

a
bδ + C

(i1)

e
bγ C

(i2)

a
eδ − C

(i1)

e
bδ C

(i1)

a
eγ+

+ C
(i2)

a
bσ P

(21)

σ
γδ

S
(1i)

b
a
γδ = δ1δ C

(i1)

a
bγ − δ1γ C

(i1)

a
bδ + C

(i1)

e
bγ C

(i1)

a
eδ − C

(i1)

e
bδ C

(i1)

a
eγ+

C
(i2)

a
bσ R

(12)

σ
γδ

S
(2i)

b
a
γδ = ∂̇2δ C

(i2)

a
bγ − ∂̇2γ C

(i1)

a
bδ + C

(i2)

e
bγ C

(i2)

a
eδ − C

(i2)

e
bδ C

(i2)

a
eγ

(6.3)

and

R
(0i)

β
α
γδ = δδ L

(i0)

α
βγ − δβ L

(i0)

α
βδ + L

(i0)

ε
βγ L

(i0)

α
εδ − L

(i0)

ε
βδ L

(i0)

α
εγ+

+ C
(i1)

α
βσ R

(01)

σ
γδ + C

(i2)

α
βσ R

(02)

σ
γδ,

P
(1i)

β
α
γδ = δ1γ L

(i0)

α
βγ − C

(i1)

α
βδ|iγ + C

(i1)

α
βσ

i

P
(11)

σ
γδ + C

(i2)

α
βσ

i

P
(12)

σ
γδ,

P
(2i)

β
α
γδ = ∂̇2δ L

(i0)

α
βγ − C

(i2)

α
βδ|iγ + C

(i1)

α
βσ

i

P
(21)

σ
γδ + C

(i2)

α
βσ

i

P
(22)

σ
γδ,
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Q
(2i)

β
α
γδ = ∂̇2δ C

(i1)

α
βγ − δ1γ C

(i2)

α
βδ + C

(i1)

ε
βγ C

(i2)

α
εδ − C

(i1)

ε
βδ C

(i1)

α
εγ+

+ C
(i2)

α
βσ P

(21)

σ
γδ

S
(1i)

β
α
γδ = δ1δ C

(i1)

α
βγ − δ1γ C

(i1)

α
βδ + C

(i1)

ε
βγ C

(i1)

α
εδ − C

(i1)

ε
βδ C

(i1)

α
εγ+

C
(i2)

α
βσ R

(12)

σ
γδ

S
(2i)

β
α
γδ = ∂̇2δ C

(i2)

α
βγ − ∂̇2γ C

(i1)

α
βδ + C

(i2)

ε
βγ C

(i2)

α
εδ − C

(i2)

ε
βδ C

(i2)

α
εγ

(6.4)

and

R
(0i)

β
α
γδ = δδ L

(i0)

α
βγ

− δβ L
(i0)

α
βδ

+ L
(i0)

ε
βγ

L
(i0)

α
εδ − L

(i0)

ε
βδ

L
(i0)

α
εγ+

+ C
(i1)

α

βσ
R
(01)

σ
γδ + C

(i2)

α

βσ
R
(02)

σ
γδ,

P
(1i)

β
α
γδ = δ1γ L

(i0)

α
βγ

− C
(i1)

α
βδ|iγ

+ C
(i1)

α
βσ

i

P
(11)

σ
γδ + C

(i2)

α
βσ

i

P
(12)

σ
γδ,

P
(2i)

β
α
γδ = ∂̇2δ L

(i0)

α
βγ

− C
(i2)

α
βδ|iγ

+ C
(i1)

α
βσ

i

P
(21)

σ
γδ + C

(i2)

α
βσ

i

P
(22)

σ
γδ,

Q
(2i)

β
α
γδ = ∂̇2δ C

(i1)

α
βγ

− δ1γ C
(i2)

α
βδ

+ C
(i1)

ε
βγ

C
(i2)

α
εδ − C

(i1)

ε
βδ

C
(i1)

α
εγ+

+ C
(i2)

α
βσ

P
(21)

σ
γδ,

S
(1i)

β
α
γδ = δ1δ C

(i1)

α
βγ

− δ1γ C
(i1)

α
βδ

+ C
(i1)

ε
βγ

C
(i1)

α
εδ − C

(i1)

ε
βδ

C
(i1)

α
εγ+

C
(i2)

α

βσ
R
(12)

σ
γδ,

S
(2i)

β
α
γδ = ∂̇2δ C

(i2)

α

βγ
− ∂̇2γ C

(i1)

