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1. Introduction

General form of standard Einstein solvmanifolds were determined by Jense

Heber (see [2]). Later, Gorge Lauret deeply studied this kind of manifolds.

Solvable Lie group endowed with the left invariant Riemanian metric is called

solvmanifold. Let S be a simply connected Lie group with the corresponding

Lie algebra s endowed with the inner product determined by < . , . > and

solvable Lie bracket [ . , . ]. We call S a higher rank solvmanifold if

s = n⊕ a; n = [s, s], a = n⊥,

where n is a metric nilpotent Lie algebra of dimension k. The codimension

n is called the rank of S. The solvable Lie group (S, [ . , . ], < . , . >) is called

standard if a is abelian and it is said to be Einstein if its Ricci tensor ric[.,.]
satisfies ric < . , . >= c < . , . >, for some c ∈ R. s is called a metric solvable

extension of n if the restriction of the Lie bracket and inner product of s to n

coincide respectively with the Lie bracket and inner product of n. Let Λ2n∗⊗n
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be the vector space of all bilinear skew-symmetric maps from n×n to n. There

is a natural action of GL(k) on Λ2n∗ ⊗ n which is given by

φ.µ(X,Y ) = φµ(φ−1X,φ−1Y ); X,Y ∈ n, φ ∈ GL(k), µ ∈ Λ2n∗ ⊗ n.

Let N denote a simply connected nilpotent Lie group with Lie algebra (n, µ)

endowed with the left invariant Riemannian metric < . , . >n, where µ is a

nilpotent Lie algebra on n. The Ricci operator Rµ : n→ n of N is defined by

< Rµ . , . >n= ric < . , . >n .

This operator is reduced to

< RµX,Y >= −1

2

∑

i,j

< µ(X,Xi), Xj) >< µ(Y,Xi), Xj) >(1.1)

+
1

4

∑

i,j

< µ(Xi, Xj), X >< µ(Xi, Xj), Y >,

for all X,Y ∈ n, where {X1, X2, ..., Xk} is any orthonormal basis of n. The

inner product < . , . >n determines an inner product on Λ2n∗ ⊗ n, denoted by

< . , . > and given by

< µ, λ >=
∑

i,j,k

< µ(Xi, Xj), Xk >< λ(Xi, Xj), Xk > .

Also it naturally determines a norm on Λ2n∗ ⊗ n defined by

∀λ ∈ Λ2n∗ ⊗ n ‖λ‖ =
∑

ijk

< λ(Xi, Xj), Xv >
2 .

Consider the Riemannain function

Fk : Λ2n∗ ⊗ n −→ R, Fk(µ) = trRµ
2

and the sphere Sr given by

Sr = {µ ∈ Λ2n∗ ⊗ n; ‖µ‖2 = 2r2},

for some r ∈ R. Let ℵk be the vector space of all nilpotent Lie brackets on n

and Der(µ) be the Lie algebra of all derivations on n. Then µ ∈ ℵk is called a

Ricci soliton if Rµ = cI +D, for some D ∈ Der(µ) and c ∈ R.

In [6], Jorge Lauret has proved that the standard Einstein solvmanifolds are

exactly the critical points of modified scalar curvature function Fk|S1
.

Theorem 1.1. [6]. For µ ∈ ℵk ∩ S1, the following statements are equivalent:

(i) µ is a critical point of Fk|S1
.

(ii) µ is a critical point of Fk|GL(k).µ∩S1
.

(iii) µ admits a rank-one extension which is Einstein.

(iv) µ is a Ricci soliton.
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2. Einstein solvmanifolds of rank ≥ 1

In this section, the structure of standard Einstein solvmanifolds is intro-

duced. The next lemma provides some useful properties of solvable Lie bracket

and inner product of a solvable Lie group. Then, we extend the Ricci soliton

in [4] for any arbitrary rank. We call it multiple Ricci soliton.

Lemma 2.1. [2]. Let (s = n⊕a, [ . , . ], < . , . >) be a metric solvable extension

of (n, µ,< . , . >), where for every 0 6= A ∈ a, adA is nonzero and symmetric,

then

(i) < R[.,.]A,B >= −tr(adAadB), for all A,B ∈ a.

(ii) < R[.,.]A,X >= 0, for all A ∈ a,X ∈ n.

(iii) R[.,.]|n = −adZ |n +Rµ, where < Z,X >= tr(adX ), for all X ∈ n.

Definition 2.2. 0 6= µ ∈ ℵk is called a multiple Ricci soliton of degree r if

(a) Rµ = cµI +Dµ; Dµ ∈ Der(µ), cµ ∈ R.

