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Abstract. A graph G is called P4-free, if G does not contain an induced

subgraph P4. The domination polynomial of a graph G of order n is

the polynomial D(G,x) =
∑

n

i=1
d(G, i)xi, where d(G, i) is the number of

dominating sets of G of size i. Every root ofD(G, x) is called a domination

root of G. In this paper we state and prove formula for the domination

polynomial of non P4-free graphs. Also, we pose a conjecture about

domination roots of these kind of graphs.
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1. Introduction

Graph polynomials are a well-developed area useful for analyzing properties of

graphs. There are some polynomials associated to graphs. Chromatic poly-

nomial, clique polynomial, characteristic polynomial and Tutte polynomial are

some examples of these polynomials. Also there are some graphs polynomials

related to a molecular graph (see [9, 13]). Domination polynomial of a graph

is a new graph polynomial. Let to define domination polynomial of a graph.

Let G = (V,E) be a graph of order |V | = n. For any vertex v ∈ V , the

open neighborhood of v is the set N(v) = {u ∈ V |uv ∈ E} and the closed

neighborhood is the set N [v] = N(v) ∪ {v}. For a set S ⊆ V , the open

neighborhood is N(S) =
⋃

v∈S N(v) and the closed neighborhood is N [S] =

N(S)∪ S. A set S ⊆ V is a dominating set if N [S] = V , or equivalently, every
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vertex in V \S is adjacent to at least one vertex in S. The domination number

γ(G) is the minimum cardinality of a dominating set in G. For a detailed

treatment of this parameter, the reader is referred to [10]. Let D(G, i) be the

family of dominating sets of a graph G with cardinality i and let d(G, i) =

|D(G, i)|. The domination polynomial D(G, x) of G is defined as D(G, x) =
∑|V (G)|

i=γ(G) d(G, i)xi, where γ(G) is the domination number of G ([2, 6]).

A root of D(G, x) is called a domination root of G ([3]). A simple path is a path

where all its internal vertices have degree two. A graph G is called P4-free, if

G does not contain an induced subgraph P4. The non P4-free graphs are in the

form of one of the following specific graphs:

Let Pn+1 be a path with vertices labeled by y1, y2, . . . , yn+1, for n ≥ 1 and

let v0 be a specific vertex of a graph G. Denote by Gv0(n) (or simply G(n) if

there is no likelihood of confusion) a graph obtained from G by identifying the

vertex v0 of G with an end vertex y1 of Pn+1 ([7]).

Let Pn be a path with vertices labeled y1, . . . , yn and let a, b be two specific

vertices of a graph G. Denote by G′
a,b(n) (or simply G′(n), if there is no likeli-

hood of confusion) a graph obtained from G and Pn by adding edges ay1 and

byn ([7]).

In the next section, we investigate and recall some background materials re-

lated to recursive families of polynomials. In Section 3, we give a formula for

the domination polynomials of non P4-free graphs. Also we investigate the

domination roots and state some open problems of these kind of graphs in the

last section.

2. Recursive families of polynomials

Before we proceed to a discussion of the roots of domination polynomials, we

need to state (in detail) an analytic result on particular families of polynomials

(namely, recursive families). We begin with the following definition.

Definition 2.1. If {fn(x)} is a family of (complex) polynomials, we say that a

number z ∈ C is a limit of roots of {fn(x)} if either fn(z) = 0 for all sufficiently

large n or z is a limit point of the set R(fn(x)), where R(fn(x)) is the union

of the roots of the fn(x).

Now (as in [8]) a family of polynomials {fn(x)} is a recursive family of polyno-

mials if fn(x) satisfy a homogenous recurrence

fn(x) =

k
∑

i=1

ai(x)fn−i(x). (2.1)

where the ai(x) for 1 ≤ i ≤ k, are fixed polynomials, with ak(x) 6≡ 0. The

number k is the order of the recurrence.
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From (2.1), we can form its associated characteristic equation

λk − a1(x)λ
k−1 − a2(x)λ

k−2 − · · · − ak(x) = 0, (2.2)

whose roots λ = λ(x) are algebraic functions, and there are exactly k of them

counting multiplicity (see [1] or [11]).

If these roots, say λ1(x), λ2(x), . . . , λk(x), are distinct, then the general solution

to (2.1) is known (see [8]) to be

fn(x) =

k
∑

i=1

αi(x)λi(x)
n, (2.3)

with the usual variant (see [8]) if some of the λi(x) were repeated. The functions

α1(x), α2(x), . . . , αk(x) are determined from the initial conditions, that is, the

k linear equations in the αi(x) obtained by letting n = 0, 1, . . . , k − 1 in (2.3)

or its variant. The details are found in [8].

