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1. Introduction

An operation or composition in a non void set H is a function from H ×H

to H , while a hyperoperation or hypercomposition is a function from H ×H to

the powerset P (H) of H . An algebraic structure that satisfies the axioms

i. a · (b · c) = (a · b) · c for every a, b, c ∈ H (associative axiom) and

ii. a ·H = H · a = H for every a ∈ H (reproductive axiom).

is called group if “·” is a composition (see remark in p. 72 of [25]) and hypergroup

if “·” is a hypercomposition [9]. When there is no likelihood of confusion “·”

can be omitted. If A and B are subsets of H , then AB signifies the union
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⋃

(a,b)∈A×B ab. In particular if either A = ∅ or B = ∅, then AB = ∅ and vice

versa. Ab and aB have the same meaning as A {b} and {a}B. In general, the

singleton {a} is identified with its member a. In [9] F. Marty also defined the

two induced hypercompositions (right and left division) that follow from the

hypercomposition of the hypergroup, i.e.
a
| b = {x ∈ H | a ∈ xb} and a

b | = {x ∈ H | a ∈ bx} .

It is obvious that, if the hypergroup is commutative, then the two induced

hypercompositions coincide. For the sake of notational simplicity, a/b or a : b

is used to denote the right division (as well as the division in commutative

hypergroups) and b\a or a..b is used to denote the left division [6, 14, 17].

Since the hypergroup, is a very general structure it was progressively en-

riched with additional axioms, either more or less powerful, thus creating a

significant number of specific hypergroups. e.g. [6, 7, 13, 18, 19, 23, 30, 37, 38,

39, 40]. Moreover some of these hypergroups constituted a constructive origin

for the development of other new hypercompositional structures (e.g. see [1, 8,

10, 11, 21, 34, 43]). Thus, W. Prenowitz enriched hypergroups with an axiom,

in order to use them in the study of geometry [5, 16, 17, 41, 42]. More precisely,

he introduced the commutative hypergroup, the transposition axiom

a/b ∩ c/d 6= ∅ implies ad ∩ bc 6= ∅ for all a, b, c, d in H

and named this new hypergroup join space [41, 42]. It has been proven that

these hypergroups also comprise a useful tool in the study of languages and

automata [20, 28, 31, 36]. Later on, J. Jantosciak generalized the above axiom

in an arbitrary hypergroup as follows:

b\a ∩ c/d 6= ∅ implies ad ∩ bc 6= ∅ for all a, b, c, d in H .

He named this particular hypergroup transposition hypergroup [6]. Subse-

quently, this axiom was also introduced into HV -groups [27] and in other hy-

percompositional structures [24]. So, the transposition HV -group , the transpo-

sition hypergroupoid, the transposition quasi-hypergroup, and the transposition

semi-hypergroup were defined. Clearly, if A,B,C and D are subsets of H , then

B\A ∩ C/D 6= ∅ implies that AD ∩BC 6= ∅. In what follows, the relational

notation A ≈ B (read A meets B) is used to assert that sets A and B have a

non-void intersection.

The study of transposition hypergroups is not as extensive as that of join

hypergroups (e.g. see [3, 4, 6, 7, 19, 24, 37]). In [26] the transposition hyper-

groups with idempotent identity were introduced and their fundamental prop-

erties were presented. It was proved that the elements of these hypergroups

are separated into two classes: the set A = {x ∈ H | e ∈ ex = xe}, including

e, of attractive elements and the set of non-attractive elements. A study of

these elements is also conducted in [26]. This paper contributes in the direc-

tion of further and deeper study of transposition hypergroups with idempotent

identity, by analyzing their algebraic structure.
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2. Preliminaries

Consequences of the hypergroup’s definition axioms are [24, 25]:

i. ab 6= ∅, for all a, b in H ,

ii. a/b 6= ∅ and a\b 6= ∅, for all a, b in H ,

iii. H = H/a = a/H and H = a\H = H\a, for all a in H ,

iv. the non-empty result of the induced hypercompositions is equivalent

to the reproductive axiom.

It has been proven in [6, 14] that in any hypergroup the following properties

are valid:

Proposition 2.1. In any hypergroup

i. (a/b) /c = a/ (cb) and c\ (b\a) = (bc) \a (mixed associativity),

ii. (b\a) /c = b\ (a/c),

iii. b ∈ (a/b) \a and b ∈ a/ (b\a).

Corollary 2.2. In any hypergroup H, if A,B,C are non-empty subsets of H,

then:

i. (A/B) /C = A/ (CB) and C\ (B\A) = (BC) \A,

ii. (B\A) /C = B\ (A/C),

iii. B ⊆ (A/B) \A and B ⊆ A/ (B\A).

Proposition 2.3. [6, 14, 18] The following are true in any transposition hy-

pergroup:

i. a (b/c) ⊆ ab/c and (c\b)a ⊆ c\ba,

ii. a/ (c/b) ⊆ ab/c and (b\c) \a ⊆ c\ba.

iii. (b\a) (c/d) ⊆ (b\ac) /d = b\ (ac/d),

iv. (b\a) / (c/d) ⊆ (b\ad) /c = b\ (ad/c),

v. (b\a) \ (c/d) ⊆ (a\bc) /d = a\ (bc/d).

Corollary 2.4. The following is true in any transposition hypergroup

(b\a) (c/d) ∪ (b\a) / (d/c) ∪ (a\b) \ (c/d) ⊆ (b\ac) /d = b\ (ac/d) .

Proposition 2.5. [12, 18] The following are true in any join hypergroup

i. a (b/c) ∪ b (a/c) ∪ a/ (c/b) ∪ b/ (c/a) ⊆ ab/c,

ii. (a/b) (c/d) ∪ (a/d) (c/b)∪ (a/b) / (d/c) ∪ (a/d) / (b/c)∪ (c/d) / (b/a)∪

(c/b) / (d/a) ⊆ ac/bd.

Corollary 2.6. The relations of Propositions 2.3, 2.5 and of Corollary 2.4 are

also valid if the elements a, b, c, d are replaced by non-empty subsets A,B,C,D

of the transposition hypergroup.

In [6] and then in [7] a principle of duality is established in the theory of

hypergroups and in the theory of transposition hypergroups as follows:
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Given a theorem, the dual statement which results from the interchanging of

the order of the hypercomposition “.” (and necessarily interchanging of the left

and the right division), is also a theorem.

Since we are working in transposition hypergroups, this principle is used through-

out this paper.

