Iranian Journal of Mathematical Sciences and Informatics Vol. 8, No. 2 (2013), pp 23-30

Higher rank Einstein solvmanifolds

M. Zarghani

Department of Mathematics, Tarbiat Modares University, Tehran, Iran

E-mail: zarghanim@yahoo.com

ABSTRACT. In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.

Keywords: Nilpotent Lie algebra, Einstein, Solvmanifold, Critical point, Ricci soliton, Left invariant metric.

2000 Mathematics subject classification: Primary 53C44; Secondary 22E25.

1. INTRODUCTION

ABSTRACT. In this paper we study the structure of standard Einstein
solvmanifolds of arbitrary rank. Also the validity of a variational method
for finding standard Einstein solvmanifolds is proved.
Keywords: Nilpotent L General form of standard Einstein solvmanifolds were determined by Jense Heber (see [2]). Later, Gorge Lauret deeply studied this kind of manifolds. Solvable Lie group endowed with the left invariant Riemanian metric is called solvmanifold. Let S be a simply connected Lie group with the corresponding Lie algebra s endowed with the inner product determined by $\langle , , \rangle$ and solvable Lie bracket $[.,.]$. We call S a higher rank solvmanifold if

$$
s = n \oplus a; \quad n = [s, s], \ a = n^{\perp},
$$

where n is a metric nilpotent Lie algebra of dimension k . The codimension n is called the rank of S. The solvable Lie group $(S, [\ldots], < \ldots)$ is called standard if a is abelian and it is said to be Einstein if its Ricci tensor $ric_{[...]}$ satisfies $ric < 0$, \Rightarrow $c < 0$, \Rightarrow \Rightarrow for some $c \in \mathbb{R}$. *s* is called a metric solvable extension of n if the restriction of the Lie bracket and inner product of s to n coincide respectively with the Lie bracket and inner product of n. Let $\Lambda^2 n^* \otimes n$

Received 18 March 2010; Accepted 29 May 2012

c 2013 Academic Center for Education, Culture and Research TMU

²³

be the vector space of all bilinear skew-symmetric maps from $n \times n$ to n. There is a natural action of $GL(k)$ on $\Lambda^2 n^* \otimes n$ which is given by

$$
\phi \cdot \mu(X, Y) = \phi \mu(\phi^{-1}X, \phi^{-1}Y); \ X, Y \in n, \ \phi \in GL(k), \ \mu \in \Lambda^2 n^* \otimes n.
$$

Let N denote a simply connected nilpotent Lie group with Lie algebra (n, μ) endowed with the left invariant Riemannian metric $\langle , , \rangle_n$, where μ is a nilpotent Lie algebra on n. The Ricci operator $R_{\mu}: n \to n$ of N is defined by

$$
\langle R_\mu \cdot, \cdot \rangle_n = ric \langle \cdot, \cdot \rangle_n .
$$

This operator is reduced to

$$
(1.1) < R_{\mu}X, Y> = -\frac{1}{2}\sum_{i,j} < \mu(X, X_i), X_j) > \mu(Y, X_i), X_j) >
$$

\n
$$
+ \frac{1}{4}\sum_{i,j} < \mu(X_i, X_j), X> < \mu(X_i, X_j), Y> ,
$$

\nfor all $X, Y \in n$, where $\{X_1, X_2, ..., X_k\}$ is any orthonormal basis of *n*. The
\ninner product $\langle \cdot, \cdot \rangle > n$ determines an inner product on $\Lambda^2 n^* \otimes n$, denoted by
\n $\langle \cdot, \cdot \rangle > \text{ and given by}$
\n $\langle \mu, \lambda \rangle = \sum_{i,j,k} < \mu(X_i, X_j), X_k> < \lambda(X_i, X_j), X_k>$.
\nAlso it naturally determines a norm on $\Lambda^2 n^* \otimes n$ defined by
\n $\forall \lambda \in \Lambda^2 n^* \otimes n$ $||\lambda|| = \sum_{ijk} < \lambda(X_i, X_j), X_{\nu} >^2$.
\nConsider the Riemannian function
\n $F_k : \Lambda^2 n^* \otimes n \longrightarrow \mathbb{R}, F_k(\mu) = tr R_{\mu}^2$
\nand the sphere S_r given by
\n
$$
S_r = \{\mu \in \Lambda^2 n^* \otimes n; ||\mu||^2 = 2r^2\},
$$