3. Domination polynomial of non P4-free graphs

In this section, we shall use the results in previous section to study the domi-

nation polynomials of graphs containing a simple path of length at least three

(or simply non P4-free graphs). Every graphs G containing a simple path of

length at least three, is in the form of one of the graphs G(n) or G′(n). In [7]

the following recurrence formulas was proved in terms of edge contraction.

Theorem 3.1. ([7]) For every n ≥ 3,

(i) D(G(n), x) = x
[

D(G(n − 1), x) +D(G(n − 2), x) +D(G(n− 3), x)
]

,

(ii) D(G′(n), x) = x
[

D(G′(n− 1), x) +D(G′(n− 2), x) +D(G′(n− 3), x)
]

.

Let us to give a simple proof for these recurrence relations. First we give a

formula for the domination polynomial of a graph in terms of the domination

polynomials of several other graphs which have fewer vertices or edges. The

vertex contraction G/v of a graph G by a vertex v is the operation under which

all vertices in N(v) are joined to each other and then v is deleted (see [14]).

Theorem 3.2. For any vertex v in a graph G we have

D(G, x) = xD(G/v, x) +D(G− v, x) + xD(G −N [v], x)− (x+ 1)pv(G, x)

where pv(G, x) is the polynomial counting those dominating sets for G −N [v]

which additionally dominate the vertices of N(v) in G.

Proof. Any dominating set S of G− v is a dominating set for G unless v is not

dominated by S, that is N(v)∩S = ∅. In this case all elements of N(v) will be

dominated by S. Similarly, every dominating set T for G/v will give rise to a

dominating set T ∪v of G. However, if N(v)∩T = ∅ and some elements of N(v)

are not dominated by T then T ∪ v will be a dominating set of G, nonetheless.

Therefore, we can partition the domination polynomial of G − N [v] into two
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polynomials based upon whether the vertices of N(v) are dominated. Define

pv(G, x) as the polynomial counting the dominating sets for G − N [v] which

dominate N(v). Using this we see that the dominating sets for G that don’t

include v are counted by D(G − v, x) − pv(G, x). The dominating sets for G

that do include v will be counted by xD(G/v, x)+xD(G−N [u], x)−xpv(G, x).

Adding these two polynomials gives the required formula for D(G, x).

Now we can obtain the following result using Theorem 3.2 ([7]).

Theorem 3.3. Let G be a graph which contains a simple path of length at lease

three. Then

D(G, x) = x
[

D(G ∗ e1, x) +D(G ∗ e1 ∗ e2, x) +D(G ∗ e1 ∗ e2 ∗ e3, x)
]

where e1, e2 and e3 are three edges of the simple path, G∗e is the graph obtained

from G by contracting the edge e, and G∗e1∗e2 = (G∗e1)∗e2 and G∗e1∗e2∗e3 =
(

(G ∗ e1) ∗ e2
)

∗ e3.

Proof. Suppose the five vertices in the induced path are u, v, w, r and s in order

along the path. We apply Theorem 3.2 to the central vertex w:

D(G, x) = xD(G/w, x)+D(G−w, x)+xD(G− v−w− r, x)− (1+x)pw(G, x)

We shall prove that

xD(G − v − w − r, x)− (1 + x)pw(G, x) +D(G− w, x) =

xD(G/v/w, x) + xD(G/v/w/r, x). (3.1)

Let G′ = G − N [w], and let A be a dominating set for G′. We like to extend

A to a dominating set for each of the graphs in above equation by considering

whether or not v and/or r must or may be added to A. For A to dominate

N(w) it must include both u and s. We consider 3 cases, dependent on how

many of u and s are in A. When u, say, is in A it will dominate v and so

v can either be in A or out of it, giving a factor of (1 + x) to multiply the

domination polynomial of G′. If u is not in A then v must be in A in order

for A to be a dominating set, giving a factor of x for G′. We tabulate the

respective contributions for vertices v and y in the different graphs, substituting

q(x) := xD(G − v − w − r, x)− (1 + x)pw(G, x).

Table 1. Table of contributions from vertices v and r.

|A ∩ {w, r}| q(x) D(G− w, x) xD(G/v/w, x) xD(G/v/w/r, x)

2 −1 (1 + x)2 x(1 + x) x

1 x x(1 + x) x(1 + x) x

0 x x2 x2 x
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For each of these rows we can see that Equation (3.1) is satisfied by adding

both pairs of columns. Since all of the possibilities for A fall into one of these

three cases, the proof is complete.

By Theorem 3.1, the characteristic equation of the recursive family of polyno-

mials {D(G(n), x)} and {D(G′(n), x)} is

λ3 − xλ2 − xλ− x = 0.

Let

p(x) =
3

√

x3

27
+

x2

6
+

x

2
+

√

x4

36
+

7x3

54
+

x2

4

and

q(x) =
3

√

x3

27
+

x2

6
+

x

2
−
√

x4

36
+

7x3

54
+

x2

4
.