An element e is called right identity, if x ∈ xe for all x in H . If x ∈ ex for all

x in H , then x is called left identity, while x is called identity if it is both right

and left identity. If equality e = ee is valid for an identity e, then e is called

idempotent identity. If x = xe = ex for all x in H , then e is a scalar identity.

When a scalar identity exists in H , then it is unique. An identity e is a strong

identity, if x ∈ xe = ex ⊆ {e, x} for all x in H . The strong identity need not

be unique [7]. Both scalar and strong identities are idempotent identities.

Proposition 2.7. If e is a strong identity in H and x 6= e, then x/e = e\x = x.

Proposition 2.8. If e is a scalar identity in H, then x/e = e\x = x.

A hypergroup H is called semi-regular, if every x ∈ H has at least one

right and one left identity. An element x′ is called right e-inverse or right

e-symmetric of x, if a right identity e 6= x′ exists such that e ∈ x · x′. The

definition of the left e-inverse or left e-symmetric is analogous to the above,

while x′ is called e-inverse or e-symmetric of x, if it is both right and left

inverse with regard to the same identity e. If e is an identity in a hypergroup

H , then the set of left inverses of x ∈ H , with regard to e, will be denoted

by Sel (x), while Ser (x) will denote the set of right inverses of x ∈ H with

regard to e. The intersection Sel (x) ∩ Ser (x) will be denoted by Se (x). A

semi-regular hypergroup H is called regular, if it has at least one identity e

and if each element has at least one right and one left e-inverse. H is called

strictly e-regular, if for the identity e the equality Sel (x) = Ser (x) is valid for

all x ∈ H . In a strictly e-regular hypergroup, the inverses of x are denoted

by Se (x) and, when there is no likelihood of confusion, e can be omitted. H

has semistrict e-regular structure, if Sel (x) ∩ Ser (x) 6= ∅ for any x ∈ H is true

for the identity e. Obviously, in commutative hypergroups only strict e-regular

structures exist.

A subset h of H is called a subhypergroup of H , if xh = hx = h for all x ∈ h.

A subhypergroup h of H is central if xy = yx for all x ∈ h and y ∈ H .

Proposition 2.9. If H is a hypergroup with strong identities, then the set E

of these identities is a central subhypergroup of H.

Let e be an identity element in a hypergroup H and x an element in H .

Then, x will be called right e-attractive, if e ∈ ex, while it will be called left

e-attractive if e ∈ xe. If x is both left and right e-attractive, then it will be

called e-attractive. When there is no likelihood of confusion, then e can be

omitted. When the identity is strong, then ex = xe = {e, x} is valid, if x is
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attractive; if x is non-attractive, then ex = xe = x is valid. In the case of

strong identity, non-attractive elements are called canonical. See [33] for the

origin of the terminology.

Proposition 2.10. In a hypergroup H, e\e is the set of right e-attractive

elements of H and e/e is the set of left e-attractive elements of H.

Proof. Suppose that x is a right attractive element in H . Then e ∈ ex. Thus

x ∈ e\e. Also, if x ∈ e\e, then e ∈ ex. Hence e\e consists of the right attractive

elements of H . The rest follows per duality. �

In the following some properties of attractive elements, essential for the next

paragraphs, which are proven in [26] are presented.

Proposition 2.11. i. If x is not a right (resp. left) e-attractive element in a

hypergroup with idempotent identity e, then ex consists of non-right (resp. left)

e-attractive elements.

ii. If x is a right (resp. left) e-attractive element in a transposition hyper-

group with idempotent identity e, then all the elements of xe are right (resp.

left) e-attractive.

Proposition 2.12. i. If x is a right (resp. left) attractive element in a

transposition hypergroup with idempotent identity e, then its right (resp. left)

inverses are also right (resp. left) attractive elements.

ii. If x is not a right (resp. left) attractive element in a transposition hy-

pergroup with idempotent identity e, then its right (resp. left) inverses are not

right (resp. left) attractive elements as well.

Proposition 2.13. Let H be a strictly e-regular hypergroup, where e is a strong

identity. Then:

i. x\e = eS (x) = {e} ∪ S (x) = S (x) e = e/x for any attractive element

x 6= e,

ii. x\e = e/x = S (x) for any non attractive element x.

Proposition 2.14. If x is not a right (resp. left) e-attractive element in a

hypergroup H with strong identity e, then xSer (x) (resp. Sel (x)x) contains all

the right (resp. left) attractive elements.

In what follows, it is assumed that the identities are bilateral and idempo-

tent. Examples of such transposition hypergroups, some of which are connected

to the theory of languages and automata, can be found in [7, 19, 22, 28, 33, 36,

37]. Also, T will denote a strictly e-regular transposition hypergroup, where

e is an idempotent identity. In T let A denotes the set of attractive elements

and C the set of non-attractive ones. Then T = A ∪ C and A ∩ C = ∅.

Proposition 2.15. [26] In a strictly e-regular transposition hypergroup:
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i. The result of the hypercomposition of two attractive elements contains

only attractive elements.

ii. The result of the hypercomposition of an attractive element with a and

non-attractive element consist of non-attractive elements.

iii. If x, y are attractive elements in T , then x/y ⊆ A and y\x ⊆ A .

iv. If x is a non-attractive element in T , then A ⊆ xC ∩Cx.

v. The set C of non-attractive elements of T is not stable under the

hypercomposition.

vi. If either x or y are non-attractive elements, then x/y ⊆ C and

y\x ⊆ C.

Proposition 2.16. [26] If the identity of T is strong, then:

i. the result of the hypercomposition of two attractive elements contains

these two elements (see also [10, 19, 31, 33, 35]),

ii. the result of the hypercomposition of an attractive element with a

canonical element is the canonical element (see also [10, 19, 31, 33,

35]).

Corollary 2.17. If the identity of T is strong, then:

i. x ∈ x/y and x ∈ y\x, for all x, y ∈ A,

ii. A = x/x = x\x, for all x ∈ A.

Proposition 2.18 (26). If the identity of T is strong and

i. x, y are two attractive elements in T , such that e /∈ xS (y), then

xS (y) = x/y ∪ S (y) and S (y)x = y\x ∪ S (y),

ii. x, y are two elements in T and any of these is non-attractive, then

xS (y) = x/y and S (y)x = y\x.

Corollary 2.19. If the identity of T is strong and:

i. X,Y are non-empty subsets of A ⊆ T and e /∈ XS (Y ), then XS (Y ) =

X/Y ∪ S (Y ) and S (Y )X = Y \X ∪ S (Y ),

ii. if X or Y are non-empty subsets of C ⊆ T , then XS (Y ) = X/Y and

S (Y )X = Y \X.