(b) There are nonzero symmetric derivations Di, 1 ≤ i ≤ r, such that

Dµ = D1 +D2 + . . .+Dr, trDiDj = −δijcµtrDi .

Remark 2.3. If µ is a multiple Ricci soliton of degree r, then µ is a mul-

tiple Ricci soliton of degree less than r. Therefore, µ is the critical point of

Fk|Sr∩GL(k).µ.

Using Definition 2.1, we study the structure of standard Einstein solvmani-

folds as follows.

Proposition 2.4. For 0 6= µ ∈ ℵk∩Sr, the following statements are equivalent:

(i) µ admits a metric extension which is Einstein.

(ii) µ is a multiple Ricci soliton.

Proof. Let the Lie algebra (n, µ) admit an Einstein metric extension S with

corresponding Lie algebra (s = n ⊕ a, [ . , . ], < . , . >) such that dim(a) =

r. Let {H1, H2, . . . , Hr} be an orthonormal basis for a and Z be the mean

curvature vector field for the simply connected Lie group N with Lie algebra n.

A straightforward calculation shows thatDµ = D1+D2+. . .+Dr, whereDµ :=

adZ |n and Di = tr(adHi )adHi |n. [ . , . ] is the Lie bracket. Hence, Diµ(., .) =

µ(., Di.) + µ(Di., .); that is to say, Di
,s are derivations on n. Suppose that

Di
,s and Dµ are symmetric (see [2; 4.10]). Let Zi = tr(adHi )Hi, then Lemma

2.1 implies that

trDiDj = tr(adZiadZj ) = − < R[.,.]Zi, Zj >= −cµ < Zi, Zj >= −δijcµtrDi.

Also Rµ = cµI +Dµ, for some cµ ∈ R. Therefore, µ is a multiple Ricci soliton.

Conversely, let µ be a multiple Ricci soliton i.e.

(a) Rµ = cµI +Dµ; Dµ ∈ Der(n, µ), cµ ∈ R.
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(b) There are symmetric derivations Di, 1 ≤ i ≤ r, such that

Dµ = D1 +D2 + . . .+Dr, trDiDj = −δijcµtrDi.

Let (n, µ,< . , . >n) be a Lie algebra with orthonormal basis {X1, X2, . . . , Xk}.
We define Lie algebra s with a simply connected Lie group S as follows

s = n⊕
∑

i

RZi,

endowed with the inner product < . , . > defined by

< Zi, Zj >= δijtrDi, < Zi, n >= 0, < . , . > |n×n =< . , . >n .

Also, Lie bracket [ . , . ] is defined by

[Zi, Zj] = 0, [Zi, Xj ] = −[Xj , Zi] = DiXj , [ . , . ]|n×n = µ.

Clearly [ . , . ] is a Lie bracket, sinceDi
,s are derivations. {DµX1, DµX2, ..., DµXk}

is a linearly independent set which generates a subalgebra of [s, s]. Therefore,

n = [s, s]. µ is nilpotent hence [ . , . ] is a solvable Lie bracket. Finally using

Lemma 2.1, we have

< R[.,.]Zi, Zj >= −tr(DiDj) = δijcµtrDi = cµ < Zi, Zj >, < R[.,.]Zi, n >= 0,

< R[.,.]Xi, Xj >=< (−Dµ +Rµ)Xi, Xj >=< cµXi, Xj >= cµ < Xi, Xj >,

which implies that < . , . >s is a Einstein metric. This completes the proof. �

Using Proposition 2.1, we get a higher rank Einstein solvmanifold as the

direct sum of the Lie algebras.

Proposition 2.5. If nonzero nilpotent Lie brackets µ1 and µ2 are Ricci soli-

tons, then µ = µ1 ⊕ µ2 is a multiple Ricci soliton of degree 2.

Proof. µ1 and µ2 are Ricci solitons i.e.

(2.1) Rµi = cµiI +Dµi ; Dµi ∈ Der(µi), cµi ∈ R, i = 1, 2.

Up to isometry and scaling we can determine norms of µ1 and µ2 such that

cµ1
= cµ2

. Set

Dµ =

[

Dµ1
0

0 Dµ2

]

,

Rµ =

[

Rµ1
0

0 Rµ2

]

,

Then Rµ = cµ1
I + Dµ, Rµ = Rµ1

⊕ Rµ2
and Dµ = Dµ1

⊕ Dµ2
. Also, by

Theorem 1.3, trDµiDµj = −δijcµ1
trDµi ; i = 1, 2. Therefore µ is a multiple

Ricci soliton which admits a 2-rank Einstein solvable extension. �

Corollary 2.6. If nonzero nilpotent Lie brackets µi
,s, 1 ≤ i ≤ r, are Ricci

solitons, then µ = µ1⊕µ2⊕ ...⊕µr is a multiple Ricci soliton of degree r which

admits an Einstein solvable extension of rank r.
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Remark 2.7. There exist 31 Ricci soliton nonzero Lie algebras of dimension

6 (see [7]), which by direct sum of them, we can obtain a lot of multiple Ricci

soliton nilpotent Lie algebras.