By Cardan’s formula (see [12]),we have

λ1(x) =
x

3
+ p(x) + q(x), (3.2)

λ2(x) =
(x

3
− p(x)

2
− q(x)

2

)

+

√
3

2

(

p(x)− q(x)
)

i (3.3)

and

λ3(x) =
(x

3
− p(x)

2
− q(x)

2

)

+

√
3

2

(

q(x)− p(x)
)

i (3.4)

Now we state the following corollary:

Corollary 3.4. Let λ1(x), λ2(x) and λ3(x) are the above algebraic functions

which satisfy in λ3 − xλ2 − xλ − x = 0. For every graph H(n) of order n

containing a simple path of length at least three

D(H(n), x) =

3
∑

i=1

αi(x)λi(x)
n,

where the functions α1(x), α2(x), α3(x) are the following functions:

α1(x) =
−4x

2

9
−2x−p(x)2−q(x)2− 2

3
xp(x)− 2

3
xq(x)+p(x)q(x)

−3(p(x)2+q(x)2+p(x)q(x))

α2(x) =
x−α1(x)(λ1(x)−λ3(x))−λ3(x)

λ2(x)−λ3(x)
,

α3(x) = 1− α1(x)− α2(x).

Proof. By (2.3), we have D(H(n), x) =
∑3

i=1 αi(x)λi(x)
n. Since D(H(0), x) =

1, D(H(1), x) = x and D(H(2), x) = x2 + 2x, then by substituting n = 0, 1, 2

in (2.3) we have

α1(x) =
x(λ2(x) + λ3(x)) − x2 − 2x− λ2(x)λ3(x)

λ1(x)λ2(x) + λ1(x)λ3(x) − λ2(x)λ3(x)− (λ1(x))2
,
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α2(x) =
x− α1(x)(λ1(x) − λ3(x)) − λ3(x)

λ2(x) − λ3(x)
,

α3(x) = 1− α1(x)− α2(x).

By substituting λ1(x), λ2(x) and λ3(x), we have the result.

Table 2. Real and complex roots of D(Pn, x).

Real roots Complex roots

P1 0

P2 0,-2

P3 0,-2.6180339,-0.381966

P4 0,0,-2,-2

P5 0,0,-0.5344287681 −2.232785616± 0.7925519925i

P6 0,0,-0.1167964941,-1.46899949 −2.207106781± 0.97831834i

P7 0,0,0,-2,-0.6467900358 −2.176604982± 1.202820919i

P8 0,0,0,-2 −2.194827760± 1.3461759996i

-0.2164290187,-1.393915461

P9 0,0,0,-0.527421508 −1.916274378± 0.4225236912i

-0.7078172217 −2.203443403± 1.449357720i

P10 0,0,0,0 −1.97101181± 0.5464779336i

-0.3253111791,-1.298477136 −2.216404662± 1.529772651i

P11 0,0,0,0,-0.1132672109 −1.969841869± 0.7862099224i

-0.7554905703,-1.733110206 −2.229224138± 1.589095474i

P12 0,0,0,0 −2.002790548± 0.9457511977i

-0.02876579218,-0.4006431579 −2.240081562± 1.635233587i

-1.260363791,-1.824483038

P13 0,0,0,0,0 −1.732458303± 0.2597377308i

-0.1902335768,-0.7871330112 −2.028923421± 1.070514191i

−2.249934982± 1.671696359i

4. Open problem

By study of domination roots of graphs we are able to obtain some information

about the structure of graphs (see [2, 3, 4, 5]). Using Maple we computed

the domination roots of some non P4-free graphs such as paths Pn and cycles

Cn. We denote the roots of D(Pn, x) and D(Cn, x) by Z(Pn) and Z(Cn),

respectively. We show Z(Pn) for 1 ≤ n ≤ 14 in Table 2. By observation from

the tables, we think that the following conjecture is true for domination roots

of the families of paths (and also for cycles):
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Conjecture 4.1. Let r(P (x)) be the number of real roots of the polynomial

P (x), then

(i) For every natural number k, r(D(P4k−1 , x)) = r(D(P4k+1 , x)) = 2k+1

and r(D(P4k , x)) = r(D(P4k+2 , x)) = 2k + 2, and all these real roots

are in [−3−
√
5

2 , 0],

(ii) For every natural number k, r(D(C4k+1 , x)) = r(D(C4k+3 , x)) = 2k+1

and r(D(C4k+2, x)) = r(D(C4k+4 , x)) = 2k + 2,

(iii) Real roots of the families D(Pn, x) and D(Cn, x) are dense in the in-

terval [−2, 0], for n ≥ 4.
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