When identity is strong and S(x) is singleton for all x ∈ T , properties of

attractive elements are developed in [7, 30, 32, 33 ].

3. Subhypergroups

A subhypergroup K of a hypergroup H is called closed from the right (resp.

from the left) if (Ka) ∩ K = ∅ (resp. (aK) ∩ K = ∅) for every a ∈ H − K.

K is called closed if it is both right and left closed (for more details see [29]).

In [ 12, 14] it is proven that h is right closed (resp. left closed) if and only if

b\a ⊆ K (resp. a/b ⊆ K) for all a, b ∈ K.
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Proposition 3.1. The set A of the attractive elements of T is a closed sub-

hypergroup of T .

Proof. According to Proposition 2.15.i, xA ⊆ A, if x ∈ A. Next, let y be an

arbitrary element of A. We shall prove that y ∈ xA. Indeed, if x is an element

of A, then its inverses are also in A (Prop. 2.12). Therefore, x′y ⊆ A , if

x′ ∈ S (x) and y ∈ ey ⊆ (xx′) y = x (x′y). Thus, there exists z ∈ x′y , such

that y ∈ xz ⊆ xA. Hence, xA = A. Dually, Ax = A and, therefore, A is a

subhypergroup of T . Now, if w belongs to T − A, i.e. if w is a non-attractive

element, then, because of Proposition 2.15.ii, wA ⊆ T −A is valid. Therefore,

(wA)∩A = ∅ and so A is closed from the right. Because of duality A is closed

from the left and thus A is a closed subhypergroup of T . �

From Propositions 3.1, 2.15.ii and v, it follows that:

Proposition 3.2. The set of attractive elements is the minimum closed sub-

hypergroup of T (in the sense of inclusion).

A subhypergroupK of a transposition hypergroup with an identity e is called

symmetric with respect to e, if for all x ∈ K the right and the left inverses of

x, with respect to e, are subsets of K (see also [7, 33]). From Proposition 2.12

it follows that:

Proposition 3.3. The set of attractive elements is a symmetric subhypergroup

of T .

Proposition 3.4. A non-empty subset K of T is a symmetric subhypergroup

with respect to e of T , if and only if xSe (y) ⊆ K and Se (y)x ⊆ K for all

x, y ∈ K.

Proof. The above condition is obviously valid when K is a symmetric sub-

hypergroup of T . Conversely now, suppose that x belongs to K. Then,

xSe (x) ⊆ K and so e ∈ K, which implies eSe (x) ⊆ K and so Se (x) ⊆ K.

Next, for the proof of the reproductive axiom, suppose that y is an arbitrary

element of K. Then, there exists y ∈ Se (y) ⊆ K , such that y ∈ Se (y).

Thus, xy ⊆ xSe (y) ⊆ K. Therefore, xK ⊆ K. By duality, Kx ⊆ K. Also,

Se (x) y ⊆ K ⇒ xSe (x) y ⊆ xK ⇒ ey ⊆ xK ⇒ y ∈ xK. Therefore, K ⊆ xK.

Dually, K ⊆ Kx. Hence, xK = Kx = K for all x ∈ K. �

Corollary 3.5. A non-empty subset K of T is a symmetric subhypergroup

with respect to e of T , if and only if KK = K and Se (K) = K.

Proposition 3.6. Let e be an identity in T and let K1, K2 be any two sym-

metric subhypergroups of T with respect to e. Then, their intersection K1∩K2

is a symmetric subhypergroup of T .
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Proof. e ∈ K1 ∩ K2 and Se (x) ⊆ K1 ∩ K2 for all x ∈ K1 ∩ K2. Next, let

x be an arbitrary element of K1 ∩ K2. Then, x (K1 ∩K2) ⊆ xK1 = K1 and

x (K1 ∩K2) ⊆ xK2 = K2. Hence, x (K1 ∩K2) ⊆ K1 ∩ K2. Now, let y be

an element in K1 ∩ K2 and x′ an inverse of x. Then, y ∈ ey ⊆ (xx′) y =

x (x′y) ⊆ x (K1 ∩K2), thus K1 ∩K2 ⊆ x (K1 ∩K2) and therefore, K1 ∩K2 =

x (K1 ∩K2). �

From Proposition 3.6 above and from the fact that the intersection of two

symmetric subhypergroups with respect to e is non-empty (as it always contains

the identity e) it follows that:

Proposition 3.7. In a strictly regular transposition hypergroup, the set of its

symmetric subhypergroups with respect to e forms a complete lattice.

Proposition 3.8. Let K be a symmetric subhypergroup of T . If x /∈ K, then

x/K ∩K = ∅ and K\x ∩K = ∅.

Proof. Suppose that x does not belong in K and let y be an element in K,

such that x/y∩K 6= ∅. Then, x ∈ Ky = K, which contradicts the assumption

above. Thus, x/K ∩K = ∅. �

Proposition 3.9. Suppose that T has a strong identity and that K is a sym-

metric subhypergroup of T . Then:

i. if x ∈ A, K ⊆ A and x /∈ K, then xK = x/K ∪K and Kx = K\x∪K,

ii. if x ∈ C or K ⊆ C, then xK = x/K and Kx = K\x.

Proof. Since K is symmetric, S (K) = K. Thus: (i) e /∈ xK, since x /∈ K.

So, according to Corollary 2.19.i, xK = xS (K) = x/K ∪ S (K) = x/K ∪ K.

(ii) Using Corollary 2.19.ii, we get xK = xS (K) = x/K. The rest in (i), (ii)

follows by duality. �

Proposition 3.10. Suppose that T has a strong identity, K is a symmetric

subhypergroup of T and x is an element of T , but not an element K. Then

K/x = KS (x) and x\K = S (x)K.

Proof. According to Proposition 2.13, S (x) is a subset of e/x. Moreover, e/x is

a subset of K/x. Thus, S (x) ⊆ K/x. Since x /∈ K , we have e /∈ KS (x). Thus,

Corollary 2.19 implies either that KS (x) = K/x ∪ S (x) = K/x ∪ e/x = K/x,

whenever K ⊆ A and x ∈ A, or that KS (x) = K/x, whenever K ⊆ C or

x ∈ C. The rest follows by duality. �

Proposition 3.11. Suppose that T has a strong identity and K is a symmetric

subhypergroup of T . If x /∈ K, then (x/K)K = xK and K(K\x) = Kx.