3. Standard methods

The goal of this section is to present certain results from [4] and [6]. In view

of [4], Jorge Lauret has used a variational method for finding standard Einstein

solvmanifolds. We will demonstrate this method in Theorem 3.1. We first give

some preliminaries.

Lemma 3.1. (Lagrange multiplier theorem) [1]. Let P and M be smooth man-

ifolds and g : M −→ P be a smooth submersion. Let f : M −→ R be Cr,

m ∈ M and p ∈ P such that m ∈ g−1(p), then the following statements are

equivalent:

(i) m is a critical point of f |g−1(p).

(ii) There are λ ∈ Tp
∗M such that Tmf = λ ◦ Tmg.

The vector space ℵk is GL(k)−invariant, so we can refine Theorem 1.1 more

accurately as follows.

Lemma 3.2. For 0 6= µ ∈ ℵk and ψ ∈ GL(k) the following statements are

equivalent:

(i) ψ.µ is a Ricci soliton.

(ii) ψ.µ is a critical point of Fk|Sr∩GL(k).µ .

(iii) ψ is a solution of the following system of equations:






‖φ.µ‖2 = 2r2

∂Fk(φ.µ)
∂φij

= t
∂(‖φ.µ‖)
∂φij

where t ∈ R and φ ∈ GL(k).

Proof. Let g(λ) = 1
2‖λ‖2 be a function on Λ2n∗ ⊗ n and use Theorem 1.1 and

Lemma 3.1 .

It is possible that the above system of equations is not solvable, hence we

assume that for some k ∈ N and every φ ∈ GL(k) there exists µ ∈ ℵk such that

φ.µ isn’t a Ricci soliton. �

Notation 3.3. Suppose that DGL(k) := {φ ∈ GL(k);φ is diagonal}, For any
µ ∈ ℵk ⊆ Λ2n∗ ⊗ n, set

µ(Xi, Xj) =
∑

v

cijvXv, φ = diag(φ1, φ2, ..., φk) ,

then

(φ.µ)(Xi, Xj) =
∑

xijv 6=0

xijvXv; xijv =
φvcijv

φiφj
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and for any i, j and v such that < µ(Xi, Xj), Xv > 6= 0, the diagonal elements

of Rφ.µ are equal to

(Rφ.µ)ii = −1

2
(−x2ijv +

∑

rst
xrst 6=xijv

δrst,ix2rst),

(Rφ.µ)jj = −1

2
(−x2ijv +

∑

rst
xrst 6=xijv

δrst,jx2rst),

(Rφ.µ)vv =
1

2
(x2ijv +

∑

rst

xrst 6=xijv

δrst,vx2rst),

where δrst,i, δrst,j and δrst,v are equal to 0, 1 or -1 .

Lemma 3.4. [6]. Let (n, µ,< ., . >) be a Lie algebra and Pµ = Sym(n) ∩
Der(n), then Rµ ⊥ Pµ with inner product tr(AB) on Sym(n)× Sym(n).

Theorem 3.5. (Lauret theory) For every φ ∈ GL(k) and µ ∈ ℵk if φ.µ ∈ Sr

and Rµ is diagonal, then for any i, j and v such that < µ(Xi, Xj), Xv > 6= 0,

the following statements are equivalent:

(i) Rψ.µ = c
ψ.µ
I +Dψ.µ; Dψ.µ ∈ Der(ψ.µ)

(ii) c
ψ.µ

and a2ijv ’s are solutions of the system






∑

i,j,v x
2
ijv = r2

∂Fk(φ.µ)
∂uijv

|
xijv :=aijv

= −c
ψ.µ

where (φ.µ)(Xi, Xj) =
∑

xijv 6=0 xijvXv, uijv = x2ijv , ψ.µ = φ.µ|
xijv :=aijv

.

Proof. By Lemma 3.2 and the chain rule, it is easy to see that ψ.µ is a Ricci

soliton if and only if variation t and a2ijv ’s are solutions of the system






∑

i,j,v x
2
ijv = r2

∂Fk(φ.µ)
∂uijv

|
xijv :=aijv

= t

Now we shall obtain the Lagrangian coefficient. By Lemma 3.3 it is easy to see

that trRµ
2 = cµtrRµ. Also trRµ = − 1

2‖µ‖2. Thus Fk = −cµr2. Consequently
∂Fk(φ.µ)
∂uijv

|xijv :=aijv = −cµ. �

Finally, we exhibit a rank-two Einstein solvmanifold of dimension 8 and a

rank-three Einstein solvmanifold of dimension 15.