\nfor some $r \in \mathbb{R}$. Let \aleph_k be the vector space of all nilpotent Lie brackets on *n*
\nand $Der(\mu)$ be the Lie algebra of all derivations on *n*. Then $\mu \in \aleph_k$ is called a
\nRicci soliton if $R_{\mu} = eI + D$, for some $D \in Der(\mu)$ and $c \in \mathbb{R}$.
\nIn [6], Jorge Laurent has proved that the standard Einstein solvmanifolds are
\nexactly the critical points of modified scalar curvature function $F_k|_{S_1}$.
\n**Theorem 1.1.** [6]. For $\mu \in \aleph_k \cap S_1$, the following statements are equivalent:

for all $X, Y \in n$, where $\{X_1, X_2, ..., X_k\}$ is any orthonormal basis of n. The inner product $\langle \, \cdot \, , \, \cdot \rangle_n$ determines an inner product on $\Lambda^2 n^* \otimes n$, denoted by $\langle \, . \, , \, . \, \rangle$ and given by

$$
\langle \mu, \lambda \rangle = \sum_{i,j,k} \langle \mu(X_i, X_j), X_k \rangle \langle \lambda(X_i, X_j), X_k \rangle.
$$

Also it naturally determines a norm on $\Lambda^2 n^* \otimes n$ defined by

$$
\forall \lambda \in \Lambda^2 n^* \otimes n \qquad \|\lambda\| = \sum_{ijk} \langle \lambda(X_i, X_j), X_{ij} \rangle^2.
$$

Consider the Riemannain function

$$
F_k: \Lambda^2 n^* \otimes n \longrightarrow \mathbb{R}, \quad F_k(\mu) = tr R_\mu{}^2
$$

and the sphere S_r given by

$$
S_r = \{ \mu \in \Lambda^2 n^* \otimes n; ||\mu||^2 = 2r^2 \},\
$$

for some $r \in \mathbb{R}$. Let \aleph_k be the vector space of all nilpotent Lie brackets on n and $Der(\mu)$ be the Lie algebra of all derivations on n. Then $\mu \in \aleph_k$ is called a Ricci soliton if $R_{\mu} = cI + D$, for some $D \in Der(\mu)$ and $c \in \mathbb{R}$.

In [6], Jorge Lauret has proved that the standard Einstein solvmanifolds are exactly the critical points of modified scalar curvature function $F_k|_{S_1}$.

Theorem 1.1. [6]. For $\mu \in \aleph_k \cap S_1$, the following statements are equivalent:

- (i) μ is a critical point of $F_k|_{S_1}$.
- (ii) μ is a critical point of $F_k|_{GL(k), \mu \cap S_1}$.
- (iii) μ admits a rank-one extension which is Einstein.

(iv) μ is a Ricci soliton.

Title 25

2. EINSTEIN SOLVMANIFOLDS OF RANK ≥ 1

In this section, the structure of standard Einstein solvmanifolds is introduced. The next lemma provides some useful properties of solvable Lie bracket and inner product of a solvable Lie group. Then, we extend the Ricci soliton in [4] for any arbitrary rank. We call it multiple Ricci soliton.

Lemma 2.1. [2]. Let $(s = n \oplus a, [\ldots], < \ldots)$ be a metric solvable extension of $(n, \mu, \langle \ldots \rangle)$, where for every $0 \neq A \in \mathfrak{a}$, ad_A is nonzero and symmetric, then

 $(i) < R_{[.,.]}A, B \geq -\frac{tr(ad_Aad_B)}{F}$, for all $A, B \in \mathfrak{a}$. $(ii) < R_{[.,.]}A, X \geq 0$, for all $A \in a, X \in n$. (iii) $R_{[.,.]]_n} = -ad_Z|_n + R_\mu$, where $\langle Z, X \rangle = tr(ad_X)$, for all $X \in n$.

