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Abstract. The purpose of this paper is to study the information ratio

of perfect secret sharing of product of some special families of graphs.

We seek to prove that the information ratio of prism graphs Yn are equal

to 7

4
for any n ≥ 5, and we will gave a partial answer to a question

of Csirmaz [10]. We will also study the information ratio of two other

families Cm×Cn and Pm×Cn and obtain the exact value of information

ratio of these graphs.
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1. Introduction

The concept of secret sharing was introduced by Shamir (cf.[13]) and Blakley

(cf.[1]) independently of each other in 1979

Secret sharing scheme is a way for sharing a secret data among a group

of participants so that only specific subsets( which is called qualified subsets)

are able to recover the secret by combining their shares. If, in addition, any

unqualified subsets of participants are unable to get any information about the

secret with their shares, the scheme is called perfect. The set of all qualified
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subsets is called the access structure. In this paper when we speak about a

secret sharing scheme, it is assumed to be perfect. The efficiency of the system

is the main question in this area. The efficiency of the system means: how

many bits of information must be remembered for each bit of secret by the

members of group in average or worst case.

The paper is organized as follows. In Section 1 we will state the definitions

and theorems necessary to state and prove our theorems. In section 2 we will

compute the information rate of two families of graphs and will give a partial

answer to the question which state by Csirmaz in [10].

2. Definitions and Preliminaries

In this section we will give a rough definition of the notions we shall use

later.Let G be a simple graph, we denote the set of its vertices by V , and

the number of the vertices by n. A complete graph is a graph in which each

pair of distinct vertices is joined by an edge. We denote the complete graph

with n vertices by Kn. For r a nonnegative integer, an r-partite graph is one

whose vertex-set is partitioned into r disjoint parts in such a way that the

two end vertices for each edge lie in distinct partitions. A complete r-partite

graph is one in which each vertex is joined to every vertex that is not in the

same partition. The complete 2-partite graph (also called the complete bipartite

graph) with exactly two partitions of size m and n, is denoted by Km,n. K1,n

is called star. A subset X of vertex set is called independent set, if there is no

edge between vertices in X . For a graph G and a nonempty subset S ⊆ V (G),

the vertex-induced subgraph, denoted 〈S〉, is the subgraph of G with vertex-set

S and edges incident to members of S. A collection of subgraphs of G is called

a covering of the graph G if every edge of G is contained in one of the (not

necessarily spanned) subgraphs in the collection. . For subsets of vertices we

usually omit the
⋃

sign, and denote A
⋃

B by AB. Also, if v is a vertex, then

Av denotes A
⋃
{v}. Finally, all logarithms in this paper are in base 2.

The cartesian product of graphs G = G1 ×G2, are sometimes simply called

the graph product of graphs G1 and G2 with point sets V1 and V2 and edge sets

E1 and E2 is the graph with the point set V1 × V2 and u = (u1, u2) is adjacent

with v = (v1, v2) whenever (u1 = v1 and u2 adjacent v2) or (u1 adjacent v1
and u2 = v2).

A prism graph of order n, Yn, is the graph Cartesian product Yn = K2×Cn,

where K2 is the complete graph on two vertices and Cn is the cycle graph on

n vertices. This graph is corresponding to the skeleton of an n-prism. Prism

graphs are therefore both planar and polyhedral. A prism graph of order n

has 2n vertices and 3n edges. Generally, a prism graph is the graph Cartesian

product Ym,n = Pm × Cn. It can therefore be viewed formed by connecting

concentric cycle graphs Cn along spokes. Therefor this graph has mn vertices
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and m(2n− 1) edges.

Now we will define a perfect secret sharing scheme based on a finite graph

G. We will use the notation and terminology of [10].

A perfect secret sharing scheme S for a finite graph G is a collection of ran-

dom variables ξv for each v ∈ V and a ξs (the secret) with a joint distribution

so that

(i) Two random variables ξv and ξw together recover the value of ξs if vw is an

edge in G;

(ii) For any independent set, A, the ξs and the collection {ξv : v ∈ A} are

statistically independent.

We denote the Shannon entropy or information content of variable ξ as H(ξ).

Shannon entropy measured the size of random variable of ξ and it is well de-

fined and finite, see [11].

For a vertex v of G, the information ratio of v is defined as the fraction H(ξv)
H(ξs)

and tells us how many bits of information v must be remembered for each bit

in the secret. The worst case information ratio of S is the highest information

ratio among all participants. The information ratio of the graph G, denoted

by R(G), is defined as

R(G) = inf
S

max
v

H(ξv)

H(ξs)
.

In order to determine the information ratio of a given one has to prove by

different techniques that upper and lower bounds for R(G) coincide.

For the lower bound we apply the entropy method which describe it as follows.

For any subset A of the vertices we define the real-valued function f as

f(A) =
H({ξv : v ∈ A})

H(ξS)
.