Proof. Since x ∈ x/K, it follows that xK ⊆ (x/K)K. Also, because of Propo-

sition 3.9, x/K ⊆ xK is valid. Thus, xK ⊆ (x/K)K ⊆ (xK)K = xK. Duality

yields the rest. �
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Proposition 3.12. Suppose that T has a strong identity and K is a symmetric

subhypergroup of T . If x, y /∈ K, then:

i. x/K ≈ y/K implies x/K = y/K,

ii. K\x ≈ K\y implies K\x = K\y,

iii. K\ (x/K) ≈ K\(y/K) implies K\ (x/K) = K\(y/K).

Proof. (i) x/K ∩ y/K 6= ∅ implies that x ∈ (y/K)K. Since y /∈ K, from

Propositions 3.11 and 3.9 follows that (y/K)K = yK ⊆ y/K ∪ K. Thus,

x ∈ y/K∪K. Since x /∈ K, it follows that x ∈ y/K. Thus, x/K ⊆ (y/K)/K =

y/ (KK) = y/K. By symmetry, y/K ⊆ x/K. Hence, x/K = y/K. Duality

gives (ii).

(iii) Per Propositions 2.1, 2.10 and 3.11:

K\ (x/K) ≈ K\ (y/K)⇒ (K\x)/K ≈ K\ (y/K)⇒ K\x ≈ [K\ (y/K)]K ⇒

⇒ K\x ≈ K\ [(y/K)K]⇒ K\x ≈ K\yK ⇒ x ∈ yK ⇒ y ∈ x/K ⇒

⇒ y/K ⊆ (x/K) /K ⇒ y/K ⊆ x/ (KK)⇒

y/K ⊆ x/K ⇒ K\ (y/K) ⊆ K\ (x/K) .

By symmetry, K\ (x/K) ⊆ K\ (y/K), thus equality is valid. �

Proposition 3.13. The symmetric subhypergroup K of a strictly regular trans-

position hypergroup T , generated by a subset X of T , is the union of all products

x1...xn of any n > 0 elements, each of which is either an element of X or the

inverse of an element of X.

Proposition 3.14. For any two symmetric subhypergroup K1,K2 of a strictly

regular transposition hypergroup T , there exists a least symmetric subhyper-

group, which contains both K1 and K2; i.e it is a symmetric subhypergroup K

of T with K1 ⊆ K, K2 ⊆ K and for which the inclusions K1 ⊆ N , K2 ⊆ N

imply K ⊆ N for any symmetric subhypergroup N of T .

Proof. Let U be the set of all symmetric subhypergroups of T which contain

both K1 and K2. Then, according to Proposition 3.6, the intersection of all

symmetric subhypergroups in U is a symmetric subhypergroup with the desired

property. �

The symmetric subhypergroup of Proposition 3.14 is denoted by K1 ∨ K2

and is usually larger than the union of the sets K1 and K2, since K1 ∨K2 is

the set of all those elements of T which belong for some j in a hyperproduct

a1b1...ajbj, ai ∈ K1, bi ∈ K2. K1∨K2 is the lowest symmetric subhypergroup

situated above both K1 and K2 in the lattice of symmetric subhypergroups.
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4. Cosets

In [6] it is proven that, if K is a closed subhypergroup of a join hypergroup

H , then the sets {xK = xK | x ∈ H} and {K/x | x ∈ H} of the classes modulo

K are equal. The set of these classes is denoted by H : K. The family of the

cosets H : K becomes a canonical hypergroup [18, 38], if it is endowed with

the hypercomposition xK·yK = {zK | z ∈ xy} [6]. K is the scalar identity in

(H : K, ·) and the inverse of xK is K/x. In [6] it is proven that, if K is a closed

subhypergroup of a transposition hypergroup H for which the equality x\K =

K/x holds for all x ∈ H , then H : K is quasicanonical hypergroup [13]. This

paragraph studies the cosets which are defined from a nonempty symmetric

subhypergroup in a strictly e-regular transposition hypergroup T , where e is a

strong identity. If x ∈ T and K is a nonempty symmetric subhypergroup of

T , then x←
h
(i.e. the left coset of K determined by x) and dually, x→

K
(i.e. the

right coset of K determined by x) are given by:

x←
K

=

{

K if x ∈ K

x/K if x /∈ h
and x→

K
=

{

K if x ∈ K

K\x if x /∈ K

For Q ⊆ T , Q←
K

and Q→
K

denote the unions ∪
{

x←
K
|x ∈ Q

}

and ∪
{

x→
K
|x ∈ Q

}

respectively. Propositions 3.8 and 3.12 assure that distinct left cosets and right

cosets, are disjoint.

Remembering that, per Corollary 2.2, equality (B\A) /C = B\ (A/C) is

valid in any hypergroup, the double coset of K determined by x can be defined

by:

xK =

{

K if x ∈ K

K\(x/K) = (K\x)/K if x /∈ K

Following the above notation, if Q is a non-void subset of T , then QK denotes

the union ∪{xK | x ∈ Q}.

Proposition 4.1. Let K be a symmetric subhypergroup of T . Then:

i. x ∈ x←
K
, x ∈ x→

K
and x ∈ xK ,

ii. x←
K
⊆ xK and x→

K
⊆ xK ,

iii. xK =
(

x←
K

)

→

K

=
(

x→
K

)

←

K

.

Proposition 3.12 assures that distinct left cosets and right cosets, as well as

double cosets, are disjoint. Thus:

Proposition 4.2. Each of the families T :
←−
K =

{

x←
K
|x ∈ T

}

, T :
−→
K =

{

x→
K
|x ∈ T

}

and T : K = {xK |x ∈ T } of left, right and double cosets are

partitions of T .

Since the identity of T is strong, ifK contains a non-attractive element, then,

because of Proposition 2.14,K contains all the attractive elements. In this case,
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cosets are determined only by non-attractive elements. Herein, Proposition

2.18 implies that xK = xS (K) = x/S (K) = x/K and that Kx = S (K)x =

S (K) \x = K\x. Next if K consists of attractive elements and x is a non-

attractive element, then Proposition 2.18 again gives xK = x/K and Kx =

K\x. On the other hand, if K consists of attractive elements and x is also

an attractive element, not belonging in K, then Proposition 2.18.i implies that

xK = x/K ∪ K and Kx = K\x ∪ K. The latter case, which is the most

interesting, will be studied here. Hereunder, TA will denote a strictly regular

transposition hypergroup with strong identity, consisting only of attractive

elements.