Definition 2.2. $0 \neq \mu \in \aleph_k$ is called a multiple Ricci soliton of degree r if

- (a) $R_{\mu} = c_{\mu}I + D_{\mu}; D_{\mu} \in Der(\mu), c_{\mu} \in \mathbb{R}.$
- (b) There are nonzero symmetric derivations D_i , $1 \le i \le r$, such that

$$
D_{\mu} = D_1 + D_2 + \ldots + D_r, \quad tr D_i D_j = -\delta_{ij} c_{\mu} tr D_i
$$

Remark 2.3. If μ is a multiple Ricci soliton of degree r, then μ is a multiple Ricci soliton of degree less than r. Therefore, μ is the critical point of $F_k|_{S_r \cap GL(k), \mu}.$

Using Definition 2.1, we study the structure of standard Einstein solvmanifolds as follows.

Proposition 2.4. For $0 \neq \mu \in \aleph_k \cap S_r$, the following statements are equivalent:

- (i) μ admits a metric extension which is Einstein.
- (ii) μ is a multiple Ricci soliton.

Definition 2.2. $0 \neq \mu \in \mathbb{N}_k$ is called a multiple Ricci soliton of degree *r* if

(a) $R_\mu = c_\mu I + D_\mu$; $D_\mu \in Der(\mu)$, $c_\mu \in \mathbb{R}$.

(b) There are nonzero symmetric derivations D_i , $1 \leq i \leq r$, such that
 $D_\mu = D_1 +$ *Proof.* Let the Lie algebra (n, μ) admit an Einstein metric extension S with corresponding Lie algebra $(s = n \oplus a, [\ldots], < \ldots)$ such that $dim(a) =$ r. Let $\{H_1, H_2, \ldots, H_r\}$ be an orthonormal basis for a and Z be the mean curvature vector field for the simply connected Lie group N with Lie algebra n . A straightforward calculation shows that $D_{\mu} = D_1 + D_2 + \ldots + D_r$, where $D_{\mu} :=$ $ad_Z|_{n}$ and $D_i = tr(ad_{H_i})ad_{H_i}|_{n}$. [...] is the Lie bracket. Hence, $D_i\mu(.,.)$ $\mu(.,D_i.) + \mu(D_i,.)$; that is to say, D_i 's are derivations on n. Suppose that D_i 's and D_μ are symmetric (see [2; 4.10]). Let $Z_i = tr(ad_{H_i})H_i$, then Lemma 2.1 implies that

$$
tr D_i D_j = tr (ad_{Z_i} ad_{Z_j}) = - \langle R_{[.,.]} Z_i, Z_j \rangle = -c_\mu \langle Z_i, Z_j \rangle = -\delta_{ij} c_\mu tr D_i.
$$

- Also $R_{\mu} = c_{\mu}I + D_{\mu}$, for some $c_{\mu} \in \mathbb{R}$. Therefore, μ is a multiple Ricci soliton. Conversely, let μ be a multiple Ricci soliton i.e.
	- (a) $R_{\mu} = c_{\mu}I + D_{\mu}; \quad D_{\mu} \in Der(n, \mu), \, c_{\mu} \in \mathbb{R}.$

.

(b) There are symmetric derivations D_i , $1 \leq i \leq r$, such that

$$
D_{\mu}=D_1+D_2+\ldots+D_r, tr D_i D_j=-\delta_{ij}c_{\mu}tr D_i.
$$

Let $(n, \mu, \langle \ldots \rangle_n)$ be a Lie algebra with orthonormal basis $\{X_1, X_2, \ldots, X_k\}$. We define Lie algebra s with a simply connected Lie group S as follows

$$
s=n\oplus \sum_i \mathbb{R}Z_i,
$$

endowed with the inner product $\langle , , \rangle$ defined by

$$
\langle Z_i, Z_j \rangle = \delta_{ij} tr D_i, \langle Z_i, n \rangle = 0, \langle \langle \cdot, \cdot \rangle |_{n \times n} = \langle \cdot, \cdot \rangle_n.
$$