It is obvious that, the maximum value in the set {f(v) : v ∈ V } is equal to the

information ratio of S. Using standard properties of the entropy function, (see

in [11]), the following inequalities hold for all subsets A,B of the participants:

(a) f(A) ≥ 0 and f(∅) = 0;

(b) if A is a subset of B, then f(A) ≤ f(B);

(c) f(A) + f(B) ≥ f(A
⋂
B) + f(A

⋃
B);

(d)if A is an independent subset of non-independent set,B, then f(A) + 1 ≤

f(B);

(e) If A and B are not independent sets, but A
⋂
B is an independent set, then

f(A) + f(B) ≥ 1 + f(A
⋂
B) + f(A

⋃
B)
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Properties (a), (b), and (c) are called positivity, monotonicity, and submodu-

larity, respectively. Properties (d) and (e) which are obtained from the other

properties of f , are called strict monotonicity and strict submodularity, respec-

tively.

Now we can restate the entropy method as follows (see [2],[3],[5]): Suppose

that we prove that for any real-valued function f which satisfies properties

(a)-(e), there exists a vertex v ∈ G, such that f(v) ≥ r. Then, the functions

coming from secret sharing secret sharing schemes also satisfy these properties.

Hence we conclude that the worst case information ratio of G is at least r.

The following theorem is due to Csirmaz [9], and play an important role in

this paper.

Theorem 2.1. (a)Let f be a modular function which has the properties (a)-

(e). If abc is an induced path in G, and X ⊆ G is a subset of vertices such that

acX is an independent set, then f(a) + f(b) + f(cX) ≥ f(acX) + 2.

(b) Let a, b, c and d be the vertices of graph G, such that ab, bc, cd are edges and

ad, bd are not edges. If X is an independent set of vertices of G and no vertex

in X is connected to any of a, b, c or d, then

f(bcX)− f(X) ≥ 3.

In the following theorem we will state information ratio of some families of

graphs. For the proofs of this theorem the reader can see [6], [7], and [8].

Theorem 2.2. (a) Let G be a graph. Then R(G′) ≤ R(G) for any induced

subgraph G′ of G.

(b)R(G) = 1 if and only if G is a complete multi partite graph, and R(G) ≥ 3
2

otherwise

(c) Let Cn be a cycle of order n ≥ 5. R(Cn) =
3
2 .

(d)Let Qn be the n-cube. If n ≥ 2, then R(Qn) =
n
2 .

For the upper bound we use the Stinsons decomposition technique. In [14],

Stinson states a method for general secret sharing schemes, which is called λ-

decomposition construction. This method is a recursive construction for con-

struction a scheme by using smaller schemes as building blocks. This method

in graph access structure based on the finding a covering for the graph G such

that every edges of G must appear in at least λ subgraphs of this covering. We

will state this method in the following theorem.

Theorem 2.3. Let Gi be a family of subgraphs of graph G, such that every

edge of G belongs to at least k of Gi. For a vertex v ∈ G define ri(v) = 0 if

v /∈ V (Gi), and ri(v) = R(Gi) otherwise. Then R(G) ≤ sup
v∈G

∑ ri(v)
k
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Corollary 2.4. Suppose that Π is a covering of graph G and every subgraphs

in Π is a complete multi partite graph. If every edges of G is covered by at least

e subgraphs of Π and every vertices of G is covered by at most p subgraphs of

Π, then R(G) ≤ p

e
.

3. main theorems

In [10] Csirmaz asked the following question:

Question 3.1. Let G be a graph with 1 ≤ R(G) ≤ 2. Does there exist a k ∈ N

such that R(G) = 2− 1
k
.

In this section we construct an infinite family of graphs G with R(G) = 7
4

and gave a partial answer to the above question. In the rest of this section we

gave two infinite families of graphs with information ratio 2.

Theorem 3.2. Let G be a graph with δ(G) ≥ 2. Then R(G ×K2) ≤
R(G)+d

2

where d = ∆(G).

Proof. We Consider the vertex set of G×K2 as follows:

V (G×K2) = {(v, 0) : v ∈ V (G)}
⋃

{(v, 1) : v ∈ V (G)}.

For any edge uv ∈ E(G) consider the square Guv as follows

(u, 0) −→ (u, 1) −→ (v, 1) −→ (v, 0) −→ (u, 0).

Now consider the covering {G0, G1, Guv : uv ∈ E(G)} where Gi is induced

graph by vertices {(v, i) : v ∈ V (G)} for i = 0, 1. In this covering every edge

of G appears at least two times and every vertex of G appears at most d + 1

times. Since R(Guv) = 1 and every vertex appears in at most d times in the

family of {Guv}uv∈E , we have R(G×K2) ≤
R(G)+d

2 by Corollary 2.4. �

Theorem 3.3. If n ≥ 5, then R(Yn) ≤
7
4 .