Proposition 4.3. Let K be a symmetric subhypergroup of TA. Then:

i. x←
K
K = xK = x←

K
∪K,

ii. Kx→
K

= Kx = x→
K
∪K.

Proof. (i) If x ∈ K, then equalities (i) and (ii) above are valid, since every part

of each equality equals K. If x /∈ K, per Proposition 3.11, x←
K
K = (x/K)K =

xK; per Proposition 2.18.i, xK = x/K ∪K = x←
K
∪K. Duality gives (ii). �

Corollary 4.4. If Q is a non-empty subset of TA and K is a symmetric sub-

hypergroup of TA, then:

Q←
K
K = QK = Q←

K
∪K and KQ→

K
= KQ = Q→

K
∪K.

Proposition 4.5. Let K be a symmetric subhypergroup of TA. Then:

KxK = Kx←
K

= xK ∪K = KxK = x→
K
K = xKK.

Proof. Per Proposition 4.3.i: KxK = K(x←
K
∪K) = Kx←

K
∪K = Kx←

K
and per duality: KxK = x→

K
K. Next, per Proposition 4.1.iii and Corollary

4.4: KxK = K
(

x←
K

)

→

K

= Kx←
K

=
(

x←
K

)

→

K

∪K = xK ∪K. Duality gives the

rest. �

Corollary 4.6. If Q is a nonempty subset of TA and K is a symmetric subhy-

pergroup of TA, then:

KQK = KQ←
K

= QK ∪K = KQK = Q→
K
K = QKK.

Proposition 4.7. Let K be a symmetric subhypergroup of TA. Then:

i. (xy) ←
K
⊆ x←

K
y←
K
∪K,

ii. (xy) →
K
⊆ x→

K
y→
K
∪K.

Proof. (i) Per Corollary 4.4. (xy)←
K
⊆ (xy)←

K
K = xyK. Next, per Corollary

2.17: xyK ⊆ (x/K) yK = x←
K
yK. Now, per Proposition 4.2:

x←
K
yK = x←

K

(

y→
K
∪K

)

= x←
K
y→
K
∪ x←

K
K = x←

K
y→
K
∪ x
←

K ∪K.
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Finally, per Proposition 2.16: x←
K
y→
K
∪x←

K
∪K = x←

K
y→
K
∪K. Duality gives part

(ii). �

Corollary 4.8. Let X, Y be non-empty subsets of TA and K is a symmetric

subhypergroup of TA. Then:

(XY )←
K
⊆ X←

K
Y←
K
∪K and (XY )→

K
⊆ X→

K
Y→
K
∪K.

Proposition 4.9. Let K be a symmetric subhypergroup of TA. Then (xy)K ⊆

xKyK ∪K.

Proof. Per Proposition 4.1.iii and Corollary 4.8:

(xy)K =
(

(xy)←
K

)

~K
⊆

[

x←
K
y←
K
∪K

]

~K
=

(

x←
K
y←
K

)

~K
∪K ~K

⊆
(

x←
K

)

~K

(

y←
K

)

~K
∪K =

= xKyK ∪K

�

Corollary 4.10. Let X, Y be non-empty subsets of TA and K a symmetric

subhypergroup of TA. Then:

(XY )K ⊆ XKYK ∪K.

Corollary 4.11. Let X, Y be non empty subsets of TA and K a symmetric

subhypergroup of TA. Then:

i. K ∩XKYK 6= ∅ implies (XKYK)K ⊆ XKYK ∪K,

ii. K ∩XKYK = ∅ implies (XKYK)K = XKYK .

In each of the families TA :
←−
K , TA :

−→
K and TA : K of cosets, a hypercompo-

sition induced by the hypercomposition in TA, can be defined. Thus in TA : K

we have xK · yK = {zK | z ∈ xKyK}. As mentioned in [7], families T :
←−
K and

T :
−→
K do not necessarily form a hypergroup, as associativity may fail. However,

it was also proven in [7] that, when T is a fortified transposition hypergroup,

the family of the double cosets form a fortified transposition hypergroup as

well.

Proposition 4.12. If K is a symmetric subhypergroup of TA, then (TA : K)

is a hypergroup.

Proof. It is known that the associativity holds in TA : K if and only if

((xKyK)K zK)
K

= (xK (yKzK)K)
K
[6]. Equality ((xKyK)K zK)

K
= (xKyKzK)K

is shown to hold hereunder. If K ∩ xKyK = ∅, then Corollary 4.11.ii yields

(xKyK)K = xKyK and the above equality is obvious. If K ∩ xKyK 6= ∅, then

Corollary 4.11.i yields (xKyK)K = xKyK ∪K. Hence:

(xKyK) zK = (xKyK ∪K) zK = xKyKzK ∪KzK = xKyKzK ∪ zK ∪K =

= xKyKzK ∪K
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Since K ∩ xKyK 6= ∅ and xKyK ⊆ xKyKzK , it follows that K ⊆ (xKyKzK)K
is valid. Therefore,

((xKyK)K zK)
K

= (xKyKzK ∪K)K = (xKyKzK)K ∪K = (xKyKzK)K .

Duality yields (xKyKzK)K = (xK (yKzK)K)
K

and so the associativity is valid.

Reproduction in TA : K derives directly from the reproduction in TA. �

A consequence of Proposition 4.5 is that K · xK = xK · K = {xK ,K} for

every xK in TA : K. Hence:

Proposition 4.13. K is a strong identity in hypergroup TA : K, which consists

only of attractive elements.

Proposition 4.14. The following are true in TA : K

i. {xK , yK} ⊆ xK · yK for all xK , yK ∈ TA : K,

ii. K ∈ xK · yK , y ∈ S (x) for all xK ∈ TA : K.

5. Homomorphisms

According to the terminology introduced by M. Krasner, if H and H ′ are

two hypergroups, then a homomorphism from H to H ′ is a mapping

ϕ : H → P (H ′), such that ϕ (xy) ⊆ ϕ (x)ϕ (y) for all x, y ∈ H . A homo-

morphism is called strong if ϕ (xy) = ϕ (x)ϕ (y) for all x, y ∈ H . A mapping

ϕ : H → H ′ is called strict homomorphism if ϕ (xy) ⊆ ϕ (x)ϕ (y) for all

x, y ∈ H , while it is called normal ϕ (xy) = ϕ (x)ϕ (y) for all x, y ∈ H [13, 15,

35].

Proposition 5.1. If ϕ is a normal homomorphism from H to H ′, then

ϕ (b\a) ⊆ ϕ (b) \ϕ (a) and ϕ (a/b) ⊆ ϕ (a) \ϕ (b) .