Also, Lie bracket $[\cdot, \cdot]$ is defined by

$$
[Z_i, Z_j] = 0, \ [Z_i, X_j] = -[X_j, Z_i] = D_i X_j, \ [\dots] |_{n \times n} = \mu.
$$

Clearly [...] is a Lie bracket, since D_i is an elertrations. $\{D_\mu X_2, ..., D_\mu X_k\}$
 Archive of Side bracket, since D_i is an elertrations. $\{D_\mu X_2, ..., D_\mu X_k\}$
 Archive of side bracket, since $\{D_i$ is an elertrations Clearly $[\,.\,,.\,]$ is a Lie bracket, since D_i 's are derivations. $\{D_\mu X_1, D_\mu X_2, ..., D_\mu X_k\}$ is a linearly independent set which generates a subalgebra of $[s, s]$. Therefore, $n = [s, s]$. μ is nilpotent hence $[., .]$ is a solvable Lie bracket. Finally using Lemma 2.1, we have

$$
\langle R_{[.,.]}Z_i, Z_j \rangle = -tr(D_i D_j) = \delta_{ij} c_\mu tr D_i = c_\mu \langle Z_i, Z_j \rangle, \langle R_{[.,.]}Z_i, n \rangle = 0,
$$

$$
\langle R_{[.,.]}X_i, X_j \rangle = \langle (-D_\mu + R_\mu)X_i, X_j \rangle = \langle c_\mu X_i, X_j \rangle = c_\mu \langle X_i, X_j \rangle,
$$
which implies that $\langle ., . \rangle_s$ is a Einstein metric. This completes the proof. \square

Using Proposition 2.1, we get a higher rank Einstein solvmanifold as the direct sum of the Lie algebras.

Proposition 2.5. If nonzero nilpotent Lie brackets μ_1 and μ_2 are Ricci solitons, then $\mu = \mu_1 \oplus \mu_2$ is a multiple Ricci soliton of degree 2.

Proof. μ_1 and μ_2 are Ricci solitons i.e.

(2.1)
$$
R_{\mu_i} = c_{\mu_i} I + D_{\mu_i}; \quad D_{\mu_i} \in Der(\mu_i), \ c_{\mu_i} \in \mathbb{R}, \ i = 1, 2.
$$

Up to isometry and scaling we can determine norms of μ_1 and μ_2 such that $c_{\mu_1} = c_{\mu_2}$. Set

$$
D_{\mu} = \begin{bmatrix} D_{\mu_1} & 0 \\ 0 & D_{\mu_2} \end{bmatrix},
$$

$$
R_{\mu} = \begin{bmatrix} R_{\mu_1} & 0 \\ 0 & R_{\mu_2} \end{bmatrix},
$$

Then $R_{\mu} = c_{\mu_1} I + D_{\mu}$, $R_{\mu} = R_{\mu_1} \oplus R_{\mu_2}$ and $D_{\mu} = D_{\mu_1} \oplus D_{\mu_2}$. Also, by Theorem 1.3, $trD_{\mu_i}D_{\mu_j} = -\delta_{ij}c_{\mu_1}trD_{\mu_i}; i = 1, 2$. Therefore μ is a multiple Ricci soliton which admits a 2-rank Einstein solvable extension. \Box

Corollary 2.6. If nonzero nilpotent Lie brackets μ_i 's, $1 \leq i \leq r$, are Ricci solitons, then $\mu = \mu_1 \oplus \mu_2 \oplus ... \oplus \mu_r$ is a multiple Ricci soliton of degree r which admits an Einstein solvable extension of rank r.

Remark 2.7. There exist 31 Ricci soliton nonzero Lie algebras of dimension 6 (see [7]), which by direct sum of them, we can obtain a lot of multiple Ricci soliton nilpotent Lie algebras.

3. Standard methods

The goal of this section is to present certain results from [4] and [6]. In view of [4], Jorge Lauret has used a variational method for finding standard Einstein solvmanifolds. We will demonstrate this method in Theorem 3.1. We first give some preliminaries.