Example 3.6. Let µ = µ1 ⊕ µ2, where µ1(X1, X2) = X5, µ2(X3, X4) = X6

and φ = diag(φ1, φ2, ..., φ6), then

φ.µ1(X1, X2) =
φ5

φ1φ2
X5 and φ.µ2(X3, X4) =

φ6

φ3φ4
X6 .
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Let x := φ5

φ1φ2
, y := φ6

φ3φ4
. Using Theorem 3.1, it is easy to see x2 = y2 =

1. Therefore Dµ1
= diag(1, 1, 0, 0, 2, 0) and Dµ2

= diag(0, 0, 1, 1, 0, 2). If

(n1, µ1, < . , . >1) and (n2, µ2, < . , . >2) are nilradical Lie algebras, define

the Lie algebra s with simply connected Lie group S using the following direct

sum

s = RZ1 ⊕ n1 ⊕ RZ2 ⊕ n2

endowed with the inner product < ., . > defined by

< Zi, Zj >= 4δij , < Zi, n >= 0, < . , . > |ni×ni =< . , . >i; 1 ≤ i, j ≤ 2 ,

where the Lie bracket [ . , . ] on s is defined by

[Z1, X1] = −[X1, Z1] = X1, [Z1, X2] = −[X2, Z1] = X2,

[Z1, X5] = −[X5, Z1] = 2X5, [Z2, X3] = −[X3, Z2] = X3,

[Z2, X4] = −[X4, Z2] = X4, [Z2, X6] = −[X6, Z2] = 2X6,

[Zi, Zj ] = 0, [., .]s|ni×ni = µi; 1 ≤ i, j ≤ 2

and it is equal to zero otherwise. It is easy to see that R[.,.]s = − 3
2I8×8 which

implies that Sµ is Einstein of rank 2 .

Example 3.7. Let µ = µ1 ⊕ µ2 ⊕ µ3, where µ1 and µ2 are Lie algebras given

in Example 1 and µ3 ∈ ℵ6 is given by

µ3(X7, Xi) = Xi+1; 8 ≤ i ≤ 11 .

Every φ.µ3 ∈ DGL(6).µ3 ∩ S√ 30
13

is equal to

φ.µ3(X7, Xi) = a7,i,i+1Xi+1; i = 8, 9, 10, 11 .

By Lauret theory it is easy to see that a critical point of F6 restricted to the

leaf
∑

7<i<12 a
2
7,i,i+1 = 20

13 is equal to µ3{a7,i,i+1} where

a27,8,9 =
12

13
, a27,9,10 =

9

13
, a27,10,11 =

3

13
, a27,11,12 =

9

13
, cψ.µ3

= −3

2

and

Dµ3(a7,i,i+1) = diag(0, 0, 0, 0, 0, 0,
15

26
,
42

26
,
36

26
,
51

26
,
48

26
,
51

26
) .

Let (n3, µ3(a7,i,i+1), < . , . >3) be a Ricci soliton. Define Lie algebra s with

simply connected Lie group S using the following direct sum

s = RZ1 ⊕ n1 ⊕ RZ2 ⊕ n2 ⊕ RZ3 ⊕ n3

endowed with the inner product < ., . > which is defined by

< Z1, Z1 >= 4, < Z2, Z2 >= 4, < Z3, Z3 >=
243

13
, < . , . >|ni×ni=< . , . >i

and it is equal to zero otherwise. Lie bracket [ . , . ] on S defined by

[Z1, X1] = −[X1, Z1] = X1, [Z1, X2] = −[X2, Z1] = X2,

[Z1, X5] = −[X5, Z1] = 2X5, [Z2, X3] = −[X3, Z2] = X3,

[Z2, X4] = −[X4, Z2] = X4, [Z2, X6] = −[X6, Z2] = 2X6,
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[Z3, X7] = −[X7, Z3] =
15
26X7, [Z3, X8] = −[X8, Z3] =

42
26X8,

[Z3, X9] = −[X9, Z3] =
36
26X9, [Z3, X10] = −[X10, Z3] =

51
26X10,

[Z3, X11] = −[X11, Z3] =
48
26X11, [Z3, X12] = −[X12, Z3] =

51
26X12,

[., .]|ni×ni = µni ; i = 1, 2

and otherwise is equal to zero. It is easy to check that R[.,.] = − 3
2I15×15 which

implies that Sµ is Einstein of rank 3.
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