Proof. If y ∈ ϕ (b\a), then ϕ (x) = y for some x ∈ b\a, which yields a ∈ bx.

Thus, ϕ (a) ∈ ϕ (bx) = ϕ (b)ϕ (x) and, consequently, ϕ (x) ∈ ϕ (b) \ϕ (a).

Therefore, the first relation is established. The second relation follows by du-

ality. �

Now, let T and T ′ be two strictly regular transposition hypergroups with

idempotent identities e and e′ respectively. As usual, the kernel of ϕ, denoted

by kerϕ, is the subset ϕ−1 (ϕ (e)) of T . Also, the homomorphic image ϕ (T )

of T is denoted by Imϕ. AT and AT ′ will denote the attractive elements of T

and T ′ respectively, while CT and CT ′ will signify the non-attractive elements

of T and T ′ respectively.

Proposition 5.2. If ϕ is a normal homomorphism from T to T ′, then:

i. kerϕ is a semisubhypergroup of T ,

ii. Imϕ is a subhypergroup of T ′, which generally does not contain the

identity of T ′, nevertheless ϕ (e) is a neutral element in Imϕ.
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Proof. (i) If x ∈ kerϕ, then ϕ (x kerϕ) = ϕ (e). Thus, x kerϕ ⊆ kerϕ.

(ii) Let x ∈ T . Then, ϕ (x)ϕ (T ) = ∪y∈Tϕ (xy) = ϕ (xT ) = ϕ (T ). Similarly,

ϕ (T )ϕ (x) = ϕ (T ). Thus, Imϕ is a subhypergroup of T ′. Additionally, since

x ∈ ex = xe, it holds that ϕ (x) ∈ ϕ (e)ϕ (x) = ϕ (x)ϕ (e). �

Proposition 5.3. If ϕ is a normal homomorphism from T to T ′ and the

identities e, e′ of T and T ′ respectively are strong, then:

i. S (x) ⊆ kerϕ for all x ∈ CT ∩ kerϕ,

ii. if CT ∩ kerϕ 6= ∅, then AT ⊆ kerϕ,

iii. kerϕ is a subhypergroup of T ,

iv. if ϕ (e) = e′, then ϕ (AT ) ⊆ AT ′ and ϕ (CT ) ⊆ CT ′ ,

v. if ϕ is an epimorphism, then ϕ (e) = e′.

Proof. (i) Per Proposition 2.12.ii, S (x) ⊆ CT , if x ∈ CT . Let x
′ ∈ S (x). Then,

for ϕ (x′) the following is valid: ϕ (xx′) = ϕ (x)ϕ (x′) = ϕ (e)ϕ (x′) = ϕ (ex′) =

ϕ (x′). But e ∈ xx′, therefore ϕ (e) ∈ ϕ (xx′) = ϕ (x′). Thus ϕ (e) = ϕ (x′).

Hence, x′ ∈ kerϕ.

(ii) Per Proposition 2.14, AT ⊆ xS (x), if x ∈ CT . Therefore, ϕ (AT ) ⊆

ϕ (xS (x)) = ϕ (x)ϕ (S (x)) = ϕ (e)ϕ (e) = ϕ (ee) = ϕ (e). Hence, AT ⊆ kerϕ.

(iii) Per Proposition 5.2.i kerϕ is a semisubhypergroup of T . Thus, if x ∈

kerϕ, then x kerϕ ⊆ kerϕ. Let y be an arbitrary element in kerϕ. It will

be shown that y ∈ x kerϕ. Let x′ be an element of S (x) and suppose that

x′ ∈ kerϕ. Then, y ∈ (xx′) y = x (x′y) ⊆ x kerϕ. Next, suppose that x′ /∈

kerϕ. Then, the previous part (i) and Proposition 2.12 imply that x and x′

are attractive. Thus, if y is attractive, then, Proposition 2.16.i implies that

y ∈ xy ⊆ x kerϕ, while, if y is canonical, Proposition 2.16.ii implies that

y = xy ⊆ x kerϕ. Hence, kerϕ ⊆ x kerϕ and so kerϕ = x kerϕ. Similarly,

kerϕ = (kerϕ) x.

(iv) If x ∈ AT , then

ϕ (x) e′ = ϕ (x)ϕ (e) = ϕ (xe) = ϕ {x, e} = {ϕ (x) , ϕ (e)} = {ϕ (x) , e′} .

Hence, ϕ (x) ∈ AT ′ . If x ∈ CT , then ϕ (x) e′ = ϕ (x)ϕ (e) = ϕ (xe) = ϕ (x).

Hence, ϕ (x) ∈ CT ′ .

(v) Since ϕ is an epimorphism, for each y ∈ S (ϕ (e)) there exists x ∈ T ,

such that ϕ (x) = y. Thus, e ∈ yϕ (e) = ϕ (x)ϕ (e) = ϕ (xe) = ϕ {x, e} =

{ϕ (x) , ϕ (e)}. Consequently, either ϕ (e) = e or ϕ (x) = e. If ϕ (x) = e, then

y = e′ for each y ∈ S (ϕ (e)). Therefore, e = S (ϕ (e)). Thus, e = ϕ (e). �

A homomorphism does not necessarily map attractive elements to attractive

elements. A relevant example for fortified join hypergroups can be found in [15].

Proposition 5.4. Let ϕ be a normal homomorphism from T to T ′ and suppose

that the identities e, e′ of T and T ′ respectively are strong. Then:
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i. if the image of an attractive element is a non-attractive element, then

Imϕ ⊆ CT ′ ,

ii. if the image of a non-attractive element is an attractive element, then

it belongs to kerϕ and all the attractive elements are in kerϕ.

Proof. (i) Per Proposition 5.3.iv, ϕ (e) 6= e′. Let a be an attractive element

and ϕ (a) a non-attractive element. We distinguish the following cases:

(a) if x ∈ CT , then, per Proposition 2.16.ii, ax = xa = x is valid, thus: eϕ (x) =

eϕ (ax) = e [ϕ (a)ϕ (x)] = [eϕ (a)]ϕ (x) = ϕ (a)ϕ (x) = ϕ (ax) = ϕ (x). Hence,

ϕ (x) is a non-attractive element.