Lemma 3.1. (Lagrange multiplier theorem) [1]. Let P and M be smooth manifolds and $g : M \longrightarrow P$ be a smooth submersion. Let $f : M \longrightarrow \mathbb{R}$ be C^r , $m \in M$ and $p \in P$ such that $m \in g^{-1}(p)$, then the following statements are equivalent:

- (i) m is a critical point of $f|_{g^{-1}(p)}$.
- (ii) There are $\lambda \in T_p^*M$ such that $T_m f = \lambda \circ T_m g$.

The vector space \aleph_k is $GL(k)$ −invariant, so we can refine Theorem 1.1 more accurately as follows.

Lemma 3.2. For $0 \neq \mu \in \aleph_k$ and $\psi \in GL(k)$ the following statements are equivalent:

- (i) $\psi.\mu$ is a Ricci soliton.
- (ii) $\psi.\mu$ is a critical point of $F_k|_{S_r\cap GL(k),\mu}$
- (iii) ψ is a solution of the following system of equations:

$$
\begin{cases} \|\phi.\mu\|^2 = 2r^2\\ \frac{\partial F_k(\phi.\mu)}{\partial \phi_{ij}} = t \frac{\partial (\|\phi.\mu\|)}{\partial \phi_{ij}} \end{cases}
$$

where $t \in \mathbb{R}$ and $\phi \in GL(k)$.

Proof. Let $g(\lambda) = \frac{1}{2} ||\lambda||^2$ be a function on $\Lambda^2 n^* \otimes n$ and use Theorem 1.1 and Lemma 3.1 .

A is an *a* p $\in P$ such that $m \in g^{-1}(p)$, then the following statements are
 Archive of the sinustion of $f|_{g^{-1}(p)}$.

(*ii*) *There* are $\lambda \in T_p^*M$ such that $T_m f = \lambda \circ T_m g$.

The vector space \aleph_k is $GL(k)$ -invaria It is possible that the above system of equations is not solvable, hence we assume that for some $k \in \mathbb{N}$ and every $\phi \in GL(k)$ there exists $\mu \in \aleph_k$ such that $\phi \cdot \mu$ isn't a Ricci soliton. $\phi.\mu$ isn't a Ricci soliton.

Notation 3.3. Suppose that $DGL(k) := \{ \phi \in GL(k) ; \phi \text{ is diagonal} \}$, For any $\mu \in \aleph_k \subseteq \Lambda^2 n^* \otimes n$, set

$$
\mu(X_i, X_j) = \sum_{v} c_{ijv} X_v, \ \ \phi = diag(\phi_1, \phi_2, ..., \phi_k),
$$

then

$$
(\phi \cdot \mu)(X_i, X_j) = \sum_{x_{ijv} \neq 0} x_{ijv} X_v; \quad x_{ijv} = \frac{\phi_v c_{ijv}}{\phi_i \phi_j}
$$

and for any *i*, *j* and *v* such that $\lt \mu(X_i, X_j), X_v \gt \neq 0$, the diagonal elements of $R_{\phi,\mu}$ are equal to

$$
(R_{\phi,\mu})_{ii} = -\frac{1}{2}(-x_{ijv}^2 + \sum_{\substack{r_{st} \\ x_{rst} \neq x_{ijv}}} \delta^{rst,i} x_{rst}^2),
$$

$$
(R_{\phi,\mu})_{jj} = -\frac{1}{2}(-x_{ijv}^2 + \sum_{\substack{r_{st} \\ x_{rst} \neq x_{ijv}}} \delta^{rst,i} x_{rst}^2),
$$

$$
(R_{\phi,\mu})_{vv} = \frac{1}{2}(x_{ijv}^2 + \sum_{\substack{r_{st} \\ x_{rst} \neq x_{ijv}}} \delta^{rst,v} x_{rst}^2),
$$

where $\delta^{rst,i}$, $\delta^{rst,j}$ and $\delta^{rst,v}$ are equal to 0, 1 or -1.

Lemma 3.4. [6]. Let $(n, \mu, \langle , , \rangle)$ be a Lie algebra and $P_{\mu} = Sym(n) \cap$ $Der(n)$, then $R_{\mu} \perp P_{\mu}$ with inner product $tr(AB)$ on $Sym(n) \times Sym(n)$.