α

βδ
+ C

(i2)

ε

βγ
C
(i2)

α
εδ − C

(i2)

ε

βδ
C
(i2)

α
εγ

. (6.5)

(

i = 0, 1, 2;
i

P
(12)

α
βγ = P

(12)

α
βγ ;

i

P
(21)

α
βγ = P

(21)

α
βγ ; R

(22)

α
βγ = 0; δ0a = δa, δ2a = ∂̇2a

)

.
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Proof. The general formulas that express the local curvature d-tensors of an

arbitrary N-linear connection (for more details, see [2] and [1]), applied to the

relative covariant derivatives ∇
(i)
, (i = 0, 1, 2), imply the above formulas. �

7. The Ricci identities

Let ĎΓ
(

Ň
)

=

(

Ľ
(i0)

a
bδ, Č

(i1)

a
bδ, Č

(i2)

a
bδ

)

be the coupling of the canonical N-

linear metric connection D (5.2) with the induced nonlinear connection N

along the manifold Osc2M , D>Γ
(

Ň
)

=

(

L
(i0)

α
βδ, C

(i1)

α
βδ, C

(i2)

α
βδ

)

and D⊥Γ
(

Ň
)

=
(

L
(i0)

ᾱ
β̄δ
, C
(i1)

ᾱ
β̄δ
, C
(i2)

ᾱ
β̄δ

)

(i = 0, 1, 2) the induced tangent connection on Osc2M̌

and the induced normal connection on Osc2M̌, respectively.

Theorem 7.1. [3] For any d-vector fields Xα, the following Ricci identities

hold:

Xα
|iβ |iγ −Xα

|iβ |iγ = Xδ R
(0i)

δ
α
βγ −

(i)

T
(0)

σ
βγX

α
|iσ − R

(01)

σ
βγX

α
(1)

| iσ −

− R
(02)

σ
βγX

α
(2)

| iσ,

Xα
|iβ

(1)

| iγ −Xα
(1)

| iγ |iβ = Xδ P
(1i)

δ
α
βγ − C

(i1)

σ
βγX

α
|iσ −

(i)

P
(11)

σ
βγX

α
(1)

| iσ

− P
(12)

σ
βγX

α
(2)

| iσ,

Xα
|iβ

(2)

| iγ −Xα
(2)

| iγ |iβ = Xδ P
(2i)

δ
α
βγ − C

(i2)

σ
βγX

α
|iσ − P

(21)

σ
βγX

α
(1)

| iσ

−
(i)

P
(22)

σ
βγX

α
(2)

| iσ,

(7.1)
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Arc
hive

 of
 S

ID

18 Oana Alexandru

Xα
(1)

| iβ

(2)

| iγ −Xα
(2)

| iγ

(1)

| iβ = Xδ Q
(21)

δ
α
βγ − C

(i2)

σ
βγX

α
(1)

| iσ −

−
(i)

Q
(22)

σ
βγX

α
(2)

| iσ,

Xα
(j)

| iβ

(j)

| iγ −Xα
(j)

| iγ

(j)

| iβ = Xδ S
(ji)

δ
α
βγ −

(i)

S
(j)

σ
βγX

α
(1)

| iσ −

− R
(j2)

σ
βγX

α
(2)

| iσ

where R
(22)

α
βγ = 0, (i = 0, 1, 2, j = 1, 2) and

X = X(0)αδα +X(1)αδ1α +X(2)α∂̇2α

is an arbitrary d-vector field on the submanifold Ě = Osc2M̌.

Proof. Let (YA) and (ωA) , where A ∈ {(i) a, i = 0, 1, 2}, be on Ě = Osc2M̌

the bases and the dual bases adapted to the nonlinear connection N , and let

X = XFYF be a d-vector field on E∗. In this context, using the following true

equalities (applied for the induced tangent connection D>Γ
(

Ň
)

):

(1) DYC
YB = ΓF

BCYF ,

(2) [YB , YC ] = RF
BCYF ,

(3) T(YC , YB) = TF
BCYF = {ΓF

BC − ΓF
CB −RF

CB}YF ,

(4) R(YC , YB)YA = RF
ABCYF ,

(5) DYC
ωB = −ΓB

FCω
F ,

(6) [R(YC , YB)X ]⊗ ωB ⊗ ωC = {DYC
DYB

X−

−DYB
DYC

X −D[YC,YB ]X} ⊗ ωB ⊗ ωC ,

by a direct calculation, we find that

XA
:B:C −XA

:C:B = XF
R

A
FBC −XA

:FT
F
BC , (7.2)

where ”:G” represents one from the local covariant derivatives ”|iδ”, ”
(1)

| iδ” or

”
(2)

| iδ” produced by the induced tangent connection D>Γ
(

Ň
)

.