(b) for ϕ (e) it holds that:

ϕ (a) e′ = ϕ (a)⇒ ϕ (e)ϕ (a) e′ = ϕ (e)ϕ (a)⇒ ϕ (ea) e′ = ϕ (ea)⇒

⇒ ϕ ({e, a}) e′ = ϕ ({e, a})⇒ {ϕ (e) , ϕ (a)} e′ = {ϕ (e) , ϕ (a)} ⇒

⇒ [ϕ (e) e′] ∪ [ϕ (a) e′] = {ϕ (e) , ϕ (a)} ⇒ [ϕ (e) e′] ∪ {ϕ (a)} = {ϕ (e) , ϕ (a)}

If ϕ (a) e′ = {ϕ (e) , e′}, then e′ ∈ {ϕ (e) , ϕ (a)}, which is absurd. Therefore,

ϕ (e) is a non-attractive element.

(c) Let y ∈ AT , y 6= e. Since ϕ (e) ∈ CT ′ , assuming that ϕ (y) is an attractive

element, then, per Proposition 2.15, ϕ (y)ϕ (e) consists only of non-attractive

elements. However ϕ (y)ϕ (e) = ϕ (ye) = ϕ {y, e} = {ϕ (y) , ϕ (e)}. Hence,

ϕ (y) is a non-attractive element, which contradicts the assumption above.

Thus, ϕ (y) is a non-attractive element.

(ii) Suppose that a is an attractive element and x a non-attractive element, the

image of which is an attractive element different from the identity. Then ϕ (a) ∈

AT ′ ; otherwise, according to (i) above, Imϕ ⊆ CT ′ , which is a contradiction.

Next, per Proposition 2.16.ii, ϕ (a)ϕ (x) = ϕ (ax) = ϕ (x). Hence, ϕ (a) 6= e′,

because ϕ (x) is an attractive element different from the identity and the result

of the hypercomposition of an attractive element with the identity contains the

identity. Therefore, ϕ (a) = ϕ (x), which yields:

ϕ (a)ϕ (e) = ϕ (x)ϕ (e)⇒ ϕ (ae) = ϕ (xe)⇒ ϕ {a, e} = ϕ (x)⇒

⇒ {ϕ (a) , ϕ (e)} = ϕ (x)

Therefore, ϕ (a) = ϕ (e) = ϕ (x). Thus, x ∈ kerϕ, therefore, per of Proposition

5.3.ii, all the attractive elements belong to kerϕ. �

As was shown in [15], the fact that an attractive element belongs in kerϕ

does not imply that its inverses also belong in kerϕ. This means that, even

though kerϕ is a subhypergroup of T when ϕ is normal, generally kerϕ is

not a symmetric subhypergroup of T . Therefore, the notion of the complete

homomorphism, is introduced in [15]. This notion is generalized here as follows:

Definition 5.5. A homomorphism will be called complete, if S (x) ⊆ kerϕ for

each x ∈ kerϕ.
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Proposition 5.6. If ϕ is a complete homomorphism, then kerϕ is a symmetric

subhypergroup of T .

Proof. x ∈ kerϕ implies x kerϕ ⊆ kerϕ, since kerϕ is a semisubhypergroup of

T . Next, let y ∈ kerϕ and x ∈ S (x). Then, y ∈ (xx)y = x(xy) ∈ x kerϕ. Thus,

kerϕ ⊆ x kerϕ and therefore kerϕ = x kerϕ. Similarly, (kerϕ) x = kerϕ, and

therefore, kerϕ is a subhypergroup of T . In addition, kerϕ is a symmetric

subhypergroup of T , since x ∈ kerϕ implies that S (x) ⊆ kerϕ. �

Proposition 5.7. Let ϕ be a complete and normal homomorphism, for which

ϕ (e) = e is valid. Then ϕ (S (x)) ⊆ S (ϕ (x)).

Proof. e ∈ Imϕ, since ϕ (e) = e. Next, let y ∈ Imϕ. Then, there exists x ∈ T ,

such that y = ϕ (x). Let x ∈ S (x). Then, e = ϕ (e) ∈ ϕ (xx) = ϕ (x)ϕ (x). If

ϕ (x) 6= e, then ϕ (x) 6= e, since ϕ is complete. Thus, e ∈ ϕ (x)ϕ (x) implies

that ϕ (x) ∈ S (ϕ (x)). Consequently, ϕ (S(x)) ⊆ S (ϕ (x)). �

Corollary 5.8. Let ϕ be a complete and normal homomorphism for which

ϕ (e) = e is valid and ϕ (S (x)) = S (ϕ (x)) for each x ∈ T . Then:

i. Imϕ is a symmetric subhypergroup of T ,

ii. the homomorphic image of every symmetric subhypergroup of T is a

symmetric subhypergroup of T .

References

1. A. Asokkumar, Derivations in Hyperrings and Prime Hyperrings, Iranian Journal of

Mathematical Sciences and Informatics, 8(1), (2013), 1-13.

2. P. Corsini and V. Leoreanu, Applications of Hyperstructures Theory, Kluwer Academic

Publishers, 2003.

3. S. Hoskova, J. Chvalina, P. Rackova, Transposition hypergroups of Fredholm integral

operators and related hyperstructures (Part I), Journal of Basic Science, 4, no. 1 (2008),

43-54.

4. A. Iranmanesh and A. Babareza, Transposition hypergroups and complement hyper-

groups, Journal of Discrete Mathematical Sciences & Cryptography, 6(2-3), (2003), 161-

168.

5. J. Jantosciak, Classical geometries as hypergroups, Atti del Convegno su Ipergruppi altre

Structure Multivoche et loro Applicazioni, Udine 15-18 Octobr. 1985, pp. 93-104.

6. J. Jantosciak, Transposition hypergroups, Noncommutative Join Spaces, Journal of Al-

gebra, 187, (1997), 97-119.

7. J. Jantosciak and Ch. G. Massouros, Strong Identities and fortification in Transposition

hypergroups, Journal of Discrete Mathematical Sciences & Cryptography, 6(2-3) (2003),

169-193.

8. M. Krasner, A class of hyperrings and hyperfields, Internat. J. Math. and Math. Sci.,

6(2), (1983), 307-312.

9. F. Marty, Sur un generalisation de la notion de groupe. Huitieme Congres des mathe-

maticiens Scand., Stockholm 1934, pp. 45-49.

www.SID.ir



Arc
hive

 of
 S

ID

On the Algebraic Structure of Transposition Hypergroups with Idempotent Identity 73

10. Ch. G. Massouros, On the theory of hyperrings and hyperfields, Algebra and Logic, 24(6),

(1985), 728-742.

11. Ch. G. Massouros, Free and cyclic hypermodules, Annali Di Mathematica Pura ed Ap-

plicata, CL, (1988), 153-166.