Theorem 3.5. (Lauret theory) For every $\phi \in GL(k)$ and $\mu \in \aleph_k$ if $\phi \mu \in S_r$ and R_{μ} is diagonal, then for any i, j and v such that $\lt \mu(X_i, X_j), X_v \gt \neq 0$, the following statements are equivalent:

(i) $R_{\psi,\mu} = c_{\psi,\mu} I + D_{\psi,\mu}; \ \ D_{\psi,\mu} \in Der(\psi,\mu)$ (ii) $c_{\psi,\mu}$ and a_{ijv}^2 's are solutions of the system

Lemma 3.4. [6]. Let
$$
(n, \mu, \langle \cdot, \cdot, \cdot \rangle)
$$
 be a Lie algebra and $P_{\mu} = Sym(n) \cap$
\nDer(n), then $R_{\mu} \perp P_{\mu}$ with inner product $tr(AB)$ on $Sym(n) \times Sym(n)$.
\n**Theorem 3.5.** (Lauret theory) For every $\phi \in GL(k)$ and $\mu \in \aleph_k$ if $\phi, \mu \in S_r$
\nand R_{μ} is diagonal, then for any i, j and v such that $\langle \mu(X_i, X_j), X_v \rangle \neq 0$,
\nthe following statements are equivalent:
\n(i) $R_{\psi,\mu} = c_{\psi,\mu}I + D_{\psi,\mu}$; $D_{\psi,\mu} \in Der(\psi,\mu)$
\n(ii) $c_{\psi,\mu}$ and a_{ij}^2 , 's are solutions of the system
\nwhere $(\phi,\mu)(X_i, X_j) = \sum_{x_{ijv}\neq 0} x_{ijv}X_v$, $u_{ijv} = x_{ijv}^2$, $\psi, \mu = \phi, \mu|_{x_{ijv}:=a_{ijv}}$.
\nProof. By Lemma 3.2 and the chain rule, it is easy to see that ψ, μ is a Ricci
\nsoliton if and only if variation t and a_{ijv}^2 's are solutions of the system
\nNow we shall obtain the Lagrangian coefficient. By Lemma 3.3 it is easy to see
\nthat $tr R_{\mu}^2 = c_{\mu} tr R_{\mu}$. Also $tr R_{\mu} = -\frac{1}{2} ||\mu||^2$. Thus $F_k = -c_{\mu} r^2$. Consequently
\n $\frac{\partial F_k(\phi,\mu)}{\partial u_{ijv}}|_{x_{ijv}:=a_{ijy}} = -c_{\mu}$.
\nFinally, we exhibit a rank-two Einstein solvmanifold of dimension 8 and a
\nrank-three Einstein solvmanifold of dimension 15.

Proof. By Lemma 3.2 and the chain rule, it is easy to see that $\psi.\mu$ is a Ricci soliton if and only if variation t and a_{ijv}^2 's are solutions of the system

$$
\left\{\begin{aligned}\sum_{i,j,v}x_{ijv}^2=r^2\\ \frac{\partial F_k(\phi,\mu)}{\partial u_{ijv}}\big|_{x_{ijv}:=a_{ijv}}=t\end{aligned}\right.
$$

Now we shall obtain the Lagrangian coefficient. By Lemma 3.3 it is easy to see that $tr R_{\mu}^{2} = c_{\mu} tr R_{\mu}$. Also $tr R_{\mu} = -\frac{1}{2} ||\mu||^{2}$. Thus $F_{k} = -c_{\mu} r^{2}$. Consequently $\partial F_k(\phi.\mu)$ $\frac{F_k(\phi,\mu)}{\partial u_{ijv}}\big|_{x_{ijv}:=a_{ijv}} = -c_\mu.$

Finally, we exhibit a rank-two Einstein solvmanifold of dimension 8 and a rank-three Einstein solvmanifold of dimension 15.