Proof. This follows from the Theorem 3.2 and the fact that R(Cn) = 3
2 for

n ≥ 5. �

Theorem 3.4. If n ≥ 5, then R(Yn) ≥
7
4 .

Proof. To prove this theorem, we use the entropy method.Let f be a modular

function which having properties (a)-(e). Suppose that

Cn : b1 −→ b2 −→ · · · −→ bn −→ b1.

Label the vertices of Yn as ai = (0, bi) and Ai = (1, bi) for 1 ≤ i ≤ n. Let

X = An−1, Y = a3. Since a1a3An−1 is an independent set and a1a2a3 is a path,

then by Theorem 2.1(a) we have,
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f(a1) + f(a2) + f(a3An−1) ≥ f(a1a3An−1) + 2.

Similarly, f(A1) + f(An) + f(An−1a3) ≥ f(A1An−1a3) + 2. Therefore

f(a1)+f(a2)+f(A1)+f(An)+2f(a3An−1) ≥ f(A1An−1a3)+f(a1a3An−1)+4.

By applying the sub-modularity property of f , we have

f(A1An−1a3) + f(a1a3An−1) + 4 ≥ f(A1An−1a1a3) + f(a3An−1) + 4.

By adding the above inequalities we conclude that,

f(a1) + f(a2) + f(A1) + f(An) ≥ 4 + f(a1a3A1An−1 − f(An−1a3).

Since a1a3A1An−1 is a qualified set and An−1a3 is an independent set, then by

Theorem 2.1(b)

f(a1a3A1An−1)− f(a3An−1) ≥ 3

and therefore

f(a1) + f(a3) + f(A1) + f(An) ≥ 7.

Hence at least one of f(a1), f(a2), f(A1), f(An) is at least 7
4 and the lower

bound is obtained. �

Corollary 3.5. For any n ≥ 5, we have R(Yn) =
7
4 .

Proof. The result follows from Theorems 3.3 and 3.4. �

Remark 3.6. For n = 3, the graph Y3 is a graph with 6 vertices. In [12], M.

van Dijk showed that R(Y3) =
3
2 . For n = 4, the graph Y4 is 3-cube, and then

R(Y4) =
3
2 by Theorem 2.2(d).

Now we study the information ratio of Ym,n. First of all we state the fol-

lowing Lemma

Lemma 3.7. [8] Let G be the graph of Fig. 1. Then R(G) = 2.

Theorem 3.8. For any m,n ≥ 4, R(Ym,n) = 2.
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Proof. Suppose that

Pm : a1 −→ a2 −→ · · · −→ am,

and

Cn : b1 −→ b2 −→ · · · −→ bn −→ b1

are path and cycle of length m,n respectively. Let

A = (a2, b1), B = (a2, b2), C = (a3, b2), D = (a4, b2),

a = (a1, b3), b = (a2, b3), c = (a3, b3), d = (a3, b4).

The subgraph induced by the set {a, b, c, d, A,B,C,D} is isomorphic to graph

of Fig. 1. Hence R(Ym,n) ≥ 2 by Theorem 2.2(a). Set bm+1 = b1 and vij =

(ai, bj). For upper bound consider the coverings Π1 = {v11v1m, vn1vnm} and

Π2 = {Gi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m + 1}, where Gi,j is the square induced

by the set {vi,j , vi,j+1, vi+1,j+1, vi+1,j}. In this covering every edge appears at

least two times and every vertex to appears at most four times and since the

information of every edge and every square is equal to 1, we have R(Ym,n) ≤ 2

by Corollary 2.4 . Hence we have R(Ym,n) = 2 For any m,n ≥ 4. �

Now we study the information ratio of cartesian product of two cycles.

Theorem 3.9. For any m,n ≥ 5, R(Cm × Cn) = 2.

Proof. Suppose that

Cm : a1 −→ a2 −→ · · · −→ am −→ a1,
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and

Cn : b1 −→ b2 −→ · · · −→ bn −→ b1.

are cycles of lengths m,n respectively. Clearly Pm−1 × Cn is an induced

subgraph of Cm × Cn, hence R(Cm × Cn) ≥ 2 by Theorem 2.2(a). Set

bm+1 = b1, an+1 = a1 and vij = (ai, bj). For upper bound consider the covering

Π2 = {Gi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m+1}, where Gi,j is the square induced by the

set {vi,j , vi+1,j+1, vi+,j+1, vi+1,j}. In this covering every edge appears at least

two times and every vertex appears at most four times and since the informa-

tion of every edge and every square is equal to 1, we have R(Cm ×Cn) ≤ 2 by

Corollary 2.4. Hence we have R(Cm × Cn) = 2 For any m,n ≥ 4. �
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