12. Ch. G. Massouros, Hypergroups and convexity. Riv. di Mat. pura ed applicata, 4, (1989),

7-26.

13. Ch. G. Massouros, Quasicanonical Hypergroups, Proceedings of the 4th Internat. Cong.

on Algebraic Hyperstructures and Applications, Xanthi 1990, World Scientific 1991, pp.

129-136.

14. Ch. G. Massouros, On the semi-subhypergroups of a hypergroup. Internat. J. Math. &

Math. Sci., 14(2), (1991), 293-304.

15. Ch. G. Massouros, Normal homomorphisms of Fortified Join Hypergroups, Proceedings

of the 5th Internat. Cong. on Algebraic Hyperstructures and Applications, CityplaceIasi

1993, Hadronic Press 1994, pp. 133-142

16. Ch. G. Massouros, Application of the Hypercompositional Structures into Geometry,

Proceedings of the 26th Annual Iranian Mathematics Conference, Kerman, Iran, 1995,

Vol. 2, pp. 231-235.

17. Ch. G. Massouros, Hypergroups and Geometry, Mem. Academia Romana, Mathematics,

special issue, Seria IV, Tom. XIX, (1996) pp. 185-191 and Scripta Scientiarum Mathe-

maticarum, Tom. I, 1997, pp. 143-152.

18. Ch. G. Massouros, Canonical and Join Hypergroups. An. Stiintifice Univ. ”Al. I. Cuza”,

Iasi, Tom. XLII, Matematica, fasc.1, 1996, 175-186.

19. Ch. G. Massouros and G. G. Massouros, Transposition Polysymmetrical Hypergroups

with Strong Identity, Journal of Basic Science 4(1), (2008), 85-93.

20. Ch. G. Massouros and G. G. Massouros, Hypergroups associated with Graphs and Au-

tomata, Proceedings of the International Conference on Numerical Analysis and Applied

Mathematics, ICNAAM 2009 Crete, American Institute of Physics (AIP) Conference

Proceedings, pp. 164-167.

21. Ch. G. Massouros and G. G. Massouros, On Join Hyperrings, Proceedings of the 10th

International Congress on Algebraic Hyperstructures and Applications, Brno, Czech Re-

public 2009, pp. 203-215.

22. Ch. G. Massouros and G. G. Massouros, Identities in Multivalued Algebraic Structures,

Numerical Analysis and Applied Mathematics Conference ICNAAM 2010 Rhodes; Amer-

ican Institute of Physics (AIP) Conference Proceedings, pp. 2065-2068.

23. Ch. G. Massouros and Ch. Tsitouras, Enumeration of hypercompositional structures

defined by binary relations, Italian Journal of Pure and Applied Mathematics, 28, (2011),

43-54.

24. Ch. G. Massouros and G. G. Massouros, The Transposition Axiom in Hypercompositional

Structures, Ratio Mathematica, 21, (2011), 75-90.

25. Ch. G. Massouros and G. G. Massouros, On certain fundamental properties of hyper-

groups and fuzzy hypergroups – Mimic fuzzy hypergroups, International Journal of Risk

Theory, 2(2), (2012), 71-82

26. Ch. G. Massouros and G. G. Massouros, Transposition Hypergroups with Idempotent

Identity, International Journal of Algebraic Hyperstructures and Applications, 1, (to

appear).

27. Ch. G. Massouros and A. Dramalidis, Transposition Hv-groups, Ars Combinatoria, 106,

(2012), 143-160.

28. G. G. Massouros and J. Mittas, Languages, Automata and hypercompositional structures,

Proceedings of the 4th Internat. Cong. on Algebraic Hyperstructures and Applications,

Xanthi 1990, World Scientific 1991, pp. 137-147.

www.SID.ir



Arc
hive

 of
 S

ID

74 Christos G. Massouros and Gerasimos G. Massouros

29. G. G. Massouros, On the Hypergroup Theory, Fuzzy Systems & A.I. - Reports and

Letters, Academia Romana, IV(2/3), (1995), 13-25.

30. G. G. Massouros, Fortified Join Hypergroups and Join Hyperrings, An. Sti. Univ. Al. I.

Cuza, Iasi, Sect. I, Mat. , XLI, fasc. 1, (1995), 37-44.

31. G. G. Massouros, A new approach to the Theory of Languages and Automata, Proceed-

ings of the 26th Annual Iranian Mathematics Conference, Kerman, Iran, 1995, Vol. 2,

pp. 237-239.

32. G. G. Massouros, Ch. G. Massouros and J. D. Mittas, Fortified Join Hypergroups, An-

nales Matematiques Blaise Pascal, 3(2), (1996), 155-169.

33. G. G. Massouros, The subhypergroups of the Fortified Join Hypergroup, Italian Journal

of Pure and Applied Mathematics, 2, (1997), 51-63.

34. G. G. Massouros, The Hyperringoid, Multiple Valued Logic, 3, (1998), 217-234.

35. G. G. Massouros and Ch. G. Massouros, Homomorphic relations on Hyperringoids and

Join Hyperrings, Ratio Matematica, 13, (1999), 61-70.

36. G. G. Massouros, Hypercompositional Structures from the Computer Theory, Ratio

Matematica, 13, (1999), 37-42.

37. G. G. Massouros, F. A. Zafiropoulos and Ch. G. Massouros, Transposition Polysymmet-

rical Hypergroups, Proceedings of the 8th Internat. Cong. on Algebraic Hyperstructures

and Applications, Samothraki 2002, Spanidis Press 2003, pp. 191-202.

38. J. Mittas, Hypergroupes canoniques, Mathematica Balkanica, 2, (1972), 165-179.

39. J. Mittas, Hypergroupes polysymetriques canoniques, Atti del convegno su ipergruppi,

altre strutture multivoche e loro applicazioni, Udine 1985, pp. 1-25.

40. J. Mittas and C. Yatras, M-polysymmetrical Hyperrings, Ratio Mathematica, 12, (1997),

45-65.

41. W. Prenowitz, A Contemporary Approach to Classical Geometry, Amer. Math. Month.,

68(1), (1961), 1-67.

42. W. Prenowitz and J. Jantosciak, Geometries and Join Spaces. J. Reine Angew. Math.,

257, (1972), 100-128.

43. A. Taghavi and R. Hosseinzadeh, Uniform Boundedness Principle for Operators on

Hypervector Spaces, Iranian Journal of Mathematical Sciences and Informatics 7(2),

(2012), 9-16.

www.SID.ir