Example 3.6. Let $\mu = \mu_1 \oplus \mu_2$, where $\mu_1(X_1, X_2) = X_5$, $\mu_2(X_3, X_4) = X_6$ and $\phi = diag(\phi_1, \phi_2, ..., \phi_6)$, then

$$
\phi.\mu_1(X_1, X_2) = \frac{\phi_5}{\phi_1 \phi_2} X_5 \text{ and } \phi.\mu_2(X_3, X_4) = \frac{\phi_6}{\phi_3 \phi_4} X_6.
$$

.

Let $x := \frac{\phi_5}{\phi_1 \phi_2}$, $y := \frac{\phi_6}{\phi_3 \phi_4}$. Using Theorem 3.1, it is easy to see $x^2 = y^2 =$ 1. Therefore $D_{\mu_1} = diag(1, 1, 0, 0, 2, 0)$ and $D_{\mu_2} = diag(0, 0, 1, 1, 0, 2)$. If $(n_1, \mu_1, \langle \ldots \rangle)$ and $(n_2, \mu_2, \langle \ldots \rangle)$ are nilradical Lie algebras, define the Lie algebra s with simply connected Lie group S using the following direct sum

$$
s = \mathbb{R}Z_1 \oplus n_1 \oplus \mathbb{R}Z_2 \oplus n_2
$$

endowed with the inner product $\langle \cdot, \cdot \rangle$ defined by

$$
\langle Z_i, Z_j \rangle = 4\delta_{ij}, \langle Z_i, n \rangle = 0, \langle \cdot, \cdot \rangle |_{n_i \times n_i} = \langle \cdot, \cdot \rangle_i; \ 1 \leq i, j \leq 2,
$$

where the Lie bracket $[.,.]$ on s is defined by

$$
[Z_1, X_1] = -[X_1, Z_1] = X_1, \t [Z_1, X_2] = -[X_2, Z_1] = X_2, [Z_1, X_5] = -[X_5, Z_1] = 2X_5, \t [Z_2, X_3] = -[X_3, Z_2] = X_3, [Z_2, X_4] = -[X_4, Z_2] = X_4, \t [Z_2, X_6] = -[X_6, Z_2] = 2X_6, [Z_i, Z_j] = 0, [\dots]_{s}|_{n_i \times n_i} = \mu_i; \t 1 \le i, j \le 2
$$

and it is equal to zero otherwise. It is easy to see that $R_{[.,.]}$ = $-\frac{3}{2}I_{8\times 8}$ which implies that S_{μ} is Einstein of rank 2.

Example 3.7. Let $\mu = \mu_1 \oplus \mu_2 \oplus \mu_3$, where μ_1 and μ_2 are Lie algebras given in Example 1 and $\mu_3 \in \aleph_6$ is given by

$$
\mu_3(X_7, X_i) = X_{i+1}; \ 8 \leq i \leq 11.
$$

Every $\phi.\mu_3 \in DGL(6).\mu_3 \cap S_{\sqrt{\frac{30}{13}}}$ is equal to

$$
\phi.\mu_3(X_7,X_i)=a_{7,i,i+1}X_{i+1};\ i=8,9,10,11\,.
$$

[Z₂, X₄] = -[X₄, Z₂] = X₄, [Z₂, X₆] = -[X₆, Z₂] = 2X₆,

[Z₁, Z_j] = 0, [.,], |_n, |_N, $n_i = \mu$; 1 ≤ *i*, j ≤ 2

and it is equal to zero otherwise. It is easy to see that $R_{[-,1]}$, $= -\frac{3}{2}I_{8\t$ By Lauret theory it is easy to see that a critical point of F_6 restricted to the leaf $\sum_{7 \le i \le 12} a_{7,i,i+1}^2 = \frac{20}{13}$ is equal to $\mu_3\{a_{7,i,i+1}\}\$ where

$$
a_{7,8,9}^2 = \frac{12}{13}, \ \ a_{7,9,10}^2 = \frac{9}{13}, \ \ a_{7,10,11}^2 = \frac{3}{13}, \ \ a_{7,11,12}^2 = \frac{9}{13}, \ \ c_{\psi,\mu_3} = -\frac{3}{2}
$$

and

$$
D_{\mu_3(a_{7,i,i+1})} = diag(0,0,0,0,0,0,\frac{15}{26},\frac{42}{26},\frac{36}{26},\frac{51}{26},\frac{48}{26},\frac{51}{26})\,.
$$