Taking into account in (7.2) that the indices A,B,C, . . . belong to the set

{(i) a, i = 0, 1, 2} by complicated computations, we find what we were looking

for. �

The Ricci identities (7.1) applied to the Liouville d-vector fields z(1)α and

z(2)α lead to the next theorem.
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Theorem 7.2. The deflection tensor fields satisfy the following identities:

(j)

D
i

α
β |iγ −

(j)

D
i

α
γ |iβ = z(j)δ R

(0i)
δ
α
βγ −

(j)

D
i

α
δ

(i)

T
(0)

δ
βγ−

−
(j1)

d
i

α
δ R
(01)

δ
βγ −

(j2)

d
i

α
δ R
(02)

δ
βγ ,

(j)

D
i

α
β

(1)

| iγ −
(j1)

d
i

α
γ |iβ = z(j)δ P

(1i)
δ
α
βγ −

(j)

D
i

α
δ C
(i1)

δ
βγ−

−
(j1)

d
i

α
δ

(i)

P
(11)

σ
βγ −

(j2)

d
i

α
δ P
(12)

δ
βγ ,

(j)

D
i

α
β

(2)

| iγ −
(j2)

d
i

α
γ |iβ = z(j)δ P

(2i)
δ
α
βγ −

(j)

D
i

α
δ C
(i2)

σ
βγ−

−
(j1)

d
i

α
δ P
(21)

δ
βγ −

(j2)

d
i

α
δ

(i)

P
(22)

σ
βγ ,

(j1)

d
i

α
β

(2)

| iγ −
(j2)

d
i

α
γ

(1)

| iβ = z(j)δ Q
(2i)

δ
α
βγ −Xα

(1)

| iσ −

−
(j1)

d
i

α
δ C
(i2)

δ
βγ −

(j2)

d
i

α
δ

(i)

Q
(22)

δ
βγ ,

(7.3)

(ji)

d
i

α
β

(l)

| iγ −
(ji)

d
i

α
γ

(l)

| iβ = z(j)δ S
(li)

δ
α
βγ−

−
(jl)

d
i

α
δ

(l)

S
(i)

δ
βγ −

(j2)

d
i

α
δ R
(l2)

δ
βγ ,

(

i = 0, 1, 2; j, l = 1, 2; R
(22)

α
βγ = 0.

)

Also, if the
(

z(1)
)

-and
(

z(2)
)

-deflection tensors have the following particular

form
(1)

D
i

α
β = 0,

(11)

d
i

α
β = δαβ ,

(12)

d
i

α
β = 0

(2)

D
i

α
β = 0,

(21)

d
i

α
β = 0,

(22)

d
i

α
β = δαβ

(7.4)

then, the fundamental identities from (7.3) are very important, especially for

applications.
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Proposition 7.3. With the deflection tensor which are given by (7.4), the

following identities hold:

z(j)δ R
(0i)

δ
α
βγ = R

(0j)

α
βγ , z(1)δ P

(2i)
δ
α
βγ = P

(21)

α
βγ , z(2)δ P

(1i)
δ
α
βγ = P

(12)

α
βγ ,

z(j)δ P
(ji)

δ
α
βγ = P

(jj)

α
βγ , z(1)δ Q

(2i)
δ
α
βγ = C

(i2)

α
βγ , z(2)δ Q

(2i)
δ
α
βγ =

i

Q
(22)

α
βγ ,

z(j)δ S
(ji)

δ
α
βγ =

j

S
(i)

α
βγ , z(1)δ S

(2i)
δ
α
βγ = 0, z(2)δ S

(1i)
δ
α
βγ = R

(12)

α
βγ .

(7.5)

(i = 0, 1, 2; j = 1, 2) .

Proof. Using the Ricci identities of the Liouville d-vector fields z(1)α and z(2)α

from the last theorem and the particular form of the
(

z(1)
)

-and
(

z(2)
)

-deflection

tensors from (7.4) we get the Formulae (7.5). �

Remark 7.4. The deflection d-tensor identities (7.3) will be used in the near

future for the construction of the geometrical Maxwell equations that will gov-

ern the abstract ”electromagnetism” in the Lagrange subspaces of second order

(this is our work in progress).
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