Let $(n_3, \mu_3(a_{7,i,i+1}), < \ldots >_3)$ be a Ricci soliton. Define Lie algebra s with simply connected Lie group S using the following direct sum

 $s = \mathbb{R}Z_1 \oplus n_1 \oplus \mathbb{R}Z_2 \oplus n_2 \oplus \mathbb{R}Z_3 \oplus n_3$

endowed with the inner product $\langle \cdot, \cdot \rangle$ which is defined by

$$
\langle Z_1, Z_1 \rangle = 4, \langle Z_2, Z_2 \rangle = 4, \langle Z_3, Z_3 \rangle = \frac{243}{13}, \langle \cdot, \cdot \rangle |_{n_i \times n_i} = \langle \cdot, \cdot \rangle_i
$$

and it is equal to zero otherwise. Lie bracket $[.,.]$ on S defined by

$$
[Z_1, X_1] = -[X_1, Z_1] = X_1, \t [Z_1, X_2] = -[X_2, Z_1] = X_2, [Z_1, X_5] = -[X_5, Z_1] = 2X_5, \t [Z_2, X_3] = -[X_3, Z_2] = X_3, [Z_2, X_4] = -[X_4, Z_2] = X_4, \t [Z_2, X_6] = -[X_6, Z_2] = 2X_6,
$$

$$
[Z_3, X_7] = -[X_7, Z_3] = \frac{15}{26}X_7, \qquad [Z_3, X_8] = -[X_8, Z_3] = \frac{42}{26}X_8,
$$

\n
$$
[Z_3, X_9] = -[X_9, Z_3] = \frac{36}{26}X_9, \qquad [Z_3, X_{10}] = -[X_{10}, Z_3] = \frac{51}{26}X_{10},
$$

\n
$$
[Z_3, X_{11}] = -[X_{11}, Z_3] = \frac{48}{26}X_{11}, \quad [Z_3, X_{12}] = -[X_{12}, Z_3] = \frac{51}{26}X_{12},
$$

\n
$$
[., .]|_{n_i \times n_i} = \mu_{n_i}; \quad i = 1, 2
$$

and otherwise is equal to zero. It is easy to check that $R_{[.,.]} = -\frac{3}{2}I_{15\times15}$ which implies that S_{μ} is Einstein of rank 3.

Acknowledgment. The results of this paper were obtained during my M.Sc. studies at Tarbiat Modares University. I would like to express my deep gratitude to my supervisor, prof. S.M.B. Kashani, for his guidance and support. Also I wish to thank anonymous referees for their valuable comments and suggestions.

REFERENCES

- 1. A. Besse, Einstein manifolds, Ergeb. Math. 10, 1987.
- 2. J. Heber, Non-compact homogeneous Einstein spaces, Invent. Math., 133, (1998), 279- 352.
- 3. S. Helgason, Differential Geometry Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
- 4. S. Hong and M. M. Tripathi, Ricci curvature of submanifolds of a Sasakian space form, Iranian Journal of Mathematical Sciences and Informatics, 1, (2006), 31-51.
- 5. J. Lauret, Finding Einstein solvmanifolds by a variational method, Math. Z., 241, (2003), 83-99.
- 6. J. Lauret, Ricci soliton homogeneous nilmanifolds, Math. Ann., 319, (2001), 715-733.
- Also I wish to thank anonymous referees for their valuable comments and suggestions.
 REFERENCES

1. A. Besse, *Einstein manifolds*, Ergeb. Math. 10, 1987.

2. J. Heber, *Non-compact homogeneous Einstein spaces, Invert^{1*} 7. A. M. Tripathi, N. Mathur and S. Srivastava, A study of Nilpotent groups trough right transversals, Iranian Journal of Mathematical Sciences and Informatics, 4, (2009), 49- 54.
- 8. J. Lauret, Standard Einstein solvmanifolds as critical points, Quart. J. Math., 52, (2001), 463-470.
- 9. C. Will, Rank-one Einstein solvmanifolds of dimention 7, Differential Geom. Appl., 19, (2003), 307-318.